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Abstract The removal of radiocontrast agent diatrizoic acid
(DIA) from water was performed using photo-Fenton (PF)
process. First, the effect of H2O2 dosage on mineralization
efficiency was determined using ultraviolet (UV) irradiation.
The system reached a maximum mineralization degree of
60 % total organic carbon (TOC) removal at 4 h with
20 mM initial H2O2 concentration while further concentration
values led to a decrease in TOC abatement efficiency. Then,
the effect of different concentrations of Fenton’s reagents was
studied for homogeneous Fenton process. Obtained results
revealed that 0.25 mM Fe3+ and 20 mM H2O2 were the best
conditions, achieving 80 % TOC removal efficiency at 4 h
treatment. Furthermore, heterogeneous PF treatment was de-
veloped using iron-activated carbon as catalyst. It was dem-
onstrated that this catalyst is a promising option, reaching
67 % of TOC removal within 4 h treatment without formation

of iron leachate in the medium. In addition, two strategies of
enhancement for process efficiency are proposed: coupling of
PF with electro-Fenton (EF) process in two ways: photoelectro-
Fenton (PEF) or PF followed by EF (PF-EF) treatments, achiev-
ing in both cases the complete mineralization of DIA solution
within only 2 h. Finally, the Microtox tests revealed the forma-
tion of more toxic compounds than the initial DIA during PF
process, while, it was possible to reach total mineralization by
both proposed alternatives (PEF or PF-EF) and thus to remove
the toxicity of DIA solution.
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Introduction

Over the past decades, pharmaceuticals have become prob-
lematic pollutants in both surface and groundwater. The pres-
ence of these pollutants in water streams is overall caused by
pharmaceutical industrial streams, hospital waste and munic-
ipal wastewater effluents. Although they have been present in
water from many years ago, the pollution of water has been
highlighted in the 1960s when the presence of these com-
pounds on the environment was detected in the USA and
Europe (Stumm-Zollinger and Fair 1965). Usually, pharma-
ceuticals are found in very low quantities (ng L−1 to μg L−1),
and their behaviour in biotic and abiotic environments is still
unknown (Daughton and Ternes 1999). Recently, some stud-
ies have demonstrated their potential hazards (Rastogi et al.
2014; Tiehm et al. 2011) even at low concentrations, and thus
concerns about their potential risk became worrying. Therefore,
the problem of their elimination has arisen. To protect the envi-
ronment from adverse effects of such pollutants, it is important
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to treat wastewaters containing pharmaceutical residues using
safe and effective methods before their discharge into natural
water streams.

To date, conventional wastewater treatment plants have
been designed to reduce parameters like BOD5, COD or total
suspended solids. Nonetheless, these plants are unable to
eliminate the wide variety of persistent organic pollutants
(POPs), such as pharmaceuticals, which are recalcitrant to
biological degradation (Malato 2008; Murgolo et al. 2015).
Therefore, pharmaceutical and personal care products pass
generally through the conventional wastewater treatment
plants without significant changes, entering into natural water
system.

Radiopaque solutions are daily dosed in high amounts in
hospitals for radiologic diagnostics and finally excreted since
they are not completely metabolized. Among them, the
diatrizoic acid (DIA) has been used as radiologic contrast
agent since 1950. This compound can be oxidized in the na-
ture by biotic or abiotic process resulting in by-products with
more hazardous potential than the original molecule (Gur-
Reznik et al. 2011; Laurencé et al. 2014). Besides, even when
traditional chemical oxidants react with these drugs, they are
unable to mineralize them since their oxidation stopped at the
level of formation of more persistent intermediates (Real et al.
2009). The low removal of some recalcitrant compounds by
conventional processes necessitates developing alternative
technologies able to overcome the complete degradation of
these pollutants in water.

