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Abstract This study was conducted on Holothuria polii,
Holothuria tubulosa, and Holothuria mammata collected
from five stations with different depths in the Northern
Mediterranean Sea. The body walls and guts of these holothu-
rians were examined in terms of interactions of 10metals (iron
(Fe), copper (Cu), manganese (Mn), zinc (Zn), chromium
(Cr), cobalt (Co), vanadium (V), nickel (Ni), cadmium (Cd),
and lead (Pb)) and one metalloid (arsenic (As)) using a multi-
variate analysis, and interspecies differences were determined.
The multivariate analysis of variance (MANOVA) revealed
significant differences between the species in terms of metal(-
loid) accumulations. The principal component analysis (PCA)
showed a more association between H. tubulosa and H. polii
with regard to the accumulation. The cluster analysis (CA)
located Pb concentrations of the guts to the farthest place from
all elements regardless of the species. A correlation analysis
displayed that the element concentrations of the guts were
more closely related to each other compared with those of
the walls. The most inconsistent element in terms of correla-
tions was the gut Fe contents. Accordingly, while Fe concen-
trations of H. mammata and H. tubulosa were correlated with
all elements (except Pb) in divalent metal transporter 1
(DMT1) (divalent cation transporter 1 (DCT1) or natural
resistance-associated macrophage protein 2 (NRAMP2)) be-
longing to the NRAM protein family, this was not the case in

H. polii. Consequently, significant relationships between ac-
cumulated metal(loid)s that changed by tissues and sea cu-
cumber species were observed.

Keywords H. polii .H.mammata .H. tubulosa . Ionic
mimicry .Metabolic transport . Molecular mimicry .

Transferrin . Vanadium

Introduction

Holothurians are important organisms for particularly coastal
ecosystems. They are deposit feeders and play significant
roles in recycling nutrients, stimulation of microalgal growth,
and mixing the upper sediments (MacTavish et al. 2012). So
far, 1400 species from marine waters including 37 from the
Mediterranean Sea have been recorded (Aydın 2008; Conand
2006). Being invertebrate, over 66 species of these animals are
commercially fished in about 40 countries and generally
exported to the Asian markets (Gonzalez-Wanguemert et al.
2014; Purcell et al. 2012).

Since sea cucumbers are promiscuous sediment feeders,
they are potential indicators for metal(loid) accumulation
(Givianrad et al. 2014; Liu et al. 2016; Mohammadizadeh
et al. 2015; Turk Culha et al. 2016). Other advantages that
increase their indicator values are that they are slow-moving,
bulky that allows easy dissection, long-lived, and widespread.

While some metals are non-essential or toxic, others
can be extremely essential for the continuation of life.
Metals are required by living organisms for important
roles with their chemical features such as redox reactions
(Zitka et al. 2013). About one third of proteins include
metals. Of these proteins, 47 % are enzymes and 41 % are
those proteins that need metals at the catalytic centers.
Metalloenzymes account for 59 % of ligases, 44 % of
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oxidoreductases, 40 % of transferases, 39 % of hydro-
lases, 36 % of isomerases, and 36 % of lyases (Andreini
et al. 2008; Martinez-Finley et al. 2012; Waldron et al.
2009). All the processes including uptake of metal, their
transfer to protein that needs them, localization and depo-
sition of metals at a subcellular level, and re-mobilization
when needed are accomplished by the metal transporters
(Kramer et al. 2007). Up to date, many transporters such
as transferrins, natural resistance-associated macrophage
protein (NRAMP) family, and ZIP family have been iden-
tified. There are important mechanisms of metal binding
and deposition for hemostasis at a subcellular level. For
instance, five important mechanisms have been described
in crustaceans: (1) complex formation with metallothione-
in or glutathione, (2) transfer to mitochondria, (3) transi-
tion from basolateral membrane to blood, (4) accumula-
tion in lysosomes, and (5) transportation to the endoplas-
mic reticulum (Ahearn et al. 2004). Essential and non-
essential metals in the medium are involved in metabo-
lism and accumulated in organisms using these metabolic
pathways. The pathways, however, bind, transport, and
transmit more than one metal (Menon et al. 2016;
Rodriguez-Hernandez et al. 2015), which can result in
an antagonism and synergism during the accumulation
between metals and formations of metal groups or clus-
ters. In other words, this situation can dictate the metal
accumulation profiles in living organisms. The profiles of
indicator organisms are also affected by relationships be-
tween the metal(loid)s in the medium. Metal(loid)s can
show these kinds of relationships independently from the
metabolism effect once accumulated. To eliminate this
effect in the present study, samples were collected from
five independent stations with different depths ranging
between 0 and 20 m.

