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Abstract The photocatalytic reduction of Cr(VI) using pyro-
lytic char/TiO2 (PC/TiO2) composite catalyst under simulated
solar irradiation was studied. Response surface methodology
(RSM) and experimental design were used for modeling
the removal kinetics and for the optimization of operational
parameters. RSM was developed by considering a central
composite design with four input variable, i.e. catalyst con-
centration, initial concentration of Cr(VI), pH, and % (v/v)
methanol concentration for assessing individual and interac-
tive effects. A quadratic model was established as a func-
tional relationship between four independent variables and
the removal efficiency of Cr(VI). It was found that all
selected variables have significant effect on Cr(VI) removal
efficiency; however, the pH, the % concentration of meth-
anol, and their interaction exhibited the major effects.
Within the studied experimental ranges, the optimum con-
ditions for maximum Cr(VI) removal efficiency (72.1 %)
after 60 min of photocatalytic treatment were: catalyst con-
centration 55 mg L−1, Cr(VI) concentration 20 mg L−1, pH
4, and 5 % (v/v) methanol concentration. Under optimum
conditions, Cr(VI) reductive removal followed pseudo-first-
order kinetics, and nearly complete removal took place
within 90 min. The results revealed the feasibility and the

effectiveness of PC/TiO2 as photocatalyst in reduction re-
actions due to their ability of e−–h+ pair separation increas-
ing the transfer of the photogenerated e− to the catalyst’s
surface and thus the reduction of Cr(VI).
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Introduction

Hexavalent chromium, Cr(VI), is one of the most frequent and
toxic heavy metals presented in wastewaters from various
industrial processes such as leather tanning, electroplating,
textile dying, pigment production, wood preservation, and
finishing of metals and plastics, among others (Jacobs and
Testa 2004). Cr(VI) is highly soluble and mobile in aquatic
environment as well as toxic to various organisms and micro-
organisms with potential carcinogenic and mutagenic proper-
ties (Hawley et al. 2004; Barrera-Díaz et al. 2012). Given that
water pollution caused by Cr(VI) is of particular environmen-
tal concern, extensive scientific efforts have been devoted on
the removal of Cr(VI) from water and wastewaters or its re-
duction to less toxic Cr(III) (Hawley et al. 2004; Owlad et al.
2008; Mukherjee et al. 2013).

Nowadays, photocatalytic technologies attract consider-
able interest, especially for the oxidation of various persistent
and/or toxic organic pollutants from aquatic matrices
(Konstantinou and Albanis 2003, 2004; Chong et al. 2010).
On the other hand, reduction by semiconductor photocatalysts
is becoming more and more attractive for the removal or re-
covery of metal cations dissolved in wastewater. In general,
photocatalytic reductive treatment can convert the ionic spe-
cies into their metallic solid forms and deposit them over the
semiconductor surface or transform them in less toxic soluble
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species (Yue et al. 2015). Heterogeneous photocatalysis has
been reported as a promising method for reducing Cr(VI) to
the less toxic Cr(III) in aqueous solutions, and numerous stud-
ies with diverse catalysts (Antonopoulou et al. 2012; Barrera-
Díaz et al. 2012; Giannakas et al. 2013, 2016; Machado et al.
2014; Cheng et al. 2015) have been devoted in this issue.

