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Abstract Due to their toxicity and bioaccumulation, trace
metals in soils can result in a wide range of toxic effects on
animals, plants, microbes, and even humans. Recognizing the
contamination characteristics of soil metals and especially ap-
portioning their potential sources are the necessary precondi-
tions for pollution prevention and control. Over the past de-
cades, several receptor models have been developed for source
apportionment. Among them, positive matrix factorization
(PMF) has gained popularity and was recommended by the
US Environmental Protection Agency as a general modeling
tool. In this study, an extended chemometrics model, multivar-
iate curve resolution-alternating least squares based on maxi-
mum likelihood principal component analysis (MCR-ALS/
MLPCA), was proposed for source apportionment of soil
metals and applied to identify the potential sources of trace
metals in soils around Miyun Reservoir. Similar to PMF, the
MCR-ALS/MLPCAmodel can incorporate measurement error
information and non-negativity constraints in its calculation
procedures. Model validation with synthetic dataset suggested
that the MCR-ALS/MLPCA could extract acceptable recov-
ered source profiles even considering relatively larger error
levels. When applying to identify the sources of trace metals

in soils aroundMiyunReservoir, theMCR-ALS/MLPCAmod-
el obtained the highly similar profiles with PMF. On the other
hand, the assessment results of contamination status showed
that the soils around reservoir were polluted by trace metals in
slightly moderate degree but potentially posed acceptable risks
to the public. Mining activities, fertilizers and agrochemicals,
and atmospheric deposition were identified as the potential an-
thropogenic sources with contributions of 24.8, 14.6, and
13.3 %, respectively. In order to protect the drinking water
source of Beijing, special attention should be paid to the metal
inputs to soils from mining and agricultural activities.

Keywords Soil contamination . Tracemetals . Source
apportionment .Multivariate curve resolution-alternating least
squares . Positive matrix factorization

Introduction

Soils are generally regarded as being continuous recipients of
trace metals. However, excessive metal inputs into soils may
lead to the changes of the soil physicochemical properties,
deterioration of the soil biology and function, and other envi-
ronmental problems (Zhao et al. 2014). Especially, due to their
toxicity, bioaccumulation, and resistance to biochemical deg-
radation, trace metals can reside in soils for long periods and
sequentially have the potential to damage microbiota, flora,
and fauna once they have been transformed from solid form
into ionic moieties or through biomethylation to organometal-
lic moieties (Chen et al. 2015). More importantly, trace metals
in soils can even threaten human health via food chain or by
ingestion, inhalation, or dermal absorption. For example, pre-
vious studies showed that environmental exposure to soils
contaminated by cadmium (Cd) and lead (Pb) would result
in reduction of human life expectancy by 9∼10 years
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(Lăcătuşu et al. 1996). Chervona et al. (2012) also reported
that exposure to high levels of chromium (Cr) would cause
respiratory toxicity, skin sensitization, and increased risks of
some cancers. Over the past decades, soil contamination by
trace metals has been caused more and more attention in the
world (Nriagu 1990; Chen et al. 1999; Teng et al. 2014).

For soil pollution prevention and control, the correct dis-
crimination of natural and anthropogenic sources, and the
quantitative determination of contributions for metals in soils
become more important even if better measurements are to be
established. Over the past decades, several receptor models
have been developed for source apportionment studies, such
as the chemical mass balance (CMB) model, primary compo-
nent analysis/multiple linear regressions (PCA/MLR), factor
analysis (FA), Unmix, and positivematrix factorization (PMF)
(Gordon 1988; Norris and Duvall 2014). Among them, PMF
has gained popularity and has been recommended by the US
Environmental Protection Agency (USEPA) as a general
modeling tool for source apportionment studies (Paatero
1997; Norris and Duvall 2014). Compared with conventional
multivariate models (i.e., PCA, FA), PMF was developed to
cope with uncertainties and error propagation problems and to
achieve more statistically sound maximum likelihood solution
in the analysis of noisy environment data (Paatero and Tapper
1994; Paatero 1997, 1999). Due to its attractive features, PMF
has been widely applied to identify pollution sources and ap-
portion contributions in various environmental media includ-
ing sediments, soils, and air particulates (Brinkman et al.
2006; Chen et al. 2013; Lang et al. 2015).

In recent years, a chemometrics model, multivariate curve
resolution-alternating least squares method (MCR-ALS) has
been proposed for qualitative and quantitative mixture analy-
sis of multivariate datasets (Tauler 2007, Tauler et al 2009).
With theMCR-ALS, the factor loading and score matrices can
be obtained by minimizing the sum of squared residuals via
the alternating least-squares algorithm with non-negativity
constraints. However, the MCR-ALS algorithm obtain opti-
mal solution under the assumption that the experimental data
have an identical, independent, and normally distributed error
structure, which cannot be made in general and is not satisfied
by ambient measurement data (Wentzell et al. 1997; Tauler et
al. 2009; Dadashi et al. 2012). To take into account the fre-
quent existence of heteroscedastic and correlated error struc-
tures inherent in the environmental data in most cases, multi-
variate curve resolution weighted alternating least squares
(MCR-WALS), and multivariate curve resolution-alternating
least squares based on maximum likelihood principal compo-
nent analysis (MCR-ALS/MLPCA), have been proposed for
the analysis of receptor data (Wentzell et al. 1997; Tauler et al.
2009; Stanimirova et al. 2011; Dadashi et al. 2012, 2013).
Since they avoid the propagation of errors to the parameters
of the optimization, the two extensions of MCR-ALS that
allow for the incorporation of the measurement uncertainty