There are studies in the literature dealing with metal(loid)
pollutions and accumulations by holothurians. However, there
is a serious scarcity of information about relationships of ac-
cumulated metal(loid), i.e., accumulation profile, particularly
in sea cucumbers. To this end, the study aimed to fill informa-
tion gap at two points: (1) are there any relations among
metals accumulated in sea cucumbers? (2) If so, do the rela-
tions change depending on species?

Materials and methods

Sample collection

LLLRThe study was carried out in 2015 in the Northern
Mediterranean Region. Sea cucumbers were collected by
SCUBA diving from five stations (Yeniköy, Edremit,
Ayvalık, Dikili, and Hekim Island) with varying depths

from 0 to 20 m (Fig. 1). The samples were delivered in
sample caps to laboratory.

Metal(loid) analysis

The analytical processes were completed at the laboratory of
Environmental Engineering Department, Istanbul University.
Sea cucumber samples were eviscerated, and their body walls
and guts were separately cleaned and weighed on a watch
glass. Aliquots of homogenized specimens were dried in an
oven at 115 °C for at least 18 h. The samples were then pow-
dered. Approximately 0.2 g of the samples were transferred to
100-ml Teflon beakers, added with 5 ml of HNO3 (65 %) and
2 ml of H2O2 (30 %) (Merck, Germany), and digested using a
microwave digester (CEM MARS Xpress microwave diges-
tion system, USA). A two-step digestion program was used
including a 20-min decomposition period with 600 W at
160 °C followed by 20 min with 1200 W at 185 °C. The
digested samples were cooled and diluted to 25 ml with de-
ionized distilled water and stored in the refrigerator at approx-
imately −4 °C until measurement with a graphite atomic ab-
sorption spectrophotometry (PerkinElmer GF-AAS 600) and
flame atomic absorption spectrophotometry (PerkinElmer F-
AAS 400) (Neelam et al. 2010). The GF-AAS unit was oper-
ated with the Zeeman background correction, and the peak
area was integrated for all signals. Fe, Mn, and Zn were de-
termined by F-AAS, while As, Ni, Cu, Cr, Pb, Co, V, and Cd
were determined by GF-AAS.

Analysis quality control

All chemicals were of analytical grade. Standard calibration
solutions for metal(loid)s (Inorganic Ventures) were prepared
in 0.1 % HNO3 starting from 1000 ppm. Laboratory plastic
wares and glasses ware cleaned with 1 % HNO3 and rinsed
with abundant deionized water before use. One empty acid
mix solution from each digestion batch was also included to
determine the background of pollution. For every measure-
ment, these samples were used as a blank. The control and
blank samples were analyzed before and after every 10 sample
as well as after the last sample.

To evaluate the accuracy of the analytical methods and to
establish an optimal digestion condition, a reference standard
material (LUTS-1) and standard solutions were used. The
LUTS-1 was examined as described previously to perform
the recovery procedure, and recovery range was between 75
and 118 % for all metals. The accuracy of the measurements
was accepted when the repeatability of the measurement for
each sample was less than 2 %. Five standard solutions were
prepared for the calibration curves, and the R2 >0.99 condition
was achieved. All readings were repeated three times.
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Statistical analysis

Tissue and species metal(loid) concentrations were com-
pared with the Kruskal-Wallis and Mann-Whitney U tests
at a significance level of P < 0.05, respectively (Conti
et al. 2010). Kruskal-Wallis and Mann-Whitney U tests
were used due to the number of data available. The
Spearman correlation coefficients were determined among
the body wall and gut metal(loid) concentrations at sig-
nificance levels of P < 0.01 and <0.05 (Yap et al. 2010).
A multivariate analysis of variance (MANOVA) was
employed to determine if accumulations of 11 metals
were significantly different between species with or with-
out consideration of tissues (Abbas Alkarkhi et al. 2008).
The cluster analysis (CA) was used to reveal metal clus-
ters that were closely associated in terms of accumulation.
Accordingly, metal(loid)s having strong relations with
each other were located at either in a cluster or adjacent
clusters. The CA was performed after Z score transforma-
tion at a Euclidean distance according to the Ward method
(Lopez et al. 2004). The principal component analysis
(PCA) was conducted according to Varmuza and
Filzmoser (2009) to determine the projections of similarly
accumulated metal(loid)s by species without consideration
of tissues. The first two axes explained 82.38 % of vari-
ation for Holothuria tubulosa, 81.41 % for Holothuria
polii, and 80.40 % for Holothuria mammata. All analyses
were carried out using SPSS 21.0 (IBM, USA).