TiO2 has been the most widely applied photocatalyst but
suffers from low efficiency due to electron–hole recombina-
tion and low response in solar light. Combining TiO2 with
carbonaceous nanomaterials is being increasingly investigated
as a means to increase photocatalytic activity (Jiang et al.
2011; Shaham-Waldmann and Paz 2013; Wang et al. 2014;
Fu et al. 2015). The enhanced activity is attributed to the so-
called synergistic effect, e.g., the adsorbent may adsorb a large
amount of pollutant, thus facilitating the proximity/reaction of
pollutant with the TiO2 surface where the photocatalytic
degradation/removal of pollutant takes place, or by increasing
the separation of photogenerated electron–hole pairs due to
the increased electrical conductivity for the majority of carbo-
naceous substrates (Lim et al. 2011; Leary and Westwood
2011; Zhao et al. 2013a, b). Conventional carbonaceous ma-
terials such as activated carbon (AC), carbon black (CB), and
emerging materials such as [60]-fullerene, graphene, carbon
nanotubes have been used to enhance TiO2 efficiency (Leary
andWestwood 2011; Lim et al. 2011; Zhao et al. 2012, 2013a,
b). However, up until recently, the use of pyrolytic chars from
industrial (such as tire rubber, etc.) or agricultural by-products
as carbonaceous catalyst and photocatalyst supports has been
investigated in a lower extent (Makrigianni et al. 2015; Ma
et al. 2015; Rezaee et al. 2014; Pi et al. 2015).

In our previous study (Makrigianni et al. 2015), pyro-
lytic char/TiO2 (PC/TiO2) composite photocatalytic mate-
rials have been prepared, characterized, and proved effi-
cient photocatalysts for the oxidation of phenol. Based on
the results obtained from the catalyst characterization and
photocatalytic activity, it was showed that pyrolytic char
matrix can act as a very efficient electron acceptor from
TiO2 particles under UV–Vis irradiation resulting in de-
creased electron–hole pair recombination. This property
could be beneficial for extrapolating the applications of
such materials in photocatalytic reduction reactions such
as the photocatalytic removal of heavy metal ions, like
Cr(VI).

As a result, the application of PC/TiO2 composite
photocatalyst for the photocatalytic reduction of Cr(VI) was
investigated in the present study by means of operational pa-
rameter optimization and modeling using the response surface
methodology (RSM). The main objectives of this study were
(a) to assess the applicability of the PC/TiO2 catalyst toward
the removal of Cr(VI), (b) to investigate the effect of four
parameters (catalyst’s concentration, initial concentration of
Cr(VI), pH, and % (v/v) concentration of methanol, added as
a hole scavenger) on the total process efficiency, and (c) to

model and optimize the photocatalytic procedure by means of
a central composite design and response surface methodology.

Experimental section

Materials

Pyrolytic char/TiO2 composite with (% wt.) char/TiO2 ratio
set at 0.5/2 (named as 0.5/2 PC/TiO2) was prepared based on a
simple sol–gel impregnation method, as mentioned in our pre-
vious work (Makrigianni et al. 2015). X-ray diffraction (XRD)
patterns were measured using a Brüker Advance D8 instru-
ment; elemental analysis was performed by Perkin Elmer
(2400 Series II) analyzer; surface area was determined by N2

porosimetry (Quantachrome Autosorb-1 instrument), while
the point of zero charge (pHpzc) was determined by the mass
titration technique, according to the method reported in
Makrigianni et al. (2015). Main physicochemical properties
of the catalyst include anatase TiO2 crystal phase with particle
size of 17 nm; band gap energy (Eg) =3.24 eV; surface area
81.5 m2 g−1; pHPZC=5.9; C, N, and O elemental analysis at
5.09, 0.90, and 93.33 %, respectively).

Cr(VI) in the form of potassium dichromate was purchased
from Sigma-Aldrich. Methanol (LC grade) was purchased
from Merck (Darmstadt, Germany). Durapore membrane hy-
drophilic PVDF (Polyvinylidene Fluoride) 0.45-μm filters
were supplied by Millipore. Ultrapure water was obtained
from a Millipore Waters Milli-Q water purification system.

