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Abstract Nutrition and pollution stress stimulate genetic ad-
aptation in microorganisms and assist in evolution of diverse
metabolic pathways for their survival on several complex or-
ganic compounds. Persistent organic pollutants (POPs) are
highly lipophilic in nature and cause adverse effects to the
environment and human health by biomagnification through
the food chain. Diverse microorganisms, harboring numerous
plasmids and catabolic genes, acclimatize to these environ-
mentally unfavorable conditions by gene duplication, muta-
tional drift, hypermutation, and recombination. Genetic as-
pects of some major POP catabolic genes such as biphenyl
dioxygenase (bph), DDT 2,3-dioxygenase, and angular
dioxygenase assist in degradation of biphenyl, organochlorine
pesticides, and dioxins/furans, respectively. Microbial
metagenome constitutes the largest genetic reservoir with mis-
cellaneous enzymatic activities implicated in degradation. To
tap the metabolic potential of microorganisms, recent tech-
niques like sequence and function-based screening and
substrate-induced gene expression are proficient in tracing
out novel catabolic genes from the entire metagenome for
utilization in enhanced biodegradation. The major endeavor
of today’s scientific world is to characterize the exact genetic
mechanisms of microbes for bioremediation of these toxic
compounds by excavating into the uncultured plethora. This
review entails the effect of POPs on the environment and

involvement of microbial catabolic genes for their removal
with the advanced techniques of bioremediation.

Keywords Persistent organic pollutants . Catabolic genes .

Bioremediation . Adaptation .Metagenome

Introduction

The new era of accelerating urbanization has enabledmankind
to exploit natural resources leading to the emergence of vari-
ous industrial centers and increase in industrial escalation have
brought rise in air, water, and soil pollution to an alarming
level. The environmental pollution is caused by many persis-
tent pollutants like alkanes, antibiotics, cyanides, dioxins, phe-
nols, polychlorinated biphenyls (PCBs), polycyclic aromatic
hydrocarbons (PAHs), pesticides, synthetic azo dyes,
polyaromatic, chlorinated, and nitro-aromatic compounds.
Toxic chemicals which exist persistently in the environment
for several years before getting totally mineralized are known
as persistent organic pollutants (POPs) (UNEP 2006).

POPs include aldrin, dieldrin, endrin, chlordane, dichlo-
rodiphenyltrichloroethane (DDT), heptachlor, mirex, toxa-
phene, polychlorinated biphenyl, hexachlorobenzene,
polychlorinated dibenzo-p-dioxin, and polychlorinated di-
benzofuran. The Stockholm (2001) under the support of
United Nation Environmental Program (UNEP) also spec-
ified a set of POPs, considered as potential endocrine-
disrupting chemicals (EDCs) (ecoestrogens) such as phe-
nols, biphenyl compounds, phthalates, etc., in the environ-
ment (Nagao 1998; Hutz 1999; Borgeest et al. 2002).
Recently, nine compounds have been listed under POPs
through Stockholm Convention (2010), namely,
chlordecone, hexabromobiphenyl, α-hexachlorocyclohex-
ane, β-hexachlorocyclohexane, lindane, tetrabromo
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diphenyl ether, pentachlorobenzene, perfluorooctane sulfon-
ic acid, and hexabromo diphenyl ether. In addition to the
wide range of POPs, new emerging contaminants are also
gaining concerns due to the huge toxic effects based on
their toxic equivalency factor. These contaminants include
pharmaceuticals, personal care products, steroids, hor-
mones, surfactants, abused drugs, flame retardants, and
industrial additives (La Farre et al. 2008; Covaci et al.
2011; Richardson and Ternes 2011). Among these emerg-
ing contaminants, polybromodiphenyl ether (PBDEs),
perfluorinated compounds (PFCs), short-chained chlorinat-
ed paraffins (SCCPs), and hexabromocyclododecane
(HBCDs) groups are highly toxic and cause serious
damages to the ecosystem. However, the Stockholm
Convention (2009) has included only perfluorooctane sul-
f o n i c a c i d ( PFOS ) f r om PFCs , c omme r c i a l
pentabromodiphenyl ether (penta-BDE), and commercial
octabromodiphenyl ether (octa-BDE) from PBDEs into
the list of POPs (Li et al. 2014).

Entry of the toxic POPs in the environment occurs through
different sources like intensive agriculture, pharmaceuticals,
pulp, paper, and mining industries. They cause behavioral ab-
normalities and birth defects in fish, insects, and mammals. In
case of humans, adverse effects are more prominent with be-
havioral, developmental, endocrine, immunologic, neurologic,
and reproductive changes causing cancer, diminished intelli-
gence, attention deficits, learning disorders, poor gross, and
motor coordination disabilities (Agency for toxic substances
and disease registry ATSDR 2002; Kumar 2004). POPs in
mother blood can be readily transferred through the placenta
to the offsprings. People having a diet of fish, shell fish, and
wild food rich in fat are more prone to POP exposure (United
States Environmental Protection Agency USEPA 2009). The
lipophilic nature of POPs render their deposition in the fatty
tissue of living beings which after biomagnification leads to
acute and chronic toxicities in different trophic level of the
food chain. In the coastal environment, POPs bind to various
sediment particles which help them in crossing estuaries
(USEPA 2009). Hence, POPs stuck in the sediments are
absorbed by benthic fauna and also can get volatilized through
the water column. POPs are considered to have Bgrasshopper
effect^ due to their semi volatile nature and ability to travel
great distances through cycles of evaporation, atmospheric cy-
cling, and deposition (Gouin et al. 2004). At the present sce-
nario, deciphering a compatible mode of biological attempt to
resolve the problem of environmental pollution is the major
global issue (Gienfrada and Rao 2008).

Natural communities of versatile and diverse microorgan-
isms harbor a remarkable physiological adaptability and cata-
bolic potential for the breakdown of massive organic mole-
cules. Organic contaminants present in the environment are
degraded by them releasing simpler products such as carbon
dioxide and water by the process of biomineralization (Das

et al. 2016). With the advent of time, stress induced by pollu-
tion and nourishment deficit is escalating the diversity of mi-
crobial metabolic pathways. The movement of mobile genetic
elements such as plasmids and transposons by horizontal gene
transfer delivers a harmless and economic substitute for or-
ganic contaminant degrdadation (Pieper and Reineke 2000;
Sinha et al. 2009). Although numerous investigations are tak-
ing place, many facets of microbial assisted bioremediation
still remains uncharted. Gene rearrangements and mutation
followed by catabolic gene expression in the microbes might
be beneficial for adaptation in complex contaminated sites.
Therefore, tracing out the exact genetic system of bacteria
and their metabolic map in degrading toxic persistent organic
pollutants will provide a broad insight for enhanced bioreme-
diation. In addition, their evolutionary potential and genetic
flexibility traced through advanced techniques from the un-
cultured plethora will reveal the generation of new catabolic
traits for detoxification or degradation of these compounds.
This review provides brief account of the molecular perspec-
tives of biodegradation of POPs and their bioremediation
aspects.

Microbial degradation of POPs

Microbial population having the ability to utilize a wide range
of POPs includes many aerobic and anaerobic bacteria. These
POPs are degraded in the oxic zone by various microbes
which are chemoorganotroph in nature (Fig. 1). Bacterial gen-
era showing chemoorganotrophy for POP degradation include
Aeromicrobium, Bacillus, Brevibacterium, Burkholderia,
Desulfotomaculum, Desulfovibrio, Dietzia, Escherichia,
Gordonia, Methanoseata, Methanospirillum, Micrococcus,
Moraxella, Mycobacterium, Pandoraea, Pelatomaculum,
Pseudomonas , Rhodococcus , Sphingobium , and
Syntrophobacter (Chowdhury et al. 2008). Aerobic Gram-

Fig. 1 General mechanism of aerobic and anaerobic degradation of
xenobiotics in bacteria. Electrons are transferred to oxygen in aerobic
process, whereas electrons are transferred to halogens, nitrates, and
sulfates in anaerobic process to release carbon dioxide and water

16884 Environ Sci Pollut Res (2016) 23:16883–16903



negative rods Pseudomonas fluorescens and Pseudomonas
putida have the highest biodegradation potential owing to
their catabolic enzymes (Houghton and Shanley 1994).
Catabolic enzymes in a catabolic pathway are specific protein
molecules which catalyze the degradation of complex mole-
cules into simpler ones and release the chemical energy stored
in the bonds of those molecules. Therefore, understanding the
evolution of modern catabolic pathways and their respective
catabolic enzymes is an effective means to determine en-
hanced cleanup of pollutants (Mrozik et al. 2003). Gram-
positive bacteria Corynebacterium, Mycobacterium,
Nocardia, and Rhodococcus are highly effective in biodegra-
dation and are commonly described as biodegraders of four
ring polyaromatic hydrocarbons (Nzila 2013). Cometabolism
exhibiting strains include Achromobacter, Alcaligenes,
Arthrobacter, Aspergillus , Azotobacter, Bacillus ,
Brevibacterium, Flavobacterium, Hydrogenomonas,
Methylosinus trichosporium, Microbacterium, Micrococcus,
Nocardia, Pseudomonas, Rhodococcus chlorophenolicus,
Streptomyces, Trichoderma, Vibrio, and Xanthomonas
(Fritsche and Hofrichter 2000). These microorganisms have
the ability to degrade a pollutant without using it as a growth
substrate, while sustaining its own growth by assimilating a
different substrate (Nzila 2013). Different genera of microor-
ganisms develop numerous enzymatic modifications in the
metabolic pathways to actively metabolize various POPs
(Table 1). Reactions like reduction, oxidation, hydrolysis,
dehalogenation, and methylation are basically performed by
several aerobic and anaerobic microorganisms.