Lately, advanced oxidation processes (AOPs) have
emerged as a potential alternative able to afford the elimina-
tion of POPs and have been usually combined with other pre-
treatments (Dias et al. 2014; Moreira et al. 2014; Oturan and
Aaron 2014; Zhao et al. 2014) in order to reduce operational
cost and increase the efficiency of the treatment. These pro-
cesses are based on the generation of a strong oxidant, mainly
hydroxyl radicals (·OH), the second most powerful oxidant
(E° = 2.8 V/SHE) after fluorine (Krzeminska et al. 2015).
The high reactivity and non-selectivity of these radicals lead
to the oxidative degradation of POPs until complete mineral-
ization (Pignatello et al. 2006; Brillas et al. 2009; Brillas
2014a; Moreira et al. 2013; Oturan and Aaron 2014)). Thus,
the elimination of non-ionic iodinated contrast media
from water has already been studied by different
AOPs (Papoutsakis et al. 2015; Radjenovic et al. 2013;
Velo-Gala et al. 2012). Real et al. (2009) studied the removal
of diatrizoate in ultrapure water by different oxidation systems
such as ozone, ultraviolet (UV) radiation or Fenton’s reagent,
finding the most satisfactory results by the use of UV-
irradiated Fenton’s reagent, reaching 64.7 % of degradation
after 5 min of treatment. Similarly, Ternes et al. (2003) report-
ed that DIA has showed high resistance to ozonation treat-
ments, even combined with UV light, obtaining only 35 %
mineralization. Recently, Murgolo et al. (2015) enhanced

photocatalytic degradation of different pollutants such as
diatrizoate, under artificial and solar-simulated light by the
use of a new photocatalyst based on nano-sized TiO2.

The photo-Fenton (PF) process has demonstrated to have
greatly improved the oxidation efficiency of the classical
Fenton’s method. Thus, in this process, the classical
Fenton’s reaction (Eq. 1) takes place; however, the generation
of ·OH could be increased by application of UV irradiation
and using as catalyst soluble Fe3+ salt at pH around 3. At this
pH, the predominant species of iron(III) is Fe(OH)2+ (Eq. (2))
which strongly absorbs UV light and generates, according to
Eq. (3), ·OH and ferrous ion which can react with H2O2 fol-
lowing Eq. (1) to form ·OH. This concomitant generation of a
great amount of ·OH accelerates strongly the oxidation rate of
organic pollutants present in the solution (Bouafia-Chergui et
al. 2010; Bouafia-Chergui et al. 2012; Diagne et al. 2009). As
a consequence, UV irradiation of the solution brings two main
advantages: (i) production of ·OH by photo-reduction of
iron(III) and (ii) catalysis of the Fenton’s reaction (Eq. 1)
through regeneration of ferrous (Fe2+) iron which acts as a
catalyst.

Fe2þ þ H2O2→Fe3þ þ OH– þ �OH ð1Þ

Fe3þ þ H2O→Fe OHð Þ2þ þ Hþ ð2Þ

Fe OHð Þ2þ þ hυ→Fe2þ þ �OH ð3Þ

Recently, several studies have been focused on the improve-
ment of the Fenton process by using heterogeneous iron cata-
lysts, in order to avoid the generation of iron sludge, facilitating
their reuse in continuous processes and avoiding their loss on the
outflow (Daud and Hameed 2010; Iglesias et al. 2013; Russo
et al. 2014). For that purpose, several organic matrixes, such as
hydrogels of polyacrylamide or alginate, have been demonstrat-
ed to have good performance as heterogeneous catalysts in
electro-Fenton (EF) process (Rosales et al. 2012; Barreca et al.
2014; Bocos et al. 2014; Fernández de Dios et al. 2015; Iglesias
et al. 2015). Some authors have pointed out activated carbon
(AC) as a promising inorganic matrix and rough alternative for
metal fixation, given its high stability, high surface area and
great adsorption capacity (Foo and Hameed 2009; Iglesias et
al. 2015). Moreover, AC has been demonstrated to be itself a
good catalyst due to its surface chemistry (Stüber et al. 2005).
For instance, an interesting study using iron-loaded AC as het-
erogeneous catalyst during EF treatment has recently been ac-
complished by Iglesias et al. (2015). These authors demonstrat-
ed the suitability and efficiency of this catalyst on the
decolourization and mineralization of a complex effluent such
as a highly polluted winery wastewater. Furthermore, the study
of the main reactions taking place on the process proved the
increase on the generation of ·OH owing to the use of AC, hence
confirming the catalytic properties of this material itself.
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Based on the aforementioned considerations, in this study,
the optimization of the key parameters (H2O2 and iron con-
centration) in the homogeneous PF process was carried out for
the elimination of DIA fromwater. Besides, different catalysts
such as iron sepiolite alginate beads and iron-activated carbon
were developed, and the efficiency of this process was com-
pared with homogeneous PF process. In the last stage, to
achieve the complete mineralization, the PF process is
coupled to the EF process. Two alternative treatments were
evaluated: PF as pre-treatment for EF process (PF-EF) or ir-
radiation of Fenton’s reagent generated in an electrochemical
cell by EF process (PEF). Furthermore, Microtox tests have
been performed in order to determine the initial and final tox-
icity of all the treated solutions.