Results and discussions

A close look at the accumulation profiles of each element in
the three sea cucumber species revealed that the profiles of the
body wall and gut were highly different. This is consistent
with the findings of various studies on different invertebrates
(Tunca et al. 2013a). One reason of a lesser degree of accu-
mulations of metals and different profiles in the body walls
can be that muscle tissue contains a limited amount of metal
binding proteins (Guner 2007). It is known that the intestines
of sea cucumber have solubilization and bioaccumulation
roles (McAloon andMason 2003). Although lower metal con-
tents, the body wall of sea cucumber includes 58–81 % of the
total amount of some metals (Cd, Cu, Pb, Zn), since it ac-
counts for 85–90 % of the whole body (Givianrad et al.
2014). Conversely, the gut accumulates the metals at higher
concentrations (Warnau et al. 2006). The later researchers re-
ported that Fe concentration of H. tubulosa gut accounts for
47 % of the whole body. Therefore, the majority of previous
studies detected higher levels of metals in the gut compared to
the body wall (Liu et al. 2016). In line with these reports, we
determined all elements, except Cr andMn inH. mammata, at
higher levels in the gut regardless species.

A comparison of species by tissue basis showed that al-
though no remarkable differences, there are significant differ-
ences for somemetals (Fig. 2), which is consistent with former
studies (Jinadasa et al. 2014; Mohammadizadeh et al. 2015).
Considering significantly different elements (Cu, Cd, Cr, Mn)

Fig. 1 Map of the study region
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Fig. 2 a, b Distribution graphs of amounts, frequencies, and statistical comparisons of metal(loid)s. Letters T, P, andM indicate H. tubulosa, H. polii,
and H. mammata, respectively, and the presence of these letters in the graph shows a statistically significant difference, P < 0.05
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Fig. 2 (continued)
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in the current investigation, the species including them in the
wall and gut at the lowest amount was H. polii. When
H. tubulosa and H. mammata were compared in terms of the
gut elements, there were no significant differences, but

H. mammata significantly accumulated some metals (Cd,
Mn) in their body walls.

There are numerous factors influencing accumulations of
elements in living organisms such as features of elements
accumulated (essential or non-essential, water solubility, form,
etc.), concentration, exposure time, presence of other elements
or compounds in the environment, physico-chemical parame-
ters of the medium, environment where an organism live,
feeding habits or behaviors, condition of organism, sex, and
metabolic rate of organism in some cases. Considering that
when the species were collected together from the same region
in the present study, differences in metabolic activities be-
tween species appeared to be a factor that can explain the
species differences. Moreover, an effect of possible differ-
ences in feeding habits cannot be ruled out due to varying
environment preferences by the species (Aydın 2008; Aydın
and Erkan 2015).

Relationships of the accumulated elements regardless of
the species were dealt with the PCA and MANOVA in this
study based on former studies (Morina et al. 2016). The PCA
results concerning the accumulation profile showed a remark-
able difference in H. mammata compared with the other spe-
cies (Fig. 3). Pb and As in H. tubulosa and H. polii formed a
separate group from the main group, and to this group, Cr of
H. tubulosa and Zn of H. polii joined as a third element. The
second component ofH. mammatawas, however, represented
by Mn and Cr. There were significant differences in metal
accumulations of the three species (Table 1), which was in
concordance with PCA results.

Correlations among the metals of the species are important
to better understand the metal(loid) accumulations. The

Fig. 3 Projections of metal(loid)s in the whole body of a H. tubulosa, b
H. polii, and c H. mammata

Table 1 Comparisons of the whole body, body wall, and gut of the
three species with MANOVA

Test Value F Sig.