Photocatalytic experiments

Photocatalytic experiments were carried out in a solar simula-
tor apparatus Atlas Suntest XLS+ (Atlas, Germany) equipped
with a xenon lamp (2.2 kW) and special filters in place to
prevent the transmission of wavelengths below 290 nm. A
constant irradiation intensity of 350 W m−2 measured by an
internal radiometer was maintained throughout the experi-
ments. Cr(VI) aqueous solutions (250mL) and the appropriate
amount of catalyst were transferred into a double-walled
Pyrex glass UV reactor with a water circulation. The pH of
solutions was adjusted by adding appropriate volumes of
H2SO4 or NaOH aqueous solutions. The suspension was kept
in the dark for 60 min under stirring, prior to illumination to
reach Cr(VI) adsorption equilibrium onto semiconductor sur-
face. Aliquots (3 mL) were withdrawn from the reactor at
different time intervals and were filtered through 0.45-μm
filters in order to remove the catalyst’s particles before further
analysis. The concentration of Cr(VI) was determined by the
diphenylcarbazide colorimetric method measuring the absor-
bance at the wavelength of 540 nm using a UV–Vis spectro-
photometer (Hitachi, U-2000). The activity of the used cata-
lyst for five consecutive catalytic cycles was also investigated.
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After each cycle, the catalyst was washed with ultrapure water
(pH=4) and dried at 110 °C.

Experimental design and data analysis

A rotatable central composite design (CCD) was adopted for
the optimization of photocatalytic process and for evaluating
the effect of four main operational factors, i.e., catalyst (PC/
TiO2) concentration (x1), Cr(VI) initial concentration (x2), pH
(x3), and % (v/v) methanol concentration (x4) added as a hole
scavenger. For the four variables considered (n=4) and two
levels (high (−1) and low (+1)), the total number of experi-
ments was determined by the expression 2n+2n+6=24 (16
factorial points) + 2 × 4 (8 axial (star) points) + 6 (central
points, replications)=30, as shown in Table 1, presented with

actual and coded values at levels −α, −1, 0, +1, +α. Taking
into consideration that typical concentrations of Cr(VI) in
wastewaters of tannery, pigments, and plating industries were
in the range of 0.5–50 mg L−1, the concentration range from
7.5 (−α) to 37.5 (+α)mg L−1 was selected as a compromise
between (i) a concentration approximating real wastewaters
and (ii) the concentration which enables obtaining not very
fast kinetics. In addition, low catalyst concentration range
was selected to show the effectiveness of the process, while
the addition of methanol at 0.5 (−α) to 6.5 % (+α) (v/v) sim-
ulates the concentration of organic compounds that could be
found in wastewaters acting as hole scavengers. The efficien-
cy of the process evaluated by determining Cr(VI) removal
percentages after a fixed time (60 min) of reaction was con-
sidered as the response of the experimental design according
to the following equation:

Y %ð Þ ¼ C0−Ct

C0

� �
� 100 ð1Þ

where C0 is the initial Cr(VI) concentration and Ct the con-
centration after 60 min of photocatalytic treatment.

A second-order (quadratic) polynomial equation was used
to fit the experimental results of CCD as follows:

Y %ð Þ ¼ b0 þ b1x1 þ b2x2 þ b3x3 þ b4x4 þ b12x1x2

þ b13x1x3 þ b14x1x4 þ b23x2x3 þ b24x2x4 þ b34x3x4

þ b11x12 þ b22x22 þ b33x32 þ b44x42 ð2Þ

where Y represents the response variable (Cr(VI) remov-
al efficiency); x1, x2, x3, and x4 are the studied indepen-
dent variables, i.e., the concentration of catalyst, the
initial concentration of Cr(VI), pH of the solution, and
the percent content of methanol, respectively; bi, bii, and
bij are the regression coefficients for linear, quadratic
effects and the coefficients of the interaction parameters,
respectively.

Model adequacy was checked through lack-of-fit test
based on analysis of variance (ANOVA) and calculated
F values (Fisher variation ratio) as well as by various
diagnostic tests, which included graphic representation
of predicted vs. experimental values, a normal probabil-
ity plot of the studentized residuals to check the nor-
mality of the residuals, the plot of studentized residuals
vs. predicted values to check for constant errors, exter-
nally studentized residuals to check for outlier values,
and Box–Cox plo t for power t rans format ions
(Antonopoulou and Konstantinou 2015). The accuracy
and applicability of the proposed model from RSM
were evaluated by the statistic F value, the coefficient
of determination (R2), and the adjusted coefficient of
determination (R2

adj.) for the parameters studied. The

Table 1 The four-factor central composite design matrix (independent
variables and their actual and coded (in parenthesis) levels; catalyst
concentration (Ccat) and Cr(VI) concentration, CCr(VI) in mg L−1) and
the experimental results for Cr(IV) % removal