Janibacter sp. has been reported to utilize dibenzofuran,
while certain other bacterial species like Bacillus cereus,
Bacillus vireti, and Sphingomonas yanoikuyae JAR02 have
been documented to effectively degrade benzo[a]pyrene
(Yamazoe et al. 2004; Rentz et al. 2008; Rout et al. 2012).
Ralstonia sp. SA-5 and Pseudomonas sp. SA-6 were also
recognized to subs tant ia l ly metabol ize 2,3 ,4 ,5-
tetrachlorobiphenyl (2,3,4,5-tetraCB) and 2,3′,4′,5-tetraCB
(Adebusoye et al. 2008). A marine bacterium Pseudomonas
aeruginosa JP-11 was isolated from the coastal sediments of
Odisha andwas found tometabolize biphenyl within 72 hwhen
supplied as the sole source of carbon (Chakraborty and Das
2016). Yeasts such as Aureobasidium pullulans, Candida
maltosa, Exophiala jeanselmei, Rhodotorula glutinis, and
Trichosporon cutaneum could efficiently utilize aromatic pol-
lutants like acetophenone, benzoic acid, ortho-cresol, para-
cresol, and phenol (Fritsche and Hofrichter 2004). Molds such
as Aspergillus fumigatus, Aspergillus niger, Fusarium
flocciferum, Penicillium frequentens, and Penicillium
simplicissimum utilized substitutes of phenols and benzoic
acid (Hofrichter et al. 1994). A novel aerobic dieldrin-
degrading bacterium, Pseudonocardia sp. strain KSF27 was
isolated from an enrichment culture of soil-charcoal perfusion
system capable of degrading aldrin trans-diol, dieldrin, and

other persistent organochlorine pesticides, such as endosulfan
sulfate, α-endosulfan, β-endosulfan, heptachlor, heptachlor
epoxide, and chlordecone (Sakakibara et al. 2011). Two pre-
dominant bacteria Burkholderia sp. strain MED-7 and
Cupriavidus sp. MED 5 were reported to degrade dieldrin
and endrin in aerobic conditions, when grown on 1,2-
epoxycyclohexane (ECH). Hexachlorobenzene, a highly re-
calcitrant environmental pollutant, was aerobically degraded
by Nocardioides sp. strain PD653 (Matsumoto et al. 2008;
Takagi et al. 2009). Likewise, 2, 2′,4,4′-tetrabromodiphenyl
ether (BDE-47) was degraded by Pseudomonas stutzeri strain
BFR01 isolated from the polluted soil of a brominated flame
retardant production industry (Zhang et al. 2013).

Desulfitobacterium and Dehalococcoides are promising
anaerobic dehalorespiring bacteria. Anaerobic bacteria using
chloroethenes as final electron acceptor includeDehalobacter,
Dehalococcoides , Dehalococcoides ethenogenes ,
Desulfitobacterium, Desulfuromonas, Geobacter, and
Sulfurospirillum (Futagami et al. 2008). Clostridium,
Desulfobacterium, Desulfovibrio, Methanococcus, and
Methanosarcina are also capable of reductive dehalogenation
and are ubiquitous in nature (Zhang and Bennett 2005; Bedard
2008). Mixed consortia of numerous species in aerobic and
anaerobic conditions are extremely useful in biodegradation
of complex organic compounds to form carbon dioxide and
water. Due to restricted substrate biodegradation by single
species, miscellaneous assemblages of bacterial populations
are employedwith extensive enzymatic potential for enhanced
biodegradation (Ghazali et al. 2004).

POPs remediation in soil and water can be undertaken
by the collective use of plants and bacteria in the system
as the plants transport nutrients to their associated rhizo-
sphere. Endophytic bacteria, reported to degrade POPs,
also maintain plant growth by siderophore production,
1-aminocyclopropane-1-carboxylic acid (ACC) deaminase
production, and nitrogen fixation (Arslan et al. 2015).
Moreover, bacteria also help by reducing the toxicity of the
pollutants in the environment by evapotranspiration (Afzal
et al. 2014). This is an ecofriendly approach as it utilizes plants
to transform, sequester, extract, and detoxify pollutants present
in sediments, soil, groundwater, surface water, and atmosphere
for restoration of contaminated sites (Samardjieva et al. 2015).

Adaptation strategies of POPs degrading
microorganisms

Gene mutation, gene rearrangement, and differential regula-
tion of genes in microbes help in their survival in various
unfavorable conditions (Thomas and Nielsen 2005).
Microbes undergo numerous genetic permutation and combi-
nation to ensure a metabolically active life (Fig. 2). A cellular
mechanism known as hypermutation helps the immune
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Table 1 Microbial degradation of persistent organic pollutants (POPs)

Compounds Structure
Mechanism of 

degradation
Bacteria degrading the compounds References

Aldrin, Endrin

Cl2

Cl

Cl

Cl

Dioxygenation Arthrobacter, Bacillus, Burkholderia sp.,
Cupriavidus sp., Pseudomonas Patil et al. 1970 ; 

Matsumoto et al. 2008

Dieldrin Cl

O

Cl Cl

Cl

Cl
Cl

Dioxygenation Burkholderia sp., Cupriavidus sp., 

Pseudonocardia sp.,

Mucor racemosus

Kataoka et al. 2010; 

Sakakibara et al. 2011

Dichloro

diphenyl 

trichloroethane (DDT)
Cl

H

C Cl

CCl Cl

Cl

Reductive 

dechlorination

(Lai and Saxena 

1999)

Aerobacter, Agrobacterium, Alcaligenes,

Bacillus, Clostridium, Dehalospirilum 
multivorans, Hydrogenomonas, 
Klebsiella, Pseudoxanthomonas 
jiangsuensis, Staphylococcus,

Stenotrophomonas, Streptomyces,

Xanthomonas, Xerocomus chrysenteron

Chaudhry and 

Chapalamadugu 1991; 

Juhasz and Naidu 2000; 

Ramesh et al. 2004; Dileep 

2008; Wang et al. 2011; 

Huang and Wang 2013

Heptachlor Reductive 

dechlorination
Phlebia tremellosa, Phlebia brevispora,

Phlebia acanthocystis Xiao et al. 2011

Mirex Reductive 

dechlorination

(Schrauzer and 

Katz 1978)

Bacillus sphaericus, Streptomyces albus Aslanzadeh and Hedrick

1985

Toxaphene
CH3

CH3

CH2

Cln

Reductive 

dechlorination

(Saleh 1991)
Enterobacter cloacae,

Pseudomonas putida , Bjerkandera sp.

Gooch and Matsumura 

1985; Lacayo-Romero et al. 

2005; Romero et al. 2006

Polychlorinated 

biphenyl
Cln

Cln

Dioxygenation Rhodococcus sp., Rhodococcus 
erythropolis, Pseudomonas CH07, 

Pleurotus ostreatus

Kimbara 2005; De et al. 

2006; Qi et al. 2007; 

Cvančarová et al. 2012

Hexachlorobenzene 

(HCBs) ClCl

Cl

Cl

Cl

Cl

Oxidative 

dechlorination

Nocardioides,

Sphingomonas quisquiliarum,

Sphingobium
lucknowense, Eupenicillium baarnense,

Eupenicillium crustaceum

Vitali et al. 2006 ; Takagi et

al. 2009; Bala et al. 2010; 

Garg et al. 2012

Polychlorinated 

Dioxins

O

O

Cln Clm Dioxygenation Dehalococcoides sp.,

Sphingomonas wittichi,
Shingomonas yanoikuyae, Panellus 

stypticus

Sato et al. 2002; Bunge et 

al. 2003; Hiraishi et al. 