Entire body

Pillai’s trace 0.618 2.925 0.000

Wilks’ lambda 0.459 3.070 0.000

Hotelling’s trace 1.010 3.213 0.000

Roy’s largest root 0.800 5.240 0.000

Body wall

Pillai’s trace 1.101 3.338 0.000

Wilks’ lambda 0.177 3.628 0.000

Hotelling’s trace 3.077 3.916 0.000

Roy’s largest root 2.432 6.633 0.000

Gut

Pillai’s trace 0.915 2.301 0.006

Wilks’ lambda 0.279 2.354 0.005

Hotelling’s trace 1.887 2.402 0.004

Roy’s largest root 1.385 3.776 0.002
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Table 2 The Spearman correlation coefficients among the metal(loid)s studied

Cu Pb As Ni Cd Cr Co V Mn Zn Fe

H. tubulosa

Body wall

Pb −0.266 1.000

As −0.362 0.075 1.000

Ni 0.031 0.838** −0.038 1.000

Cd 0.379 0.560* −0.109 0.794** 1.000

Cr −0.280 0.675** 0.163 0.629* 0.481 1.000

Co −0.129 0.906** −0.016 0.860** 0.596* 0.690** 1.000

V 0.390 0.456 −0.143 0.683** 0.628* 0.337 0.588* 1.000

Mn 0.389 −0.240 0.036 −0.068 0.236 −0.299 −0.200 0.367 1.000

Zn −0.004 0.197 0.275 0.095 0.315 0.270 0.181 −0.299 −0.243 1.000

Fe 0.468 0.194 −0.164 0.340 0.656** 0.095 0.164 0.640* 0.532* −0.207 1.000

Gut

Pb −0.039 1.000

As 0.500 0.254 1.000

Ni 0.518* 0.043 0.589* 1.000

Cd 0.421 0.225 0.289 0.704** 1.000

Cr 0.014 0.521* 0.414 0.329 0.489 1.000

Co 0.660** −0.179 0.236 0.740** 0.613* −0.161 1.000

V 0.743** 0.225 0.496 0.689** 0.604* 0.386 0.450 1.000

Mn 0.661** −0.139 0.111 0.539* 0.450 −0.011 0.763** 0.468 1.000

Zn 0.454 0.275 0.796** 0.743** 0.611* 0.714** 0.307 0.636* 0.336 1.000

Fe 0.611* 0.275 0.579* 0.521* 0.493 0.468 0.250 0.782** 0.504 0.711** 1.000

H. polii

Body wall

Pb −0.064 1.000

As 0.109 −0.424 1.000

Ni 0.239 0.520* −0.293 1.000

Cd 0.289 0.542* −0.361 0.380 1.000

Cr −0.216 0.846** −0.214 0.522* 0.386 1.000

Co −0.098 0.777** −0.381 0.580* 0.647** 0.834** 1.000

V 0.086 0.576* 0.018 0.211 0.210 0.434 0.481 1.000

Mn 0.341 −0.197 −0.196 −0.250 0.309 −0.284 −0.095 −0.079 1.000

Zn −0.211 0.752** −0.468 0.696** 0.346 0.838** 0.810** 0.286 −0.275 1.000

Fe 0.774** 0.064 −0.236 0.143 0.380 −0.175 0.016 0.182 0.718** −0.104 1.000

Gut

Pb −0.155 1.000

As 0.191 0.447 1.000

Ni 0.261 −0.084 0.629* 1.000

Cd 0.649** −0.329 0.307 0.711** 1.000

Cr 0.106 0.423 0.737** 0.377 0.274 1.000

Co 0.617* −0.488 −0.032 0.361 0.646** −0.156 1.000

V 0.634* −0.009 0.021 0.325 0.618* 0.004 0.343 1.000

Mn −0.070 −0.577* −0.561* 0.111 0.332 −0.340 0.214 0.314 1.000

Zn 0.441 0.377 0.871** 0.468 0.368 0.612* 0.186 0.064 −0.657** 1.000

Fe 0.220 −0.089 −0.189 0.050 0.193 −0.122 0.436 0.457 0.304 −0.300 1.000

H. mammata

Body wall

21026 Environ Sci Pollut Res (2016) 23:21020–21031



reasons of correlations of metals accumulated in the tissues are
that indicator species deposit metal(loid)s in parallel with the
environment conditions (Kouba et al. 2010) and use themwith
a common metabolic pathway (Ahearn et al. 2004). For in-
stance, non-essential Pb+2 and Cd+2 utilize the samemetabolic
routes with Ca+2 (Martinez-Finley et al. 2012). As a matter of
fact deposition and accumulations of non-essential metal(-
loid)s take place in this way. Moreover, non-essential metal(-
loid)s are involved inmetabolic processes like essential metals
by molecular or ionic mimicry mechanisms (Bridges and
Zalups 2005). Essential-essential, essential-nonessential, and
nonessential-nonessential metal correlations are hereby seen
depending on metabolic activities.