Ccat (x1) CCr(VI) (x2) pH (x3) % v/v Methanol (x4) % Removal

70.0 (0) 22.5 (0) 6.0 (0) 3.5 (0) 28.7

50.0 (−1) 30.0 (+1) 4.0 (−1) 5.0 (+1) 67.5

50.0 (−1) 15.0 (−1) 8.0 (+1) 5.0 (+1) 10.7

90.0 (+1) 15.0 (−1) 4.0 (−1) 2.0 (−1) 19.2

70.0 (0) 22.5 (0) 6.0 (0) 6.5 (+α) 68.0

70.0 (0) 22.5 (0) 6.0 (0) 3.5 (0) 28.7

70.0 (0) 22.5 (0) 6.0 (0) 3.5 (0) 27.0

70.0 (0) 22.5 (0) 6.0 (0) 0.5 (−α) 11.0

90.0 (+1) 30.0 (+1) 8.0 (+1) 2.0 (−1) 8.5

50.0 (−1) 15.0 (−1) 4.0 (−1) 5.0 (+1) 77.0

70.0 (0) 22.5 (0) 6.0 (0) 3.5 (0) 30.0

110.0 (+α) 22.50 (0) 6.0 (0) 3.5 (0) 11.8

70.0 (0) 22.5 (0) 6.0 (0) 3.5 (0) 28.9

90.0 (+1) 30.0 (+1) 8.0 (+1) 5.0 (+1) 8.0

90.0 (+1) 15.0 (−1) 4.0 (−1) 5.0 (+1) 68.0

90.0 (+1) 30.0 (+1) 4.0 (−1) 5.0 (+1) 54.2

50.0 (−1) 30.0 (+1) 4.0 (−1) 2.0 (−1) 16.0

30.0 (−α) 22.5 (0) 6.0 (0) 3.5 (0) 17.0

90.0 (+1) 15.0 (−1) 8.0 (+1) 5.0 (+1) 12.3

90.0 (+1) 15.0 (−1) 8.0 (+1) 2.0 (−1) 6.7

70.00 (0) 22.5 (0) 6.0 (0) 3.5 (0) 27.5

70.00 (0) 37.5 (+α) 6.0 (0) 3.5 (0) 4.5

50.0 (−1) 15.0 (−1) 4.0 (−1) 2.0 (−1) 19.8

70.0 (0) 7.5 (−α) 6.0 (0) 3.5 (0) 10.0

90.0 (+1) 30.0 (+1) 4.0 (−1) 2.0 (−1) 10.0

50.00 (−1) 15.00 (−1) 8.0 (+1) 2.0 (−1) 1.2

70.00 (0) 22.50 (0) 10.0 (+α) 3.5 (0) 8.0

70.00 (0) 22.50 (0) 2.0 (−α) 3.5 (0) 75.0

50.00 (−1) 30.00 (+1) 8.0 (+1) 2.0 (−1) 7.7

50.00 (−1) 30.00 (+1) 8.0 (+1) 5.0 (+1) 14.5
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significance of all model coefficients was judged based
on the probability value (p< 0.05) with 95 % confidence
level. Three-dimensional response surface plots were
drawn for the visualization of the interaction effects of
the independent operational parameters on Cr(VI) re-
moval. Finally, the optimization was performed on the
basis of the desirability function to determine the opti-
mal conditions for Cr(VI) removal. Numerical optimiza-
tion was used to identify the specific point that maxi-
mizes the desirability function. The experimental design,
statistical analysis, response surface plots, and optimiza-
tion were performed using Design Expert V.7.1.5 (Stat-
Ease Inc. 2008, MN, USA) software.