2005

Polychlorinated 

Dibenzofuran

Dioxygenation Klebsiella sp., Sphingomonas sp., 

Paenibacillus, Rhizobium, Pseudomonas 
mendocina, Phlebia lindtneri

Fukuda et al. 2002; Kaiya et 

al. 2012

Chlordecone Dioxygenation

Pseudomonas sp.,

Fusarium oxysporum
George and Claxton 1988; 

Merlin et al. 2014

α-, β- and -

hexachlorocyclohexane

Dioxygenation

Pseudomonas sp., Pseudomonas 
vesicularis, Sphingomonas 

paucimobilis, Trametes hirsutus, 

Phanerochaete chrysosporium, Cyathus 
bulleri, Phanerochaete sordida

Sahu et al. 1992; Mougin et 

al. 1999; Singh and Kuhad 

1999; Singh and Kuhad 

2000; Pal et al. 2005

Tetrabromo diphenyl 

ether

Dioxygenation

Acetobacterium sp., Pseudomonas 
stutzeri, Bacillus sp.

Lu et al. 2012; Zhang et al. 

2013
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system to adapt to foreign elements. Therefore, in stressful
environments, hypermutability in microorganisms aids in
faster adaptation than normo-mutators (Marcobal et al.
2008). However, in stable environments or newly adapted
environments, this has no value and is a fitness disadvantage.
This effect can be reduced by the restoration of normal muta-
bility by horizontal gene transfer of good mismatch repair
(MMR) genes from heterologous sources. This can be
achieved by homeologous recombination (i.e., recombination
between largely homologous but nonidentical DNA se-
quences) (Rayssiguier et al. 1989; Jayaraman 2011).

Increasing chemical pollution of organic compounds in-
duces error-prone DNA replication due to base mutation and
nucleotide replacement accelerating mutational drift (Black
1999). Gene duplication results in the independency of selec-
tive pressure on the extra gene copy enhancing speedy muta-
tions. Insertion elements play an imperative role in DNA re-
arrangements, gene transmission, and activation/inactivation
of silent genes. DNA replication and repair may occasionally
incorporate single site mutations at random, which might not
be the prime reason for catabolic enzyme diversity in mi-
crobes. Sometimes, gene conversion or slipped-strand
mispairing can cause natural alterations in DNA sequences
(Niedle et al. 1988). However, metabolic engineering-based
approach can be utilized for gene conversion to enable degra-
dation of POPs. In a study by Yan et al. (2006), cytochrome
P-450cam variant coded by the gene cassette (camA+ camB+

camC) was incorporated into the nonessential pcpM gene of
Sphingobium chlorophenolicumATCC 39723 (a pentachloro-
phenol degrader) by homologous recombination. This recom-
binant strain could degrade hexachlorobenzene at an increased
rate of 0.67 nmol mg (dry weight)−1 h−1.

Phase variation is an inherited reversible form of gene reg-
ulation in bacteria. DNA slippage is potentially a significant
source of genetic diversity for catabolic genes and is one of the
primary mechanisms of phase variation. This occurs by
slipped-strand mispairing (SSM), which is generated between
the mother and daughter strand during DNA replication,
recruiting significantly diverse genes for the catabolism of
persistent organic compounds (Levinson and Gutman 1987;
Henderson et al. 1999). Short sequence repeat (SSR)
microsatellites (short, contiguous homogenous or heteroge-
neous repetitive DNA sequence of 6 bp or less) are the sus-
ceptible regions for SSM (van Belkum et al. 1998). This can
change the number of repeat units leading to the alteration of
gene expression at transcriptional and translational level.
Thus, bacteria inhabiting a restricted and unfavorable environ-
ment might benefit from SSM by unregulated phenotypic di-
versity (Richardson and Stojiljkovic 2001; Torres-Cruz and
van der Woude 2003). In a study, Vallaeys et al. (1999) report-
ed genetic diversity in the catabolic pathway of 2,4-
dichlorophenoxyacetic acid (2,4-D). The genes involved for
2,4-D degradation include tfdA, tfdB, and tfdC. However, se-
quence comparison indicated a wide divergence,

Fig. 2 Adaptation strategies of microorganism degrading POPs. On
nutrition and pollution stress, several types of modifications occur in
metabolic genes of microorganisms. Some of which includes frameshift

mutation, gene duplication, and genetic recombination coding new
functional proteins for adaptation in unfavourable conditions
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demonstrating an early origin of tfd genes. Burkholderia sp.
strain TFD2 harboring a tfdA gene was closely related to that
of Burkholderia sp. strain RASC while its tfdB gene was
grouped with the tfdB gene of Sphingomonas sp. strain
TFD26. There was also a lack of variance in the partial nucle-
otide sequences of the tfdB genes from Burkholderia sp.
TFD2 and Sphingomonas sp. TFD26. Therefore, SSM might
be the significant source for exhibiting independent recruit-
ment of varied gene cassettes in POP degradation.

Environmental changes and biotic evolution leading to new
functional niches permit relentless gene families diversifica-
tion and existence of new lineage of genes (Francino 2012).
Natural spontaneous generation strategies contributing to mi-
crobial evolution include minor indigenous changes in the
nucleotide sequence of the genome, intragenomic reshuffling,
and procurement of DNA sequence from other organisms.
Systems of site-specific recombination, DNA repair, and re-
striction modification are examples which modulate the ge-
netic variation frequency (Arber 2000). Mobile genetic ele-
ments like plasmids and transposons accomplishing horizon-
tal gene transfer and patchwork assembly are involved in pol-
lution stress adaptation (Top and Springael 2003). Three
mechanisms of gene transfer-transformation, conjugation,
and transduction lead to vertical and horizontal gene transfer
(HGT) within the microbes (Thomas and Nielsen 2005; Heuer
and Smalla 2012). Among them, conjugation is the primary
mechanism of horizontal catabolic gene transfer leading to
bacterial adaptation to the changing environment (Sørensen
et al. 2005). The plasmids, transposons, integrons, and inser-
tion sequences (IS) are imperative mobile genetic elements
involved in adaptation mechanism (Schlüter et al. 2007).
HGT is beneficial in bioremediation shifting microbial com-
munities in favor of the degradation of POPs. Another strategy
for POP degradation includes genetic bioaugmentation which
indicates the introduction of small fraction of bacteria harbor-
ing genes for enzymes that mineralize the contaminant of in-
terest and stimulate in situ HGT of those degradative mobile
genetic elements to the native bacterial community. The mod-
el HGT system TOL plasmid, a diverse family of degradative
plasmids, was described to be involved in the degradation of
xylenes, toluene, and related species (Ikuma 2011).

Another facet is the microbial biofilm which has been con-
sidered as the potential agent for bioremediation. A potent
biofilm forming marine bacterium Pseudomonas mendocina
NR802 was isolated from Rushukulya, Odisha, India, capable
of utilizing phenanthrene (Mangwani et al. 2014). Another
marine bacterium Stenotrophomonas acidaminihila NCW-
702, isolated from Chilika Lake, Odisha, India, was found to
degrade 71.1 ± 3.1 and 40.2 ± 2.4 % of phenanthrene and
pyrene, respectively (Mangwani et al. 2015). The multilay-
ered, three dimensional structures of biofilm encapsulated in
a hydrated extracellular polymeric substances (EPS) on a sub-
stratum provides a perfect environment for horizontal gene

transfer of mobile genetic elements due to close proximity
and quick spread of plasmid DNA by conjugation of the com-
petent bacteria (Cvitkovitch et al. 2003). This enables rapid
phage spreading and plasmid uptake by competent bacteria
(Jefferson 2004). Therefore, application of high biofilm-
forming microbial communities can effectively provide a sta-
ble environment for gene transfer as well as enhance speedy
biodegradation of complex persistent compounds such as
pyrene, phenanthrene, polychlorobiphenyl, and pesticides
(Molin and Nielsen 2003).

Cell membrane modification by microbes is also an adap-
tation strategy for their survival in toxic environmental condi-
tions (de Carvalho et al. 2009). In this regard, certain surface-
active compounds like biosurfactants are produced and also
the presence of membrane bound efflux pumps help in the
removal of toxic compounds such as biphenyl, benzene, and
polychlorobiphenyl outside the cells (Ron and Rosenberg
2002; Van Hamme et al. 2003; Chakraborty and Das 2014.
Chakraborty andDas 2016). Bioaugmentation with multicom-
ponent system by the addition of previously adapted pure
bacterial strain and consortium with biodegradation relevant
genes enveloped in a vector can be transported by conjugation
into indigenous microorganisms. This forms a better way for
in situ bioremediation of chlorinated solvents, herbicides,
ethylbenzene, xylenes, emerging contaminants, etc.
(El Fantroussi and Agathos 2005; Morgante et al. 2010).