Materials and methods

Chemicals

The pharmaceutical DIA (C11H9I3N2O4, also known as
amidotrizoic acid, or 3,5-diacetamido-2,4,6-triiodobenzoic
acid) was provided by Alpha Aesar. Reagent-grade sulphuric
acid (98 %) and iron(III) sulfatepentahydrate (Fe2(SO4)3·
5H2O) were purchased from Acros Organics in analytical
grade. Hydrogen peroxide (30 wt.%) was provided by Merck.

DIA solutions of concentration of 0.1 mM were prepared
with ultrapure water obtained from a Millipore Milli-Q
Simplicity 185 system with resistivity of >18 MΩ cm at
25 °C. The pH of solutions was adjusted to a desired value
using analytical-grade sulphuric acid or sodium hydroxide
(Acros).

Preparation of the heterogeneous catalysts

Iron sepiolite (FeS) and iron-activated carbon (Fe-AC) were
prepared by adsorption processes following the protocols pre-
viously reported by Iglesias et al. (2013, 2015). For that, AC
(granulated no. 2 QP provided by Panreac (Spain)) and sepi-
olite clay (provided by Tolsa S.A.) were immersed in iron-
enriched solutions (using Fe2(SO4)3·5H2O as source of Fe3+

ions) and kept in agitation using a mechanical shaking agitator
(Thermo Forma) at 150 rpm at 20 °C. Samples were taken
periodically, and the solid was separated by centrifugation
(Sigma 3K-18) for 15 min at 7000 rpm. The unadsorbed iron
in the supernatant was determined with atomic absorption
spectroscopy (Agilent 240FS). The iron uptake concentration
was determined by the difference between the initial concen-
tration and that found in the supernatant solution after the
assay. All the adsorption studies were repeated three times;
the reported value is the average of the measurements.

After the fixation of iron to sepiolite, iron sepiolite alginate
beads (FeS-AB) were prepared by mixing 20 mL of a 1.5 %

(w/v) sodium alginate aqueous solution (Iglesias et al. 2014;
Rosales et al. 2012) with 1.6 g of iron sepiolite. The resulting
slurry was stirred at 35 °C of temperature during 4 h and then
added drop wise into a stirred solution of 0.1 M CaCl2. The
beads were then recollected and washed and stored in distilled
water at 4 °C.

Photoreactor and experimental procedures

The experiments were performed in a batch photoreactor with
a cylindrical 1.2 L borosilicate double-walled reaction vessel
as shown in Fig. 1. The solution was continuously recirculated
at a flow rate of 9.5 L min−1 by a peristaltic pump. A low-
pressure mercury lamp (Heraeus Noblelight-NNI 40/20,
35 W) emitting at 253.7 nm was placed in a quartz tube ver-
tically positioned in the middle of the photoreactor. The tem-
perature of the solution was kept at 20 °C throughout all the
assays.

In all the experiments, the pH value of the solution was
adjusted to 3. In homogenous process, a given weight of iron
salt was added and mixed with the initial untreated solution
before the addition of H2O2. In heterogeneous process, differ-
ent amounts of catalyst FeS-AB or Fe-AC were added. These
catalysts were maintained in suspension by continuous recir-
culation of the bulk media. The time at which the UV lamp
was turned on was considered time zero. Samples were taken
periodically at different time intervals. They were centrifuged
at 10,000 rpm for 5 min, and the supernatant was separated to
be analysed for pH, DIA concentration and mineralization
degree.

After heterogeneous treatment, the amount of iron present
in the treated solution was determined spectrophotometrically
by atomic absorption spectrometry (Agilent 240FS).