When the three species are considered separately, significant
correlations among the metal(loid)s of the body wall were the
case (Table 2). The strongest correlations were found between V
and Co (R2 = 0.863) inH. mammata and Pb and Co (R2 = 0.906)
in H. tubulosa. Albeit weaker, while the former correlation was
also the case forH. tubulosa, the latter was forH. mammata and
H. polii. This situation similarly reflected the CA dendrogram as
seen in Fig. 4. V concentrations of the gut were relatedwith those
of Cu andCd in the three species with varying strengths. Another
important point for Vwas that it was correlated withmoremetals
in the gut than those in thewall. AlthoughVis essential for many
organisms (Da Silva 2012), it is deposited at high levels in a few.
This element has been shown to have a role in vanadium-

containing proteins (VCPs) that are used in the glycemic control
of human with type 2 diabetes and deposited in sea cucumber
(Liu et al. 2015). Significant correlations of V with Fe, Cu, Zn,
Co, Ni, Cd, and Pb in the present study could be due to common
proteins or transport routes to which these elements are involved.
First, the isolated protein specific to V is vanadium-binding pro-
teins (vanabins) in Ascidiacea (Ueki et al. 2007; Yoshihara et al.
2005). Vanabins can also show affinity to other elements.
Vanabin (vanabin2) selectively binds Fe+3, Cu+2, Co+2, Ni+2,
and Zn+2 (Kawakami et al. 2006); vanabin2 reductase binds
Co+2, Cu+2, Mn+2, Mo+6, Ni+2, and W+6 (Kitayama et al. 2013;
Ueki et al. 2015); vanabin2-binding protein binds Ca+2, Co+2,
Cu+2, Fe+3, Mg+2, Mn+2, and Zn+2 (Ueki et al. 2009; Ueki et al.
2015); and VBP-129 binds Fe+3, Cu+2, Co+2, Zn+2, Ca+2, Mg+2,
andMn+2 (Ueki et al. 2015; Yoshihara et al. 2008). The VCPs of
sea cucumber were found to bind and deposit V (Liu et al. 2015).
Therefore, it would not be wrong to expect that abovementioned
elements bind to these proteins. This can also explain the corre-
lations of V with other elements in the current investigation.

Another reason of the associations of V with other
metal(loid)s, aside from vanabins (or VCPs), could be
low selective proteins with metal binding ability. The
most possible protein among these appears to be diva-
lent metal transporter 1 (DMT1) (DCT1 or NRAMP2)
belonging to the NRAMP protein family. Homologs of
DMT1, a mammalian protein, have been also described from

Table 2 (continued)