Involvement of the catabolic genes

Pollutant degradation is dependent on the adaptive response of
microbial communities to the pollutant, which differs between
selective enrichment of genes and genetic changes (Sinha
et al. 2011). The rapid exchange of novel catabolic activities
occurs by the transmission of genes between microbes, fre-
quently by broad host range plasmids. This leads to the unique
catabolic function of a single recombinant strain in biodegra-
dation, which is not present in either strain individually
(Pemberton and Schmidt 2001). The location of these catabol-
ic genes varies in different organisms (Table 2). Genes may be
situated on plasmid or present on genomic DNA consisting of
single operon system, as found in phenol degradation (Khan
et al. 2001). Sometimes, they may be present on plasmid ge-
nome organized in two operon systems as found in degrada-
tion of polychlorinated biphenyls, or organized on two or
more operon systems for degradation (Seo et al. 2009).
Frequently, genes may be located on transposons, as found
in dibenzo-p-dioxin and dibenzofuran degradation by
Sphingomonas sp. RW1 which contains a Tn-5 lacZ mini
transposon (Megharaj et al. 2011).

Most of the catabolic genes are constitutively expressed at a
low level, but on exposure to the desired compound, transcrip-
tion of specific genes are activated. In some cases, simple
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operon system having all necessary enzymes for absolute deg-
radation of a particular metabolite is activated, whereas in com-
plex systems, the metabolites are transformed into varying
forms with the activation of intricate regulatory mechanisms
of numerous semi-independent operons (Pemberton and
Schmidt 2001). In Pseudomonas sp. P51, chlorobenzene cata-
bolic gene tcbAB was located in the transposon Tn5280 (van
der Meer et al. 1991). Similarly, in the isolate Alcaligenes
BR60, chlorobenzoate catabolic gene cbaABC was located in
the transposon Tn5271 (Nakatsu et al. 1991). Biphenyl
degrading gene bph/cbdABCD in Ralstonia eutropha A5 was
present as in the conjugative catabolic transposon Tn4371. An
organochlorine herbicide, 2,4 dichlorophenoxyacetic acid was
effectively catabolized by Alcaligenes eutrophus harboring the
plasmid pJP4 (Ledger et al. 2006). Rhodococcus erythropolis
and Sphingomonas sp. have plasmids and gene clusters on their
chromosome capable of catalyzing PCBs, polybrominated bi-
phenyls (PBBs), and chlorinated dibenzo-p-dioxins, respec-
tively. Presence of a linear plasmid pBD2 in R. erythropolis
helped in trichloroethylene degradation (Pemberton and
Schmidt 2001). Thus, the catabolic genes for degradation of
POPs have been reported in plasmids, transposons, and
genomes organized on one or multiple operon systems.

Microbial degradation process of most toxic POPs

Stability of POPs in environment depends on their elec-
trophilicity, nucleophilicity, photodegradability, and biode-
gradability, which determine the reactivity and favorability
of a chemical reaction. Electrophilicity index, a specific
property of a chemical species, is the square of its elec-
tronegativity divided by its chemical hardness (Chattaraj
et al. 2006). The electrophilicity index of polychlorinated
biphenyls and benzidine was analyzed which was adequate
enough to describe their toxicity (Roy et al. 2006).

Compounds with increasing substitutions of halogens have
high recalcitrance. In nucleophilic aromatic substitution,
aromatic hydrodehalogenation occurs by hydride transfer.
This hydride transfer to an aromatic substrate weakens the
carbon-halogen bond rendering their heterolytic cleavage
(Sadowsky et al. 2014). Nucleophilic aromatic substitution
has been of biological importance as both glutathione-S-
transferases and 4-chlorobenzoyl-CoA dehalogenases cata-
lyze hydrodehalogenation (Zheng and Ornstein 1997; Xu
et al. 2004). Likewise, light-induced chemical transforma-
t ion of an organ ic contaminant i s known as
photodegradation which has an advantage of good selec-
tivity, low reaction temperature, and complete degradation
(Ray, 2000). The stability of POPs is also dependent on
the photodegradable ability of the organic contaminants.
For example, the chloro-substituted aromatic compounds
and DDT have been demonstrated to be photomineralized
in water; however, biphenyls, dioxins, and furans are com-
paratively slow to photooxidize (Wenzel et al. 1999).

POP uptake by plants and microbes depends on a number of
physicochemical characteristics such as octanol-water partition
coefficient (log Kow), acidity constant (pKa), aqueous solubil-
ity (Sw), octanol solubility (So), and the concentration of the
pollutant (Admire et al. 2014). Some of the microorganisms are
unable to mineralize these pollutants because they may not be
recognized as substrate by the existing enzymes used for deg-
radation. Sometimes, they might be chemically and biological-
ly very stable containing substitution groups like amino,
carbamyl, halogens, methoxy, nitro, and sulphonate (Jha et al.
2015). Moreover, in some cases, the compounds might be in-
soluble in water which could remain adsorbed to the external
matrices of soil. Furthermore, large molecular size of POPs and
absence of permease in the environment might reduce their
transport into microbial cells. Therefore, there may be numer-
ous reasons for unproductive biodegradation in toxic contami-
nated sites (Isken and de Bont 1998).

Table 2 List of the catabolic genes for POP degradation found in different bacterial genera

Compounds Genes involved Gene location Organisms References

PCB bphA, bphB, bphC, bphD Plasmid Alcaligenes sp. Shields et al. 1985

PCB bphEGFA1A2A3BCDA4R Genome Pseudomonas sp. Othsubo et al. 2000

2,4-D tfdA, tfdB, tfdC, tfdD, tfdE,
tfdF, tfdR, cad RABKC operon

Plasmid and genome Alcaligenes eutrophus,
Bradyrhizobium sp.

Don and Pemberton 1981;
Kitagawa et al. 2002

Hexachlorobenzene rdh, cbrA Genome Dehalococcoides Tas et al. 2011

Polychlorinated dioxins dbfA1A2 Genome Terrabacter sp. Habe et al. 2001

Polychlorinated dibenzofuran dfdABC Genome Nocardioides sp. Miyauchi et al. 2008

α-, β-, and ϒ-
hexachlorocyclohexane

linA1A2BCXD Genome Sphingomonas paucimobilis Kumari et al. 2002

Endosulphane esd operon, ese operon Genome Arthrobacter sp.,
Rhodococcus sp.

Weir et al. 2006;
Verma et al. 2011

Pentachlorophenol (PCP) pcp A, B, C, D operon Genome Sphingobium chlorophenolica Chanama and Chanama 2011
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According to the United Nations Environment Programme
(UNEP 2006), the 12 POPs with the nine new POPs fall into
three broad categories, namely, pesticides, industrial
chemicals and by-products, and emerging contaminants. A
representative from each group is discussed in the further
section.

1,1,1-Trichloro-2,2-bis-(4′-chlorophenyl) ethane (DDT)

DDT is a persistent, chlorinated organic insecticide present in
the environment. Having a biological half-life of 8 years, it is
not metabolized very rapidly by animals and is deposited and
stored in their fatty tissues (Joesten et al. 2006). The USA
have banned the use of DDT, but due to its wide insecticidal
applications on extensive diverse insects, it is still used world-
wide. Presence of chlorine atom contributes to their low solu-
bility, preferentially partitioning them into lipophilic phase
and making them highly toxic. It renders thinning of eggshells
in many birds especially falcons enlisting them into the en-
dangered category. It adversely affects hormone balance and
also causes cancer. However, some microorganisms attack the
aromatic and alicyclic moieties of DDT (Nadeau et al. 1994;
Hay and Focht 1998; Quensen et al. 1998). With the aerobic
bacterium Ralstonia eutrophaA5, DDT is converted to cis-2,3
dihydrodiol DDT using the enzyme DDT 2,3-dioxygenase.
This is followed by the formation of 6-oxo-2-hydroxy-7-(4′-
chlorophenyl)-3,8,8,8,-tetrachloroocta-2Z, 4Z-dienote, which
is finally recruited to 2-,4-dichlorobenzoate pathway in the
aerobic mode of metabolism. However, with the anaerobic
bacterium Klebsiella pneumonia, DDT dehydrochlorinase en-
zyme cleave DDT to 1,1-dichloro-2,2-bis (4′-chlorophenyl)
ethylene (DDE), which enters into the aerobic pathway as
mentioned above. In a consortium, composed of Bacillus
sp., Staphylococcus sp., and Stenotrophomonas sp., the deg-
rada t ion of DDT formed l , l -d ich loro-2 ,2-b is (p-
chlorophenyl)ethane (Mwangi et al. 2010). DDT-degrading
bacteria include Bacillus circulans, Bacillus pumilus,
Enterobacter aerogenes, Enterobacter cloacae, Escherichia
coli, Flavobacterium sp., Hydrogenomonas, Klebsiella
pneumonia, Micrococcus, Pseudomonas aeruginosa,
Pseudoxanthomonas jiangsuensis, Pseudomonas putida, and
fungi such as Phanerochaete chrysosporium, Saccharomyces
cerevisiae, and Trichoderma viridae (Sharma et al. 1987;
Beunink and Rehm 1988; Wang et al. 2011).