Characterization of Fe-AC

Scanning electron microscopy (SEM) images were obtained
using a JEOL JSM-6700F equippedwith an energy-dispersive
spectrometric (EDS) Oxford Inca Energy 300 SEM and an
accelerating voltage of 15 kV (Electron Microscopy Service,
C.A.C.T.I, University of Vigo). AC with and without iron
were coated with C for the SEM observation. These images
were used to study the AC itself and the Fe-AC.

Electrochemical cell

In addition, two strategies of coupling PF with EF process
have been proposed: (i) PF-EF, where PF was firstly applied
(during 30 min) to the DIA solution and then this solution was
subjected to EF (during 90 min) and (ii) PEF treatment, where
the electrochemical cell in which Fenton’s reagent is generat-
ed by EF process was irradiated by UV-C light. These exper-
iments were carried out in a cylindrical electrochemical cell
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refrigerated at 20 °C by a double jacket. In all cases, a suitable
concentration of iron Fe3+ was added into the reactor as cata-
lyst and the pH of the solution was kept at 3. Furthermore, in
the photo-assisted experiments 20 mM of H2O2 were added
into the bulk at the beginning of the assays. In the electro-
chemical assays, Carbon Felt (18 × 5 × 0.5 cm) and boron-
doped diamond (BDD; 25 cm2) were used as cathode and
anode, respectively, applying a current intensity of 1 A, which
has recently been reported by Bocos et al. (2016) as the opti-
mum value in the degradation of DIA by EF process. Carbon
felt was placed in the inner wall of the cell covering the total
perimeter of the cell while BDD (3 × 3 cm) was centred in the
reactor. Besides, the H2O2 was in situ electrochemically gen-
erated through the continuous aeration (1 L min−1) on the
cathode surface.

Analytical measurements

The pH of the solutions was measured using Eutech instru-
ments digital pHmetre. Total organic carbon (TOC) was mea-
sured before starting the treatment and after different treatment
times in order to follow the mineralization degree of initial and
treated samples with a Shimadzu VCSH TOC analyser. The
calibration was performed using potassium hydrogen phthal-
ate solutions as standard. Reproducible TOC values with an
accuracy of ±1 % were found by injecting 50-μL aliquots into

the analyser. The determination of concentration decay of DIA
was monitored by high-performance liquid chromatography
(HPLC) in the conditions previously optimized by Bocos et al.
(2016).

Toxicity test

The potential toxicity of the initial sample of DIA and the
global solution toxicity after the performed treatments were
evaluated by using the bioluminescence of the marine bacteria
Vibrio fischeri (Lumistox LCK 487), by means of the
Microtox® method according to the international standard
process. The inhibition ratio based on the test results was
calculated using the following equation:

I ¼ 1− LS
.
LC

� �� �
� 100 ð4Þ

where I is the inhibition ratio (%) and LS and LC are the
luminescence level of sample and control, respectively, after
15 min of exposition (Oh et al. 2015).

GC/MS analysis

Two hundred millilitres of the aqueous sample were extracted
three times with 30 mL of ethyl acetate each time. After ex-
traction, samples were dried with a rotary evaporator and

Fig. 1 Schematic presentation of
the display used in this study for
photo-Fenton process
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taken up to 200 μL of ethyl acetate that were analysed by gas
chromatography mass spectrometry (GC/MS). Thus, the iden-
tification of the degradation products formed during the EF
treatment was carried out by GC/MS analysis using a 6850
Agilent GC equipped with a 5955C VLMSD and a HP-5-MS
column. Hydrogen was the carrier gas at a flow rate of
1.2 mL min−1. For the GC separation, the GC injection port
temperature was set at 280 °C. The programme temperature
started at 50 °C (held during 5 min). Subsequently, the tem-
perature ramp was set at 5 °C min−1 to 280 °C. The tempera-
ture was maintained at 280 °C for 5 min. TheMS detector was
operated in EI mode (70 eV).

Results and discussion

The concentrations of H2O2 and iron constitute the two main
parameters in Fenton and related processes, thus the concen-
tration ratio between them has special importance in terms of
the removal of the pollutants and overall cost (Umar et al.
2010). Excess or scarcity of one of these reagents can promote
parasitic reactions, reducing the efficiency of the process
(Chiou et al. 2006; Bouafia-Chergui et al. 2010). Based on
the above mentioned, it is necessary to improve the perfor-
mance of the process throughout the optimization of the op-
erating conditions.