Cu Pb As Ni Cd Cr Co V Mn Zn Fe

Pb 0.179 1.000

As 0.161 0.442 1.000

Ni 0.182 0.446 0.497 1.000

Cd 0.483 0.193 −0.056 0.294 1.000

Cr −0.168 0.302 0.025 0.602* 0.119 1.000

Co 0.196 0.685* 0.540 0.835** 0.225 0.525 1.000

V 0.434 0.674* 0.587* 0.769** 0.371 0.340 0.863** 1.000

Mn 0.294 −0.074 0.133 −0.070 0.154 −0.375 0.165 0.392 1.000

Zn 0.098 0.337 0.392 0.776** 0.371 0.592* 0.488 0.573 −0.112 1.000

Fe 0.783** 0.477 0.049 0.385 0.692* 0.063 0.519 0.657* 0.364 0.182 1.000

Gut

Pb −0.014 1.000

As 0.559 −0.462 1.000

Ni 0.503 0.280 0.301 1.000

Cd 0.608* 0.287 0.364 0.923** 1.000

Cr 0.671* 0.056 0.566 0.161 0.266 1.000

Co 0.538 0.119 0.196 0.734** 0.783** −0.035 1.000

V 0.825** 0.119 0.462 0.594* 0.748** 0.580* 0.580* 1.000

Mn 0.517 0.566 −0.007 0.119 0.238 0.629* 0.189 0.594* 1.000

Zn 0.860** −0.014 0.650* 0.643* 0.685* 0.650* 0.413 0.664* 0.245 1.000

Fe 0.685* 0.280 0.392 0.874** 0.958** 0.273 0.867** 0.734** 0.301 0.678* 1.000

**P < 0.01;*P < 0.05
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Fig. 4 CA analysis of tissue metal(loid) accumulations based on their interactions. aH. tubulosa body wall (1),H. polii body wall, (2) andH. mammata
body wall (3). b H. tubulosa gut (1), H. polii gut (2), and H. mammata gut (3)
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invertebrates (Mims and Prchal 2005; Smyth et al. 2006).
DMT1 has actually a strong affinity to Fe, but it can also
bind Cd, Co, Mn, Ni, VO (vanadium oxide) (Illing et al.
2012), Cu, and Pb (Garrick et al. 2006). Another trans-
porter with V binding ability is transferrin (Tf) that has
specificity to Fe+3 (Costa Pessoa et al. 2015). The Tf is
known to bind Cr+3, Cu+2, Ni+2, and Zn+2. Close correla-
tions among elements (that can bind to DMT1 and Tf)
were detected in this study with correlation analysis and
CA in tissues of the three species.

An important and interesting correlation was found
between Ni and Cr in the body walls of the three spe-
cies albeit at different strengths. However, CA revealed
differences between species; i.e., there was not a rela-
tion between Ni and Cr in the H. polii body wall com-
pared with other species. One conspicuous issue in
terms of these two elements was that close correlations
were recorded only in the body walls. The Ni-Cr corre-
lations were also reported for different organisms in-
cluding a macrophyte species (Phragmites australis)
(Rzymski et al. 2014), oysters (Crassostrea sikamea
and Crassostrea hongkongensis) (Weng and Wang
2014), crayfish (Astacus leptodactylus) (Fikirdeşici
Ergen et al. 2015; Tunca et al. 2013b), and Nile tilapia
(Oreochromis niloticus) (Nakayama et al. 2010). While
Ni mostly forms a complex with DMT1 (Illing et al.
2012) and Tf (Quarles Jr et al. 2011), Cr forms a com-
plex with sulfate, phosphate (De Oliveira et al. 2016),
and Tf (Quarles Jr et al. 2011). The Tf can be a reason
of this strong relation of Ni and Cr. It is composed of
two homolog regions, N-lobe and C-lobe (Mathies et al.
2015). While both lobes can bind Fe+3, the N-lobe has
an affinity for Ni and the C-lobe for Cr (Quarles Jr
et al. 2011). At the presence of Fe in the medium,
binding strengths of Cr and Ni to Tf are not high
enough, but Tf can bind both metals at the absence of
competition with Fe, which can help in a better under-
standing of the correlations.

There are not too many elements like Cr using phos-
phate transport pathways. Another element involved in
metabolism via this pathway is As (Tripathi et al. 2007).
In the present study, As appears to have fewer correlations
with other elements, which could be due to its low bind-
ing properties to carrying proteins. Actually, a close asso-
ciation between As and Cr had been expected through a
usage of the phosphate pathways. However, besides this
route, Cr can also use sulfate pathways and bind to Tf,
which may have reduced a possible correlation in the
present study. Accordingly, CA dendrogram shows a big
distance between Cr and As in the body wall. However
and oppositely, a close placement of these elements in the
gut in the dendrogram can suggest a strong correlation,
which was further supported by the correlation analysis.

Other noteworthy correlations were between Fe and Cu,
Ni, Cd, Co, V, and Zn in the H. mammata gut. It should be
underlined that all these elements can bind DMT1. Fe was
also correlated with Cu, Ni, V, and Zn in the H. tubulosa
gut. Interestingly, metal(loid)s of H. polii gut did not display
such a correlation of Fe with others.

All the correlations of Cu were observed in the gut, except
one in the body wall ofH. mammata andH. poliiwith Fe. CA
displayed a similar pattern. Unlike Cu, Pb showed its correla-
tions only in the body wall and it was the element located at
the farthest place from others in the gut.

Conclusions

With this study, metal(loid) accumulation profiles and
profile differences of the three sea cucumber species on
tissue basis caught from the Northern Mediterranean Sea
were investigated. The results suggest that accumulations
of metal(loid)s in tissues of the three species were differ-
ent from each other. This difference is a fact when the
comparison is made with or without tissue basis. The dif-
ferences appear at both metal accumulation amounts and
their interactions with each other. These interactions are
consistent with the results of previous studies on inverte-
brates and can be explained at a certain extent with metal-
carrying proteins and transport pathways.
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