Microbial reductive dechlorination (RD) is the foremost
mechanism of conversion from DDT isomers to
dichlorodiphenyldichloroethane (DDD) under reducing con-
ditions. It substitutes the aliphatic chlorine for a hydrogen
atom with the involvement of one proton and two electrons
(Fries et al. 1969). The sequential two-electron transfer reac-
tion causes dissociation of chloride anion forming p, p-
dichloro-diphenyl-dichloroethyl radical. This is followed by
second electron transfer reaction protonating the radical to

form DDD (Bylaska et al. 2004). This cumulative process is
termed dehalogenation, which results in chlorine removal and
hydrogen ion addition to the compound. Thus, susceptibility
to oxidation and formation of less toxic products are
augmented. DeWeerd et al. (1990) identified Desulfomonile
tiedjei, an anaerobic bacterium, which coupled the reductive
dechlorination of 3-chlorobenzoate. Cleavage of carbon–chlo-
rine bond is the primary mechanism for DDT mineralization
(Haggblom and Bossert 2004). Dechlorination of DDT under
reducing conditions formsDDD,which on aerobic conditions,
further degrades to form the polar product, DDOH (Mwangi
et al. 2010). The mutualistic anaerobic microbial communities
favor RD of this compound (Mohn and Tiedje 1992). Usually,
DDT degradation follows this pathway; however, aerobic bac-
terial degradation was first reported by Nadeau et al. (1994)
using Alcaligenes eutrophusA5, which oxidized DDT in pres-
ence of dioxygenase to form 2,3-dihydrodiol-DDTwhich fur-
ther degraded to 4-chlorobenzoic acid (Fig. 3). In a study by
Kamanavalli and Ninnekar (2004), the growth of
Pseudomonas sp. was reported on biphenyl supplemented
with 0.05 % w/v DDT. The degradation produced 2,3-dihy-
droxy DDT via the meta-cleavage pathway forming 4-
chlorobenzoic acid as the dead end-product. Another Gram-
negative, strictly aerobic bacterium, Pseudoxanthomonas
jiangsuensis, was isolated from a DDT-contaminated soil,
w h i c h p r e d o m i n a n t l y d e g r a d e d D D T t o
diphosphatidylglycerol, phosphatidylethanolamine, and
phosphatidylglycerol (Wang et al. 2011).

Polychlorobiphenyl (PCB)

PCBs, the representative of industrial chemicals, are a class of
chemicals consisting of 209 compounds, collectively known
as congeners. The degree of dechlorination and the locus of
the chlorinated sites mark the differences in the compounds.
PCBs are widely used in insulator fluid for transformers and
extender of insecticides. Due to chemical complexity and high
toxicity on human and wild life, they were banned in the mid-
1980s, but they are omnipresent globally due to their resis-
tance to degradation (Kidd et al. 2012).

The microorganisms follow the meta-cleavage pathway
for PCB degradation to produce Krebs cycle intermediates
and chlorobenzoates (Pieper 2005). In aerobic biodegrada-
tion, the primary step is the dioxygenation of PCB con-
geners, by the biphenyl dioxygenase enzyme (Fig. 4). It
catalyzes the incorporation of two hydroxyl groups in the
aromatic ring of the PCB congener, which becomes more
susceptible to enzymatic ring fission reactions (Bruhlmann
and Chen 1999). Biphenyl dioxygenase is a multicompo-
nent enzyme consisting of a terminal dioxygenase (large
alpha and small beta subunit), ferredoxin, and ferredoxin
reductase encoded by bph operon (Erickson and Mondello
1992). bphA gene, encoding the large alpha subunit of the
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enzyme, functions in substrate recognition (Fig. 5). This
BphA enzyme is substrate specific and varies from organ-
ism to organism. Presence of bphA gene been reported in
Pseudomonas aeruginosa JP-11 isolated from the Paradip
port, Odisha, India, with the function of 98.86±2.29 % of
biphenyl degradation (Chakraborty and Das 2016). Its
presence was also observed in Burkholderia cepacia and
Pseudomonas pseudoalcaligenes having sequence similari-
ty in their bph operon. However, in Burkholderia cepacia,
biphenyl dioxygenase favorably deoxygenates ortho-
s u b s t i t u t e d PCB s , w h i l e i n P s e u d om o n a s
pseudoalcaligenes KF707, this enzyme significantly deox-
ygenates para-substituted PCBs (Erickson and Mondello
1993; Gibson et al. 1993). DNA shuffling experiments in
Burkholderia cepacia, Comamonas testosteroni, and
Rhodococcus globerulus obtained variants of enzyme with
better degradation capabilities for PCBs (Furukawa 2000).
This method incorporated in vitro random recombination
of bphA genes by fragmentation and PCR reassembly. It
was seen that hybrid BphA, II-9 (hybrid of B. cepacia and
C. t e s t o s t e ron i ) wa s ab l e t o oxygena t e 2 , 6

dichlorobiphenyl up to 58 % after 18 h, while the parental
enzymes did the same reaction with 10 % less efficiency
(Barriault et al. 2002). Utilizing a rational design ap-
proach, biphenyl dioxygenase of P. pseudoalcaligenes
KF707 was three-dimensionally modeled. This was based
on the crystallographic analysis of naphthalene
dioxygenase enzyme from Pseudomonas sp. (Suenaga
et al. 2002). A clear picture of key positions near the
active site of the enzyme was visualized which were uti-
lized for site-directed mutagenesis. Hence, mutants of
Pseudomonas 1335F, T376N, and F377L very efficiently
degraded 2,5,2′,5′-tetrachlorobiphenyl that was not miner-
alized by the wild-type biphenyl dioxygenase enzyme
(Ang et al. 2005).

Mostly the primary product of PCB degradation is
chlorobenzoate, which requires certain catabolic plasmids
from other microorganisms for its cleavage. Pseudomonas
aeruginosa harboring the plasmid pE43 contains the
oxygenolytic ortho-dechlorination ohb gene, whereas
Arthrobacter globiformis containing the plasmid pPC3 car-
ried the hydrolytic para-dechlorination fcb gene.

Fig. 3 Aerobic and anaerobic degradation pathway of DDT. DDT (A) is
acted upon by the enzymes DDT 2,3-dioxygenase and DDT
dehydrochlorinase recruiting them to aerobic and anaerobic pathways
respectively. The primary product of the aerobic pathway is cis-2,3-
dihydrodiol DDT (B) which is acted upon by the enzyme cis-2,3-
dihydrodiol DDT dehydrogenase to form 2,3-dihydroxy DDT (C). C is
further converted to 6-oxo-2 hydroxy-7-(4′-chlorophenyl)-3,8,8,8,8
tetrachloroocta-2Z, 4Z-dienote (D) finally forming 4-chlorobenzoate
(K). The primary product of the anaerobic pathway is 1,1-dichloro-2,2-
bis (4′-chlorophenyl)-ethylene (DDE) (E). E is cleaved to 1-chloro-2,2-