Effect of H2O2 concentration on H2O2/UV-C photolysis
efficiency

As it is well known, the photolysis of H2O2, as a consequence
of UV-C light, produces an additional amount of ·OH accord-
ing to Eq. (5), contributing to the degradation of organic pol-
lutants. In order to optimize the operational conditions, the
direct photolysis of 0.1 mM DIA solution was performed in
presence of different molar concentrations of H2O2. Initially,
the effect of UV-C light alone on the mineralization yields was
evaluated. Unfortunately, it was not possible to follow the
elimination of the parent compound by HPLC analysis, given
its fast disappearance from the reaction media under the influ-
ence of UV-C light, as Velo-Gala et al. (2014) already pointed
out in a study where the degradation of DIAwas achieved in
1 min. Thus, the elimination of DIAwas followed bymeans of
the TOC decay.

H2O2 þ hυ→2 �OHð Þ ð5Þ

Given the strong influence of the pH in the generation of
·OH and thus on the PF process efficiency, the solution pH
was set around 3, because it exhibits the maximum catalytic
activity (Pignatello and Sun 1995; Brillas et al. 2009). In ad-
dition, the pH of the solution remained almost constant along
the treatment with a slight drop to a final value of 2.7–2.8

probably due to the generation of short-chain carboxylic acids
(Florenza et al. 2015; García-Segura and Brillas 2011).

The insights of Fig. 2 show the evolution of TOC as a
function of initial H2O2 concentration. It reveals that operating
under constant intensity irradiance, the initial concentration of
H2O2 is a critical variable on the oxidation of DIA. Although
the mineralization rate under UV-C light irradiation was near
35 %; its enhancement by increasing H2O2 dosage is remark-
able (Sirés and Brillas 2012; Hammouda et al. 2015) due to
the formation of higher amount of ·OH according to Eq. (5).
Mineralization rate increases when raising the concentration of
H2O2 from 5 to 40 mM; whereas, further augmentations do not
allow better mineralization efficiency. Despite that the pollutant
degradation usually increases with the H2O2 dosage, an exces-
sive addition does not improve the efficiency of the treatment
owing to the decomposition of this reagent forming O2 and H2O
(Neyens and Baeyens 2003). Moreover, this fact could be ex-
plained by an excess of H2O2 that promotes the scavenging of
·OH (Eq. 6), reducing the mineralization efficiency of the pro-
cess (Rubio-Clemente et al. 2013; Loaiza-Ambuludi et al.
2014).

H2O2 þ �OH→H2Oþ HO2
� ð6Þ

As can be deduced from Fig. 2, the mineralization efficien-
cy of the pollutant was decreased for the concentrations of
H2O2 higher than 40 mM. On the other hand, the maximum
mineralization rate is close to that of 20 mM H2O2 dosage.
Similarly, Ghaly et al. (2001) found that 20 mM was the op-
timum dosage for the photodegradation of the p-chlorophenol.
Thus, it is shown that the efficiency of H2O2/UV-C photolysis
can be improved by optimizing the concentration of H2O2, as
previously reported by other authors (Ghaly et al. 2001;
Barreca et al. 2014).

Effect of Fe3+ concentration in homogeneous PF process

One of the main parameters influencing the PF process is the
concentration of iron ion used as catalyst. Recently, several
reports (Bouafia-Chergui et al. 2010; Xu et al. 2015) have
highlighted that high iron concentrations can decrease miner-
alization efficiency by promotion of the wasting reaction ac-
cording to Eq. (7) which consumes ·OH:

Fe2þ þ �OH→Fe3þ þ OH– ð7Þ

On the frame of this context, the effect of ferric iron con-
centration on TOC abatement was studied for the following
values: 0.1, 0.25 and 0.5 mM. Additionally, these concentra-
tions were tested with different amounts of H2O2 (5, 10 and
20 mM) in order to optimize the operational conditions.
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As it can be seen on Fig. 3, the initial concentration of iron
plays an important role in the TOC abatements during the PF
treatment. Mineralization of 0.1 mM DIA solution was
followed during 480 min; however, the data after 240 min
are not shown on the figures since TOC removal values
remained almost stable after this treatment times. Besides, as
previously reported by Florenza et al. (2016), no significant
variation of the pH (near 3.0) was found during all these trials.
The evaluation of the results shown in Fig. 3 allows to con-
clude that TOC abatements were higher, for all H2O2 concen-
tration, when the concentration of Fe3+ is increased from 0.1
to 0.25 mM, reaching the maximum value of 80 % TOC
removal after 240 min for 20 mM H2O2 dosage.
Nevertheless, when this concentration was increased until
0.5 mM, a decrease on the TOC abatement was detected,
obtaining even lower values than that obtained for 0.1 mM
catalyst concentration. This fact can be explained by the en-
hancement of the scavenging reaction promoted by the excess
of Fe3+ (Eq. 7) (Rubio-Clemente et al. 2015).

Taking into account the obtained results for H2O2 photol-
ysis (Fig. 2) and the data depicted in Fig. 3, the concentrations
of 20 mM H2O2 and 2.5 mM Fe3+ seem to be the most ade-
quate quantities of Fenton’s reagent, allowing 80 % TOC re-
moval after 4 h of treatment. In addition, the analysis of pH at
the end of the treatment revealed a slight acidification (from 3
to 2.7). This fact was attributed to the possible formation of
short-chain carboxylic acids generated along the treatment
(Bocos et al. 2016).

Heterogeneous PF process

As it has been mentioned in the BIntroduction^, during
the last years, iron(III) has been fixed in a wide variety

of organic and inorganic supports in order to avoid the
generation of iron sludge and to permit the operation in
flow system. Initially, experiments were performed using
5.5 g FeS-AB into the bulk. However, the FeS-AB par-
ticles were gradually broken during the treatment. These
results are in agreement with Barreca et al. (2014), who
pointed out the Bbig fragility^ of alginate beads when
working with high amounts of H2O2 in PF process.

As an alternative matrix, it was decided to use AC as cat-
alyst since it has been described by Karthikeyan and Sekaran

Fig. 2 Effect of the initial H2O2 dosage during the direct photolysis of
1.2 L of 0.1 mMDIA solutions at pH 3 as a function of the treatment time.
H2O2 dosage, 0 mM (black circle), 5 mM (white triangle), 10 mM (black
square), 20 mM (grey square), 40 mM (black star) and 100 mM (white
circles)
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Fig. 3 Effect of the initial Fe3+ dosage during the treatment of 1.2 L of
0.1 mM DIA solutions by homogeneous PF process in the presence of a
5mMH2O2, b 10mMH2O2 and c 20mMH2O2, at pH 3, as a function of
treatment time. Fe3+ dosage, 0.1 mM (squares), 0.25 mM (circles) and
0.5 mM (triangles)
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(2014); it promotes the generation of ·OH. According to
these authors, the formation of these reactive species
takes place by an initial step: the electron transfer (from
electron-rich AC) to molecular oxygen to form reactive
oxygen species (Eq. 8). Then, the generation of ·OH
from the AC(·O2) in adsorbed state (AC(·O2)ads) occurs
according to Eq. (9). Additionally, the formation of ·OH
could be effectively enhanced by means of the reaction
detailed in Eq. (10), promoted by the action of the UV-
C light. Accordingly, some authors (Hammouda et al.
2015; Iglesias et al. 2015) already pointed out the effi-
ciency of this material as iron support, without suffering
modification of its structure after being reused in the EF
treatment.

AC ecb
−ð Þ þ O2→AC �O2ð Þ ð8Þ

AC �O2ð Þads þ 2Hþ→AC 2�OHð Þads ð9Þ
AC hvb

þð Þ þ hvþ H2O→AC �OHð Þ þ Hþ ð10Þ

Based on the aforementioned statements, the use of Fe-AC
in PF treatment may improve the generation of ·OH by either
the action of activated carbon itself affected by UV-C light or
Fenton’s reaction between iron immobilized in Fe-AC and
H2O2 present in the solution.