Results

Preliminary experiments

Preliminary adsorption and photolysis experiments were
carried out, before the development of the experimental
design (data not shown). Direct photolysis was resulted
in negligible removal of Cr(VI). Similarly, dark experi-
ments in the presence of 0.5/2 PC/TiO2 led to 10 %
Cr(VI) adsorption on catalyst’s surface, after the estab-
lishment of the adsorption equilibrium within 60 min.
Moreover, photocatalytic experiments of Cr(VI) in the
presence and absence of methanol were conducted. As
shown in Fig. 1, the photocatalytic reduction of Cr(VI)
is a slow process leading only to 18 % removal after
240 min (pH= 2). On the other hand, the presence of
MeOH, a well-established hole scavenger, inhibited ef-
ficiently the electron–hole recombination leading to en-
hanced reduction of Cr(VI).

RSM modeling and optimization for Cr(VI)
photocatalytic removal

The experimental results obtained for Cr(VI) photocatalytic
removal according to the CCD experiments are depicted in
Table 1. Based on the experimental design, a quadratic re-
sponse surface model was found to describe the empirical
relationships between the independent variables and the re-
sponse according to the following equation:

%Removal Cr VIð Þ ¼ 28:47 − 1:58x1 − 1:65x2 − 16:50x3

þ 14:05x4 − 1:41x1x2 þ 1:89x1x3 − 1:68x1x4

þ 2:76x2x3 − 1:19x2x4 − 11:27x3x4

þ 3:61x12 − 5:40x22 þ 3:16x32 þ 2:66x42

ð3Þ

The quadratic model developed for the prediction of Cr(VI)
removal was initially evaluated for statistical significance
using ANOVA, and the results are shown in Table 2.

The ANOVA results showed a p value <0.0001 and a high
F value of 1176.72, indicating a highly significant model.
There was only a 0.01 % chance that the Bmodel F value^
could occur due to noise. On the other hand, the lack-of-fit F
value of 0.74 and the corresponding p value of 0.6825 indi-
cated a non-significant shortage of the model in the prediction
of experimental data.

The coefficient of determination (R2) of the regres-
sion model is 0.9991, meaning that more than 99.91 %
of the data deviation can be explained by the model.
Similarly, the high value of adj. R2 (0.9982) indicates a
high degree of correlation between the experimental
and predicted values and consequently a good predict-
ability of the model.

Various diagnostic tests, i.e., the graphical representation of
predicted vs. experimental (actual) values (Fig. 2a), the nor-
mal probability plot (Fig. 2b), the graphs of residual vs. pre-
dicted values (Fig. 2c), and the Box–Cox plot (Fig. 3) (Vaez
et al. 2012; Antonopoulou and Konstantinou 2013) further
verified the adequacy of the model.

Firstly, the good agreement between the experimental
values (Yexp) and the responses (Ycal) predicted by the model
(Fig. 2a) revealed the fitting capability of the suggested model.
Secondly, the internally studentized residues in Fig. 2b lied
reasonably close to the straight line indicating once more the
adequacy of the model to describe the relationship between
the studied variables and the response. Random dispersion of
the residues and a distribution between −3 and +3 can also be
seen in Fig. 2c. The good predictability of the model
was finally confirmed by the Box–Cox plot (Fig. 3), as
no transformation for the response is recommended
(Chong et al. 2010).

0 40 80 120 160 200 240

0.0

0.2

0.4

0.6

0.8

1.0
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0

Irradiation time (min)

 Cr (VI)

 Cr(VI)-methanol

Fig. 1 Preliminary experiments of Cr(VI) photocatalytic reduction in the
absence and presence of methano l (C c a t = 100 mg L− 1 ,
CCr(VI) = 20 mg L−1, pH= 2, % (v/v) methanol = 1 %)
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All the independent variables, their interaction effects, and
the second-order effects are highly significant parameters with
p<0.001. Pareto analysis was used to estimate the effect of
each variable on the photocatalytic removal of Cr(VI). The
percentage effect of each factor on the response was calculated
according to the following equation:

Pi ¼ β2
iX
β2
i

0
@

1
A ð4Þ

where βi represent the regression coefficient for linear,
quadratic, and interaction effects of the second-order poly-
nomial response, Eq. 3 (Fathinia et al. 2010). According
to Pareto graphic analysis depicted in Fig. 4, pH (40.1 %),
% (v/v) methanol concentration (29.1 %), and their inter-
action (18.7 %) exhibited the highest effects on photocat-
alytic reduction efficiency. The sign of the coefficients in
the obtained quadratic Eq. 3 indicates positive or negative
effects (Antonopoulou and Konstantinou 2013). pH (x3)
presented the highest negative effects indicating that re-
moval decreases as the values of the variable increases within
the range studied. In contrast, % (v/v) methanol concentration
(x4) presented the highest positive effect implying that remov-
al increases in the presence of high levels. Positive cross-
product coefficients indicate a synergistic effect in the varia-
tion of parameters studied, while negative coefficients, an an-
tagonistic effect. The highest synergistic effect was observed
between Cr(VI) concentration (x2) and pH (x3), while the
highest antagonistic effect was recorded between pH (x3)

and % (v/v) methanol concentration (x4). Negative quadratic
term was obtained for Cr(VI) concentration (x2) that
corresponded to concave (negative curvature, dome-shaped)
surfaces showing a higher removal efficiency at intermediate
concentration levels of Cr(VI) within the range studied. On the
other hand, positive quadratic terms were obtained for catalyst
concentration (x1), pH (x3) and % (v/v) methanol concentra-
tion (x4) that corresponded to convex (positive curvature,
bowl-shaped) surfaces.

The effects of the four different operational parameters
on Cr(VI) removal were visualized in three-dimensional
response plots presented in Fig. 5a–d. As can be seen,
there is an increase in the removal efficiency of Cr(VI)
with an increase of PC/TiO2 0.5/2 concentration up to a
certain concentration, above that the reaction rate levels
off, and with a further increase, the removal started to
decrease probably due to light scattering and screening
effects at the given experimental conditions. The increase
in pH leads to a decrease in the rate of Cr(VI) removal,
as seen in Fig. 5a. For acidic pH in the range 2–6, the
predominant species of Cr(VI) are HCrO4

− and Cr2O7
2−,

while for pH values 2–3, H2Cr2O7 contributes also by
0.5–5 % (Tandon et al. 1984), and the photocatalytic
reaction of Cr(VI) occurred in the following way
(Wang et al. 2009):

H2CrO4 þ 6Hþ þ 3e−→Cr3þ þ 4H2O or
HCrO4

− þ 7Hþ þ 3e−→Cr3
þ þ 4H2O

Cr2O7
2− þ 14Hþ þ 6e−→2Cr3

þ þ 7H2O

Table 2 Analysis of variance
(ANOVA) for response surface
quadratic model applied for
modeling Cr(VI) removal

Source Sum of squares df Mean square F value p value (Prob >F)

Model 15,572.60 14 1112.33 1176.72 <0.0001 (Significant)

A-Ccat 59.85 1 59.85 63.32 <0.0001

B-CCr(VI) 65.01 1 65.01 68.77 <0.0001

C-pH 6537.30 1 6537.30 6915.75 <0.0001

D-CMeOH 4734.85 1 4734.85 5008.95 <0.0001

AB 31.64 1 31.64 33.47 <0.0001

AC 57.38 1 57.38 60.70 <0.0001

AD 45.23 1 45.23 47.84 <0.0001

BC 121.55 1 121.55 128.59 <0.0001

BD 22.80 1 22.80 24.12 0.0002

CD 2031.76 1 2031.76 2149.37 <0.0001

A2 358.15 1 358.15 378.89 <0.0001

B2 800.13 1 800.13 846.45 <0.0001

C2 274.14 1 274.14 290.01 <0.0001

D2 194.29 1 194.29 205.53 <0.0001

Residual 14.18 15 0.95

Lack of fit 8.45 10 0.84 0.74 0.6825 (Not significant)

Pure error 5.73 5 1.15

Cor total 15,586.77 29
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As for alkaline medium, CrO4
2− was the main species of