bis-(4′-chlorophenyl)-ethylene (DDMU) (F) and 1,1-dichloro-2-
(dihydroxy-4′-chlorophenyl)-2-(4-chlorophenyl) ethylene (G) by the
enzymeDDE dehalogenase. F advances to the anaerobic pathway to form
4-chlorophenyl acetate (H) which leads to the formation of
4-chlorobenzoate (K). Similarly, on action of dioxygenase enzyme, G is
converted to 6-oxo-2-hydroxy-7-(4′-chlorophenyl)-3,8,8,8-trichloroocta-
2Z,4Z,7-trienoate (H). By the action of hydrolase, H forms 4-
chlorobenzaldehyde (J) forming 4-chlorobenzoate (K) which is then min-
eralized by entering into the citric acid cycle via the intermediate
4-hydroxybenzoate (L)
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Comamonas testosteroni transformation by these recombi-
nant plasmids was capable of utilizing ortho- and para-
chlorobiphenyl as their sole carbon source (Hrywna et al.
1999). Likewise, 4,4′-dichlorobiphenyl (double para-
replaced congeners) was easi ly mineralized by
P. p s e u d o a l c a l i g e n e s KF707 b u t 2 , 5 , 2 ′ , 5 , -
tetrachlorobiphenyl could not be degraded. Similarly,
B. cepacia LB400 has a broad substrate specificity
at tacking 2,5,2 ′ ,5 ′ - te t rachlorobiphenyl via 3,4-
dioxygenation (Suenaga et al. 2001). Amino acid muta-
tions in enzymes also determine change in substrate spec-
ificity. In BphA enzyme, asparagine (Asn) at the 376 po-
sition renders broad substrate specificity, whereas enzymes
with narrow specificity contain threonine (Thr) at this site.
T h e r e p l a c em e n t o f T h r - 3 7 6 w i t h A s n i n
P. pseudoalcaligenes KF707 BphA led to the introduction
of 3,4-dioxygenase activity for 2,5,4′-trichlorobiphenyl and
2,5,2′,5′-tetrachlorobiphenyl degradation (Kimura et al.
1997). In naphthalene dioxygenase, this amino acid
corresponded to Thr-351 in the large subunit. However,
the alteration of Thr-351 to Asn in this enzyme showed
an insignificant effect on product formation (Parales et al.
2000). Earlier report stated that four amino acid substitu-
tions in P. pseudoalcaligenes KF707 BphA increase its
degradation ability for single aromatic compounds such

as alkyl benzenes, benzene, and toluene (Suenaga et al.
1999). Therefore, site-directed mutagenesis-based structural
modeling of enzymes can deliver their steric information
with altered specificity and function.

Degradation of PCBs has been reported to carry out by
bacterial species like Acidovorax, Bacillus, Burkholderia,
Comamonas , Corynebac t e r i um , Cupr i a v i du s ,
Pseudomonas , Rhodococcus , and Sphingomonas
(Furukawa and Fujihara 2008; Seeger et al. 2009).
Burkholderia xenovorans LB400 was able to degrade a
broad range of PCBs and therefore was considered as a model
bacterium for PCB degradation (Seeger et al. 2010).
Rhodococcus jostii RHA1 was another potent PCB-
degrading soil bacterium (McLeod et al. 2006).

In presence of biphenyls and chlorobiphenyls, PCB-
degrading bacteria accumulate polyphosphates (polyP) in
their exponential phase as an adaptive mechanism.
Pseudomonas strain B4 and B. fungorum LB400 accumulated
polyP for their augmented survival in presence of
chlorobiphenyl (Chavez et al. 2004). Thus, it is concluded that
pollution stress drives the synthesis of certain stress-resistant
adaptations in bacteria for their survival in toxic contaminated
sites. Additionally, designing of engineered proteins with
modified active sites can also help in enhanced bioremediation
of toxic organic pollutants.

Fig. 4 Genes involved in catabolic degradation of PCBs. Biphenyl
dioxygenase encoded by bphA1A2A3A4 gene results in dioxygenation
of the dual ring. The bphB codes for enzyme dehydrogenase involved in
the formation of 2,3-dihydroxybiphenyl. This is further acted upon by

Bph C (bphC) forming 2-hydroxy-6-oxonated-6 phenylhexa-2,4-dienoic
acid (HOPDA). The gene product of bphD forms 2-hydroxypenta-2,4-
dienoate, which acts as a substrate for the enzymes encoded by bphEFG
forming acetyl CoA that enters into the Krebs cycle
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Polychlorinated dibenzo-p-dioxins (PCDDs)
and dibenzofurans (PCDFs)

Polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzo-
furans (PCDFs) are the representative industrial organo-
chlorine by-products having toxic manifestations. They
are released as impurities in trace amounts from the
chemicals like chlorinated phenols and their derivatives,
chlorinated biphenyl ethers, pentachlorophenol, and
PCBs. They are also the by-products from combustion of
iron and steel production. The pulp and paper industries
carrying out chlorine bleaching, chlorine-alkali plants using
graphite electrodes, exhausts of car from petrol having
chlorinated solvents, sewage sludge, etc. release PCDDs
into the environment (Rappe 1991). PCDD/Fs have a high
tendency to adsorb into soil, sediments, and bioaccumulate
in higher organisms, which render acute and chronic
toxicities in them.

Three decades ago, Bumpus et al. (1985) first reported
the degradation of 2,3,7,8-tetrachlorodibenzo-p-dioxin
(TCDD) by the white rot fungus Phanerochaete
chrysosporium. Later, Bunge et al. (2001) reported an an-
aerobic bacterium Dehalococcoides sp. strain CBDB1
which was capable of converting 1,2,3,7,8-penta CDD to
2,7 or 2,8-DCDD. Biodegradation of chlorinated dioxins

by aerobic means is initiated by the angular dioxygenase
(Habe et al. 2001; Nojiri and Omori 2002). Strains like
Brevibacterium sp., Terrabacter sp., Serratia marsescens,
Sphingomonas sp., and S. wittichii efficiently metabolizes
dioxin and furans (Jaiswal and Thakur 2007). The angular
dioxygenase attacks the ring adjacent to the ether oxygen
bridging them (Fig. 6). Different dioxygenase have been
isolated from various microorganisms like carbazole
dioxygenase from Pseudomonas sp., dibenzofuran
dioxygenase from Terrabacter sp., and dibenzo-p-
dioxygenase from Sphingomonas sp. (Habe et al. 2001).
The dioxygenase further catalyzes the formation of diols
forming chlorinated 2,2′,3-trihydroxybiphenyl from PCDD
and PCDF. The hydroxylated ring is oxidized at meta-
position by the dioxygenases. The ring-opened products
are metabolized further yielding chlorinated catechol and
chlorinated salicylates from PCDD and PCDF, respective-
ly. PCDF having chloro groups on both rings results in
formation of chlorinated 2-methyl-4H-chroman-4-ones
(Keim et al. 1999; Fukuda et al. 2002). Dioxygenase of
some bacterial strains such as Beijerinckia sp. and
Alcaligenes sp. results in deoxygenation at lateral position,
which leads to dihydrodiol and dihydroxy-2-CDD metab-
olite formation (Klecka and Gibson 1980; Parsons and
Storms 1989). Bacillus megaterium producing cytochrome

Fig. 5 bph operon model conserved among PCB-degrading bacteria: A1,
terminal dioxygenase large subunit; A2, terminal dioxygenase small
subunit; A3, ferrodoxin; A4, ferrodoxin reductase; B, dihydrodiol
dehydrogenase; C, 2,3-dihyrodoxybiphenyl dihydrogenase; D,

2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid hydrolase; E,
2-hydroxypenta 2,4-dienote hydratase; F, 4-hydroxy-2-oxovalerate
aldolase; G, acetaldehyde dehydrogenase
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P450 causes monooxygenation of 2,3-DCDD and 2,3,7-
TCDD, producing its hydroxylated metaboli tes
(Sulistyaningdyah et al. 2004).

Anaerobic biodegradation of PCDD/Fs to lower chlori-
nated dioxin occurs by an electron-donating substrate by
the process of reductive dechlorination (Bunge et al.
2003). Due to their hydrophobic nature, these compounds
are poorly bioavailable to the environment and surround-
ings. As reported by Kao et al. (2001), the aqueous solu-
bility and logarithm value of octanol-water coefficient
(logP) of 2,3,7,8-TeCDD is 0.019 ppb and 6.5, respective-
ly. Thus, microbial derived surfactants can be an effective
measure for increasing the bioavailability of these com-
pounds into microbial cells. For increased access of pol-
lutants to the microbes, an approach involving membrane
protein modification assists transformation of hydrophobic
POPs into the cells. For example, Sphingomonas wittichii
strain RW1 was genetically engineered to express super
channel membrane proteins which enabled macromolecule
diffusion into the cells (Aso et al. 2006). The overexpres-
sion of super channels on this bacterial membrane im-
proved the metabolism of dibenzofuran. This suggested
that the channeling proteins can be genetically recruited
for dibenzofuran degradation. Abiotic redox reaction com-
bined with microbial catabolic actions also augments the
bioremediation potential of POPs (Jeon et al. 2013).