In order to evaluate the effect of iron concentration,
three experiments were performed adding different quanti-
ties of Fe-AC into the medium. Thus, 1.25, 3.00 and 6.00 g
of Fe-CA were evaluated in the PF experiments using an
initial concentration of H2O2 of 20 mM. As shown in Fig.
4, the system seems to operate correctly in all cases; how-
ever, as in previous experiments, when working at highest
iron concentration, i.e. 6.00 g Fe-AC, the process efficien-
cy decreased, thus reducing the final TOC abatement yield
of the treatment. On the contrary, the best conditions were
found for an intermediate concentration of iron. Thus, after
4 h treatment, 67 % TOC abatement was attained when
3.00 g of Fe-AC and 20 mM of H2O2 were added to the
solution. Additionally, pH measurements along the treat-
ment confirmed that it kept constant at value around 2.8–3
during 4 h.

The morphology of this catalyst was evaluated by
SEM-EDS microscopy (Fig. 5). SEM image (Fig. 5a)
and EDS mapping (Fig. 5b) of a Fe-AC ascertained
the presence and homogeneous distribution of iron into
the AC and reveals that it can be an appropriate support
and catalyst in PF process. Moreover, the absence of
sludge at the end of the treatment must be highlighted,
which constitutes an important advantage in this kind of
processes. Therefore, although the obtained results are
lower than those achieved by homogenous process,
there was no leaching found in the solution at the end
of the treatment. Moreover, the high resistance of this

matrix (Iglesias et al. 2015) makes possible the reuse of
this catalyst or the operation in flow system.

Coupling of PF with EF process

After the optimization of the operational parameters involved
in the PF process, it was not possible to achieve the complete
mineralization of the synthetically polluted solution, thus
confirming the formation of very recalcitrant intermediates.
This low performance is probably due to wasting reactions
(6) and (7) which promoted the presence of excess of H2O2

and/or Fe2+. Therefore, these reactions can be avoided by in
situ generation of Fenton’s reagent, as it occurs in the EF
process (Brillas et al. 2009; Oturan and Aaron 2014; Sirés
et al. 2014). During this process, H2O2 is in situ generated
by the two-electron reduction of O2 (Eq. 11), while the catalyst
(Fe2+) is electrochemically regenerated from Fe3+ (Eq. 12),
promoting the formation of ·OH by Fenton’s reaction
(Eq. 1). In addition, when the process is performed in an
undivided reactor using BDD anode, the formation of
physisorbed BDD(·OH) at the electrode surface according to
Eq. (13) in addition of the homogeneous ·OH produced in the
bulk from Fenton’s reaction (Eq. 1), may enhance the elimi-
nation of persistent organics (Oturan et al. 2012; Brillas
2014b; Bañuelos et al. 2016; García-Rodríguez et al. 2016).

O2 gð Þ þ 2Hþ þ 2e−→H2O2 ð11Þ
Fe3þ þ e−→Fe2þ ð12Þ
BDDþ H2O→BDD �OHð Þ þ Hþ þ e− ð13Þ

Recently, a study has been published by Bocos et al.
(2016) reporting the complete mineralization of a 0.1-mM
DIA aqueous solution by optimizing the parameters of EF

Fig. 4 Effect of the initial Fe-AC dosage after addition of 20 mM H2O2

during the treatment of 1.2 L solution of DIA (0.1 mM) by heterogeneous
PF process at pH 3 with time, 1.25 g (squares), 3 g (circles) and 6 g
(triangles)
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process. They reported that the complete mineralization of
DIA solution was reached at a constant current of 1 A. On
this context, in order to achieve the total elimination of
organic pollutants in this study, two alternatives of cou-
pling between PF and EF processes have been proposed:
(i) PF-EF and (ii) conventional PEF.