Cr(VI), and the reaction proceeded as

CrO4
2− þ 4H2O þ 3e−→ Cr OHð Þ3 þ 5OH−

According to the above reactions, the photocatalytic reduc-
tion of Cr(VI) to Cr(III) consumes protons in acidic medium
and produces hydroxyl anions in alkaline medium. Thereby,
the reduction of Cr(VI) to Cr(III) is improved at acidic condi-
tions and is inhibited at alkaline conditions according to Le
Chatelier principle. The effect of pH on Cr(VI) reduction is
assigned to the following three reasons. Firstly, the interac-
tions (attraction or repulsion) between the surface charge of
the PC/TiO2 photocatalyst (PZC= 5.9) and the charge of
Cr(VI) species in solution should be considered. As the pH
of the solutions increases, the number of negatively charged

sites in PC/TiO2 increases, and hence, the adsorption of
Cr(VI) reduces due to electrostatic repulsion. On the other
hand, at low pHs, the electrostatic attraction between the pos-
itively charged PC/TiO2 surface and negatively charged
Cr(VI) species is enhanced, thus increasing the reduction
rates. The observed trends were also verified by the adsorbed
percentages of Cr(VI) which were found to be 10 and 3 % in
pH 4 and 8, respectively.

Secondly, the reduction product Cr(III) starts to precipitate
in the catalyst surface in the form of Cr(OH)3 at pH values
higher than 5, so catalyst active sites are covered by the pre-
cipitates (Liu et al. 2014; Chen and Cao 2005) resulting to the
decrease of the photocatalytic reduction efficiency.

Finally, the solution pH affects also the thermodynamic
driving force for the photocatalytic reduction of Cr(VI), which
is related with the potential difference between the Cr(VI)/

Fig. 2 Residual diagnostics of quadratic model: a predicted vs. actual plot, b normal probability plot, and c internally studentized residuals vs. predicted
values plot
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Cr(III) redox couple and electrons at the PC/TiO2 conduction
band (Zhao et al. 2013a, b). The reduction potential of Cr(VI)
to Cr(III) is dependent on the solution pH, and the thermody-
namic driving force decreases with increasing pH (Lin et al.
1993). The value of Eo [Cr(VI)/Cr(III)] varies with pH by
−0.099 V/pH unit at 25 °C, so within the studied experimental
range of pH 2–10 (−α, +α), Eo is decreased from 1.05 to
0.26V. On the other hand, the energy level of TiO2 conduction
band varies with pH by −0.058 V/pH unit at 25 °C, thus within
the experimental range of pH 2–10 (−α, +α) decreases from
−0.17 to −0.63 V (Zhao et al. 2013a, b). As a result, the

potential difference that expresses the electron transfer dy-
namics decreases from 1.22 V at pH 2 to 0.89 V at pH 10,
consequently the photocatalytic reduction of Cr(VI) is
decreasing.

An increase in initial Cr(VI) concentration leads to a de-
crease percent removal, as the available photogenerated elec-
trons become the limiting factor for Cr(VI) removal taking
into consideration that the rate-determining step for the pho-
tocatalytic reduction of Cr(VI) is the surface reaction after
Cr(VI) adsorption on TiO2–carbon surface (Ku and Jung
2001). In addition, increased Cr(VI) concentration can
provoke a Bfilter^ effect on the available irradiation for
catalyst excitation.

In contrast, increasing % (v/v) methanol concentration has
a positive effect on the removal efficiency (Fig. 5d). This trend
can be explained by the capability of methanol to act as an
efficient scavenger of h+ (Tan et al. 2003) inhibiting the re-
combination of electron–hole pairs. In addition, even though
the methanol is moderately adsorbed, it has the ability to form
reducing radicals via hydroxyl radicals or hole reaction
resulting in the photoreduction of Cr(VI) ions in some extent
(Tan et al. 2003).