Emerging POPs and degradative enzymes

The emerging contaminants in the environment are of
major concern with myriad toxic effects. They act as
endocrine-disrupting chemicals by mimicking and
blocking the function of hormones in the endocrine
system. This affects the health of human and animal
species. Therefore, microbial degradation is the natural
way of treating these emerging contaminants. Ying et al.
(2008) studied the degradation of bisphenol A (BPA), 4-
tert-octylphenyl, 4-n-nonylphenol and natural, synthetic
estrogens in various environmental matrices such as
groundwater and surface water. A similar study conduct-
ed by Hernandez-Raquet et al. (2007) showed β-
estradiol degradation of nonylphenol is more favorable
in aerobic than anaerobic conditions. However, there are
several other enzymes utilized for the detoxification and
elimination of these hydrophobic xenobiotics in the
environment.

The enzyme cytochrome P450s (CYPs) are extensively
dispersed hemoproteins helping in biosynthesis of endoge-
nous compounds. They aid in oxidative detoxification and
elimination of hydrophobic xenobiotics including pollut-
ants, drugs, and pesticides (Omura 1999). It helps in de-
toxification of trichloroethene (TCE), 1,1,1-trichloroethane
(TCA), chloroform, and benzene. These CYPs help in

Fig. 6 Catabolic biodegradation
pathway of dibenzo-p-dioxin and
dibenzofuran. Dibenzo-p-dioxin
and dibenzofuran are acted upon
by angular dioxygenase (DbfA)
producing 2,2′,3-
trihydroxybiphenyl. It is acted
upon by 2,2′,3-
trihydroxybiphenyl dioxygenase
(DbfB) to form 2,6 dioxo-6-
phenylhexa-3-enoate. It is further
mineralized by hydrolase to form
catechol and salicylaldehyde,
respectively. These intermediates
forms acetyl Co-A and enters into
the Krebs cycle
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microbial natural product synthesis, as biocatalysts, for
bioremediation and also as drug and agrochemical targets.
It has been reported to commence the initial oxidation of
carbon sources such as alkanes by Candida sp. Bacterial
enzyme CYP177A1 has also been reported to detoxify
hexahydro-1,3.5-trinitro-1,3.5-triazine (RDX) followed by
phytoremediation (Rylott et al. 2006). White and brown
rot fungi are the major microbes harboring these enzymes.
Use of several polycyclic aromatic compounds as inducer
was examined by determining the CYP gene expression
pattern in fungus (Syed et al. 2010). These fungi are of
further interest in commercial bioremediation as they also
degrade lignin (Matsuzaki and Wariishi 2005). Likewise,
CYP249 enzyme was found in Rhodococcus and
Gordonia which assisted the degradation of petrol addi-
tives such as methyl tert-butyl ether, ethyl tert-butyl ether,
and tert-amyl butyl ether (Malandain et al. 2010).
Cytochrome P450 alkane hydroxylase constitutes a super-
family of ubiquitous heme-thiolate monooxygenases with
an important role in the microbial degradation of oil, chlo-
rinated hydrocarbons, fuel additives, and many other com-
pounds (Van Beilen and Funhoff 2007). Cytochrome P450
enzyme system are useful for biodegradation of petroleum
hydrocarbons. Yeasts such as Candida maltosa, Candida
tropicalis, and Candida apicola also synthesize these cy-
tochrome P450 enzymes (Scheller et al. 1998).

Another important enzyme required for degradation of
hydrophobic toxic contaminants is the glutathione-S-trans-
ferase. Bacterial glutathione-S-transferases (GSTs) are part
of an enzyme superfamily that plays a crucial role in
cellular detoxification (Rossjohn et al. 1998). Several clas-
ses of prokaryotes have these enzyme implicated in bio-
degradation of xenobiotics, and protection against chemical
and oxidative stresses and antimicrobial drug resistance
(Allocati et al. 2009). In addition to that, bacterial GSTs
aid in biotransformation of dichloromethane, degradation
of lignin, atrazine (ATZ), and reductive dechlorination of
pentachlorophenol. The electrophilic groups of a wide
range of hydrophobic toxic compounds are attacked by
the tripeptide glutathione (GSH) (catalyzing nucleophilici-
ty) which promote the excretion of these toxic compunds
from the cell (Hayes et al. 2005). In a study by
McGuiness et al. (2007), a specific bacterial glutathione-
S-transferase (GST) BphKLB400 [wild type and mutant
(Ala180Pro)] was expressed by Burkholderia xenovorans
LB400, which could dehalogenate toxic chlorinated organ-
ic pesticides. This mechanism protected the inoculated pea
plants from the effects of a chlorinated organic pesticide,
chloromequat chloride (McGuinness et al. 2007). Besides
these, the huge uncultivated overabundance of microbial
genome can be explored by discovering novel enzymes
and proteins for bioremediation of toxic organic
contaminants.

Molecular approaches to study microorganisms
for bioremediation

Microorganisms encompass the overwhelming majority of
life forms having miscellaneous functions. Explorations by
environmental microbiologists estimate that less than 2 % of
bacteria have been cultured in the laboratory. Thus, bacterial
diversity on earth is still a domain to be disclosed further
(Wade 2002). The uprising field of metagenomics has revolu-
tionizedmicrobiology by offering a glance on the massive and
unknown world of microbes. DNA directly extracted from
environmental samples endeavors in combination of different
techniques for genetic characterization and diversity analysis.
DNA-DNA hybridization technique is a major approach for
illuminating the genomic imprints of unculturable bacteria
and their gene expression analysis in presence of toxic com-
pounds in the environment (Saylor and Layton 1990;
Leadbetter 2003). The technique of direct genomic cloning
is an approach to discover unknown sequences and their func-
tion in an ecosystem. Construction of a metagenomic library is
a modified approach for deciphering the genetic fingerprint
for elucidation of novel catabolic genes (Kakirde et al.
2010). Rhee et al. (2004) developed a comprehensive 50-
mer-based oligonucleotide microarray to analyze
naphthalene-amended enrichment and soil microcosms. This
consisted of the 2402 known genes and pathways involved in
biodegradation and metal resistance containing 1662 unique
and group-specific probes with <85 % similarity to their non-
target sequences. Rhodococcuswas dominant in naphthalene-
degrading enrichments whereas Ralstonia, Comamonas, and
Burkholderia were most abundant in the soil microcosms.

Function-driven screening based on the functional activity
screening of cloned genes is a simple, successful method uti-
lized for discovering potent catabolic genes (Rondon et al.
2000). A novel functional screening system of metagenome
extract thin-layer chromatography (META) was developed
based on the principle of high-performance thin-layer chro-
matography (HPTLC). This was used as a functional screening
method for the rapid detection of glycosyltransferase (GT) and
many other flavonoid-modifying enzymes from the
metagenomic clone libraries (Rabausch et al. 2013). On con-
trary, it has certain limitations as expression of the functional
gene of interest in numerous host cells is a laborious process.
Therefore, an alternative technique was discovered known as
the sequence-driven approach for the identification of genes
based on their conserved regions in varied microbial genome
(Schloss and Handelsman 2003). Hybridization probes and
PCR primers are designed from the sequence database for
clone library screening. Gene targeting by gene-specific
primers and genome walking is effective for screening novel
genes irrespective of gene expression (Culligan et al. 2014).
However, this screening-based quantitation sometimes leads to
prediction of DNA consensus whichmight be nonfunctional as
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catabolic genes. Due to lack in acquisition of full-length genes
or full gene clusters, the desired product might not be obtained
(Tyson et al. 2004; Venter et al. 2004). Both the screening
strategies are helpful in selecting novel catabolic genes, but
they are labor-intensive due to low frequency hits of clones
(Henne et al. 2000).

Considering above shortcomings, another technique
known as substrate-induced gene-expression (SIGEX) has
been developed. It involves the screening of a metagenome
library for acquiring environmental stimuli-based catabolic
genes. The basic principle is the catabolic gene expression
induced by specific compounds (substrates or metabolites).
Sometimes, it might be regulated by elements adjoining the
catabolic genes. SIGEX is a widely accepted technique, which
not only facilitates cloning of various catabolic genes in short
time span but also explores novel genes that are otherwise
intricate to track (Uchiyama and Watanabe 2007). This tech-
nique was successfully used for screening aromatic
hydrocarbon-induced genes from a constructed groundwater
metagenome library as well as characterization of a phenol
degradation operon from Ralstonia eutropha, an organism
isolated from sludge (Uchiyama et al. 2005). In a study, 384
putative aromatic-inducible clones were recovered from the
polycyclic aromatic hydrocarbon metagenomic library using
SIGEX. Of which, 96 clones were highly similar in sequence
with the aromatic-degrading genes or operons from the genus
Pseudomonas (Meier 2014). Therefore, metagenome is de-
fined as all the genetic material present in an environmental
sample, consisting of genomes of many individual organisms.
It provides genetic information on potential novel catalysts or
enzymes, genomic linkages, and phylogenetic relation of un-
cultured organisms (Thomas et al. 2012).