As observed in Fig. 6, both alternatives allow achieving the
total mineralization of organics (DIA and its aromatic/
aliphatic intermediates) present in the solution after 120 min
of treatment, by applying 22.2 mA/cm2 of current density. It is
remarkable that these results improve those obtained by EF
process, where 240 min of treatment time were required to
completely mineralize the same concentration of pollutant
(Bocos et al. 2016). Nonetheless, the conventional PEF pro-
cess showed quite higher mineralization efficiency than the
sequential PF-EF process. As recently reported by García-
Segura et al. (2016), during EF and Fenton process, iron-
carboxylate complexes are formed. This species are very re-
calcitrant and difficult to oxidize due to their low reactivity.
However, in most cases, the coupling of PF with EF leads to
higher degradation and mineralization abatements in shorter
treatment times than the individual process. During PF, ·OH
are formed by Fenton’s reaction (Eq. 1) and at a lesser extent
by photolysis of H2O2 (Eq. 5) under UV irradiation (Sedaghat
et al. 2016) and Fe3+ is photo-reduced (Eqs. 2 and 3). In
addition, the UV-C light accelerates the decomposition of
the iron-carboxylate complexes formed during the treatment,
justifying the higher oxidation power of this coupled process
(García-Segura et al. 2012; Brillas 2014b). Moreover, by sub-
sequently applying EF treatment, the recalcitrant intermedi-
ates formed during PF process can be efficiently oxidized by
the (BDD(·OH) species formed at the anode (Eq. 13) and the
·OH generated at the bulk by Fenton’s reaction (Eqs. 1
combined to 11 and 12). In addition, there are no accumula-
tion of H2O2 and Fe2+ in the medium since they are immedi-
ately consumed by Fenton’s reaction (Eq. 1) thus avoiding the
necessity to add high doses of both reagents and consequently
minimizing the parasitic reactions (6) and (7). However, the
PEF process seems preferable to PF-EF, since better mineral-
ization yield is provided by the former process.

Toxicity assays

Some authors have reported that the formation of by-products
is more harmful than the original pollutant during AOPs
(Oturan et al. 2008; Dirany et al. 2012). This fact was also
described for the treatment of polluted streams by contrast
media such as diatrizoate (Real et al. 2009; Gur-Reznik et al.
2011). For this reason, Microtox test was performed to the
samples obtained during the treatments and the inhibition ratio
was calculated from Eq. (4) for initial samples and after treat-
ment. The initial sample had low toxic effect on the bacteria,
showing an inhibition percentage of 14 %. However, after PF
treatment, the inhibition percentage was increased until
87.3 %. This fact could be explained by the incomplete min-
eralization of some photolytic degradation products released
in solution which according to Rastogi et al. (2014) could be
comparatively more toxic than the parent compound. To iden-
tify the toxic products formed during this treatment, GC/MS
analysis was carried out and iodoform was detected in treated
solution. Iodoform has been reported as a highly cytotoxic and
more genotoxic compound in mammalian cells than
bromoacetic acid, the most genotoxic of the regulated
haloacetics acid (Plewa et al. 2008; Richardson et al. 2008).

a

b
Fig. 5 a SEM image and b EDS
mapping of Fe-AC after
adsorption assays

Fig. 6 TOC reduction profile in the different treatments: PF-EF (circles),
PF (squares), and PEF (triangles)
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On the other hand, the inhibition percentages of PF-EF and
PEF treatments were 28 % and 14 %, respectively. Therefore,
the proposed treatments favour the total mineralization of the
pollutant and the reduction of the toxicity of treated solution.

Conclusion

The mineralization of the contrast agent DIA was carried out
under PF treatment. It has been proved the significant influ-
ence of the light enhancing the treatment. Besides, different
concentrations of H2O2 were tested under direct photolysis,
demonstrating that concentrations higher than 20 mM end up
in detrimental results. Then, homogeneous PF process was
carried out in order to find the optimal concentration of
Fenton’s reagent. Best efficiency was obtained with 20 mM
H2O2 and 0.25 mM Fe3+. High concentrations of iron
(0.5 mM) and H2O2 (40 mM) seem to promote parasitic reac-
tions, being prejudicial to the process efficiency. Further, dif-
ferent supports were evaluated for the immobilization of cat-
alyst (Fe3+) to monitor heterogeneous PF process. Fe-AC was
found as a suitable alternative that may operate in a continuous
process, avoiding the necessity to continuously add this re-
agent in the medium and preventing the environmental issue
related to the formation of the iron sludge at the end of the
homogeneous process.

Moreover, the treatment has been successfully enhanced by
both proposed alternatives: PF-EF or PEF process, achieving
the total mineralization of the solution. Finally, Microtox test
demonstrated the positive effect of the application of these
complementary treatments on the significant reduction of the
solution toxicity.
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