The numerical optimization of the software using desirabil-
ity approach was employed to find the specific points that
maximize the % removal. The optimum conditions for the
maximum removal efficiency were found as follows:
catalyst concentration = 55 mg L−1, initial concentration
of Cr(VI) = 20 mg L−1, methanol concentration = 5 %
(v/v), and pH=4.

Model validation and reusability of catalyst

To confirm the adequacy of the model for predicting the max-
imum % Cr(VI) removal, verification experiments were con-
ducted using the optimum conditions. The removal kinetics
from the validation experiment are depicted in Fig. 6. Under
optimized conditions, first-order kinetics were recorded with a
reaction rate constant of kapp = 2.6 ×10

−2 min−1, regression
coefficient R2 =0.9714, and a half-life of 26.7 min. An aver-
age maximum removal of 72.1 % was obtained from three
replicate experiments after 60 min, while the predicted remov-
al value was 70.7 %. The good agreement (percent error was
1.9 %) between the predicted and the experimental removal
values confirms the validity of the model for simulating
Cr(VI) photocatalytic reduction. In addition, photocatalytic
experiments under the optimum conditions using Degussa-
P25 catalyst were also conducted for comparison, and the
kinetic profile is depicted in Fig. 6. According to the kinetic
data, P25-TiO2 presented lower reduction activity than the
prepared PC/TiO2.

As the stability of catalysts is of great importance,
the recycling use of PC/TiO2 for removal of Cr(VI)
was evaluated, and the results are shown in Fig. 7. It

Fig. 3 Box–Cox plot showing optimized lambda for Cr(VI)
photocatalytic removal efficiency
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Fig. 4 Pareto graph analysis showing the relative effects of the first order,
quadratic, and interaction terms of Eq. (3) on the photocatalytic reduction
of Cr(VI). x1, x2, x3, and x4 are the studied variables, i.e., the concentration
of catalyst, the initial concentration of Cr(VI), pH of the solution, and the
percent content of methanol, respectively
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can be observed that the removal rate on PC/TiO2

remained at about 70 % after five recycling with 1-h
adsorption in the dark and consecutive 1-h photocatalytic

reduction under UV–Vis irradiation in each cycle, indicating
that PC/TiO2 could be considered stable under the studied
experimental conditions.

Fig. 5 Three-dimensional response surface plots using RSM for Cr(VI) photocatalytic reduction: a Cr(VI) concentration vs. catalyst’s concentration, b
pH vs. catalyst’s concentration, c pH vs. Cr(VI) concentration, and d % (v/v) methanol (MeOH) vs. Cr(VI) concentration
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Fig. 6 Kinetics of Cr(VI) photocatalytic reduction under optimized
conditions (Ccat = 55 mg L−1, CCr(VI) = 20 mg L−1, pH = 4, % (v/v)
methanol = 5 %)

Fig. 7 Reusability of PC/TiO2 catalyst after five photocatalytic reduction
cycles of Cr(VI) (Ccat = 55 mg L−1, CCr(VI) = 20 mg L−1, pH= 4, % (v/v)
methanol = 5 %)
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Conclusions

The photocatalytic reduction kinetics of Cr(VI) in the
presence of pyrolytic char/TiO2 nanocomposite
material were investigated in detail. Response surface
methodology based on a CCD was used successfully
to optimize significant operational parameters to maxi-
mize Cr(VI) removal. All four parameters studied, i.e.,
concentration of Cr(VI) and catalyst, pH, and the con-
centration of methanol, presented significant effects on
the total efficiency. However, pH and % methanol con-
tent were by far the more crucial parameters with pH=4
and 5 % (v /v) being the optimized conditions.
Immobilization of TiO2 nanoparticles on tire pyrolytic
char showed an increased efficiency on the photocata-
lytic reduction of Cr(VI) due to the decreased recombi-
nation rate of photogenerated e−–h+ pairs. The catalyst
shows no significant loss of their catalytic activity after
five consecutive catalyst cycles. The results obtained
indicate that the RSM is a powerful tool for optimizing
the operational conditions of the reduction of Cr(VI) in
the presence of methanol.
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