Stable isotope probing (SIP) is another imperative technique,
which links metabolic potential to phylogenetic and
metagenomic information within a community (Abram 2015).
It tracks isotopically labeled substances into phylogenetic and
functional biomarkers. This tool identifies active members of
the microbial community with essential functional potential.
SIP integrated metagenomics provides a deeper insight into
the application of genes useful for biodegradation of naphtha-
lene, polychlorobiphenyl, benzene, etc. (Wang et al. 2012). The
frequency of clones bearing target gene is increased fourfold
when SIP is succeeded by metagenomic library construction
(Uhlik et al. 2013). SIP was first used by Dumont and Murrell
(2005) with the combination of function and sequence-based
metagenomic library screening. Soil was incubated with
13CH4, followed by construction of a 13C-DNA metagenomic
library using a bacterial artificial chromosome (BAC). Library
screening resulted in the discovery of a clone carrying pmoCAB
operon, encoding methane monooxygenase for trichloroethy-
lene degradation.

SIP meta-transcriptomics is another approach providing
high sensitivity functional information of genes useful in

biodegradation of toxic organic contaminants. This was dem-
onstrated by presence of naphthalene dioxygenase and meth-
ane monooxygenase gene in unculturable Pseudomonas sp.
and Acidovorax sp. having a key role in naphthalene biodeg-
radation (Huang et al. 2009). Therefore, unculturable micro-
organisms could play active roles in biodegradation in the
ecosystem. Another combined technique of RNA SIP-
Raman-fluorescence in situ hybridization is noteworthy for
resolving ulcultivable microbial ecology, functionality, and
niche specialization vested in the natural environment
(Huang et al. 2009).

Fluorescence in situ hybridization (FISH) uses rRNA-
targeted oligonucleotide probes for taxonomic identification
of microbial cells (Wagner et al. 2003). FISH combined with
SIP associates microbial phylogeny to metabolic activity at
the single-cell level. Thus, unraveling the potent catabolic
genes from the entire metagenome by these numerous tech-
niques can help in deducing novel gene expression for en-
hanced bioremediation.

POPs degrading genes from the metagenome

Microbial metagenome constitutes the largest reservoir of
genes with diverse enzymatic activities implicated in deg-
radation (Galvão et al. 2005). Extensive research is yet to
be conducted to discover various microbial species from
the environment having functional roles in POP biodegra-
dation (Hill et al. 2010). Detection of a particular gene of
interest by studying community metagenomics is improb-
able due to vast diversity and gene abundance in the
microbial ecosystem. This shortcoming can be surmounted
by targeting metagenomics to specific subpopulations that
may have the probability to contain the gene of interest
(Schloss and Handelsman 2003). Investigation of common
effluent treatment plant (CETP) metagenome has enabled
the linkage of taxonomic and catabolic diversity in discov-
ering novel biodegradation genes/pathways of toxic organ-
ic effluents (More et al. 2014). Oxygenase is the primary
enzyme for biodegradation of toxic organic pollutants be-
longing to the oxidoreductase group of enzymes. Their
primary function includes oxidation of reduced substrates
by transferring molecular oxygen (O2) utilizing FAD/
NADH/NADPH as a cosubstrate (Karigar and Rao
2011). Jadeja et al. (2014) have explored and documented
the actual abundance of oxygenases in a target CETP
from already reported metagenome sequence toward deg-
radation of naphthalene, anthracene, phenol, biphenyl and
o-toluidine. Metagenomics unlocking the black-box of po-
tent catabolic genes illustrated the presence of
homogentisate 1,2-dioxygenase, phenylacetate Co-A oxy-
genase, phenol dioxygenase, benzene, and toluene
dioxygenase.
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Three metagenomic datasets of sewage effluent treat-
ment plant used were from biological phosphorus re-
moval treatment plant and tannery waste metagenomes
of Hong Kong, Denmark, and China, respectively
(Jadeja et al. 2014). Iwai et al. (2009) used gene-
targeted-metagenomics and pyrosequencing method for
obtaining a better understanding of ecology and se-
quence depth of biphenyl dioxygenase genes. The
substrate-specific primers for this gene yielded 2000
and 604 sequences from 5′ and 3′ ends of the PCR
products, respectively. Complete linkage clustering de-
termined that 95 % and 41 % of the valid sequences were
allocated to 22 and 3 novel clusters. Exploring further,
metagenomic libraries were constructed from Turban
Basin elucidating the presence of thermostable
pyrethroid-hydrolyzing enzyme (Fan et al. 2012).
Moreover, current metagenomic survey on a highly con-
taminated hexachlorocyclohexane (HCH) dumpsite re-
vealed the enrichment of Sphingomonadaceae, as well
as lin genes (used in HCH degradation), plasmids, and
transposons with increasing HCH contamination. These
metagenomic data were used to construct ancestral ge-
notype reconstructs delivering the linkage of genes from
the ancestors (Sangwan et al. 2012, 2014). Sites con-
taminated with chlorinated pesticides were also evaluat-
ed for the analysis of microbial communities which de-
tected dehydrodechlorinase (linA) gene variants involved
in gamma-hexachlorocyclohexane (c-HCH, lindane) deg-
radation. This linA gene could be cloned, expressed in
desirable hosts having further utility in enzymatic
bioremediation.

Construction of a fosmid library was reported by means of
the metagenomic DNA from aerobic and anaerobic enrichments
of a biodegraded petroleum sample. Hexadecane screening from
the library identified 72 positive clones from a total of 5000
fosmid clones out of which five were able to degrade 70 % of
hexadecane in chromatographic assays. The sequencing of the
genes unraveled novel arrangements of hexadecane degradation
genes (Sierra-García et al. 2014). Additionally, metagenomic
DNA characterization from freshwater and marine sediments
illustrated the presence and diversity of potent DDT, HCH,
and ATZ degrading genes such as hdt, hdg, and atzB genes,
encoding hydratase, dehalogenase, and ethylaminohydrolase ac-
tivity, respectively (Fang et al. 2014). Another novel 2,4-dichlo-
rophenol hydroxylase (TfdB, EC 1.14.13.20) gene (tfdB-JLU)
was discovered by functional screening from a polychlorinated
biphenyl-contaminated soil metagenome. The gene could effec-
tively degrade ortho-substituted dichlorophenols, 2-
chlorophenol, and 3-chlorophenol with respect to 2,4-dichloro-
phenol (Lu et al. 2011). Thus, the recent techniques and ideas in
exploring metagenome can serve to reveal the secret lives of
unculturable microorganisms which are also essential to the
functioning of our natural environment.

Conclusion

Growing industrial activities and urbanization cause environ-
mental pollution which release toxic POPs such as pesticides,
polychlorobiphenyl, dioxins, and other emerging contami-
nants affecting the ecosystem stability. Several natural com-
munities of aerobic and anaerobic microorganisms such as
Aeromicrobium, Bacillus, Brevibacterium, Burkholderia,
Desulfotomaculum, Desulfovibrio, Dietzia, Escherichia,
Gordonia, Mycobacterium, Pseudomonas, Rhodococcus,
Sphingobium, and Syntrophobacter exist with adaptable cata-
bolic potential triggering the breakdown of these POPs.
Microbial bioremediation is the paramount cost-effective ap-
proach in today’s world for biotransformation of POPs to their
nontoxic forms. They harbor catabolic genes in their genome,
plasmid, and transposon expressing diverse aromatic
monooxygenase, dioxygenase, cytochrome P450, and
glutathione-S-transferase enzymes for the degradation and re-
moval of POPs from the environment. However, most of the
microorganisms are still uncultured in the laboratory and the
concept of metagenomics appeared to study this unculturable
microorganisms. Metagenomics is opening the access to the
world of uncultivated microorganisms by finding the unique
genes from varied environmental resources. Advancements in
gene sequencing and sequence-driven screening have facili-
tated the illustration of novel genes from various environmen-
tal samples. In addition, technique of SIGEX has also emerged
to address the bioremediation of POPs. However, further de-
velopment of innovative strategies is essentially required for
opening the black box of hidden microbes with untapped po-
tential. Further exploration of techniques and microbes will
provide platform for the development of new groundbreaking
screening methods that will be indispensable to expand the
range of accessible microbes and genes in environmental
metagenomes.
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