information can provide more reliable results than unweighted
ordinary MCR-ALS, especially in the case of the presence of
high amounts of noise (Wentzell et al. 2006; Dadashi et al.
2012). Compared withMCR-WALS, theMCR-ALS/MLPCA
is only used as a preliminary data pretreatment before MCR-
ALS analysis and naturally does not require changing the
traditional MCR-ALS algorithm, which also brings it the pos-
sible advantage than MCR-WALS for its easier application
(Dadashi et al. 2013).

Constructed in 1960s, Miyun Reservoir is now the main raw
water source for Beijing’s domestic water supply.More than ten
million people inhabiting the city of Beijing depend on Miyun
Reservoir for drinking water. Protecting the surrounding eco-
system of Miyun Reservoir is of great urgency for ensuring
water security for this vitally important and rapidly growing city
(Wang et al. 2008). However, with drastically increased human
activities and fast urban expansion over the past 30 years,
Miyun Reservoir has been influenced, particularly during the
1980s, by agricultural and industrial development in the north-
ern portions of the Beijing region (Luo et al. 2010; Su et al.
2014). Several studies investigated the concentration distribu-
tion of trace metals in soils of the Miyun Reservoir watershed
and found that runoff from non-point sources, direct dumping of
wastes, mineral exploitation, and pollutants carried by rivers
had resulted in elevated concentrations of trace metals in soils
of that region (Gao and Liao 2007; Luo et al. 2010; Huang et al.
2013). It is well known that the trace metals in soils can reach
surface and ground water through runoff and leaching and di-
rectly or indirectly affect human health through thewater supply
and aquatic and terrestrial food chains (Schipper et al. 2008).
Some trace metals such as such as Cd, Cr, Pb, mercury (Hg),
nickel (Ni), and arsenic (As) have been detected in thewater and
sediment ofMiyun Reservoir (Liu et al. 2005; Qiao et al. 2013).

To formulate effective management plans and policies to
protect the drinking water reservoir, it is the basic precondi-
tions to identify the contamination characteristics of its sur-
rounding soils and especially apportion the potential anthro-
pogenic sources. Information on the significance and extent of
soil contamination from different sources is so important that
appropriate actions can be effectively targeted to reduce metal
inputs to soils (Marmur et al. 2005; Hu and Cheng 2013).
Although several researches mentioned above investigated
the concentration distribution of trace metals in soils of
Miyun Reservoir watershed, few reports which focused on
source apportionment of soil metals can been found.

In the present study, the extended chemometrics model, mul-
tivariate curve resolution-alternating least squares based on
maximum likelihood principal component analysis (MCR-
ALS/MLPCA), taking the advantages of the MCR-ALS and
MLPCA, was proposed to identify the potential sources of trace
metals in soils around Miyun Reservoir. Similar to PMF, the
MCR-ALS/MLPCA algorithm can incorporate measurement
uncertainty information inherent in environment data to account
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for the structure and level of the noise. In addition, the solutions
obtained from MCR-ALS/MLPCA obey non-negativity con-
straints of the source profiles, which make their interpretation
physically meaningful. As a comparison, PMF was also
employed to the same dataset of soil metals collected around
Miyun Reservoir. The objective of this study is (1) to demon-
strate the value of the MCR-ALS/MLPCA model for source
apportionment of soil metals and (2) to apportion the potential
sources of trace metals in soils around Miyun Reservoir. The
results will provide policy and decision makers with a practical
tool to identify the pollution sources of soil metals, enhancing
their abilities to design effective regulatory measures and con-
trol strategies to protect soil ecosystem.

Materials and methods

Study area

Miyun Reservoir, situated in the mountainous area of Miyun
County, Beijing (north latitude 40° 23′, east longitude 116°
50′) (Fig. 1), is the largest reservoir in north China. Now, it is
the main drinking water source for Beijing, with a surface area
of 188 km2 and watershed area of 15,788 km2. Historically,
some metal mines existed in the north areas of the Miyun
Reservoir. The Baihe and Bai Maguan Rivers are its main
sources of water. The area has a typical monsoon-influenced
climate, characterized by hot, humid summers due to the East
Asian monsoon and generally cold, windy, dry winters due to

the vast Siberian anticyclone. Its annual temperature is about
11.5 °C, and the annual precipitation is about 600 mm. The
main land uses in the area are forestry and farming which
represent 50 and 15 % of the total land area, respectively.
The soil types around Miyun Reservoir are mainly argosols,
cambosols, and aridosols, namely, luvisols, alisols, cambisols,
calcisols, and gypsisols, respectively (Luo et al. 2010).

Sample collection and analysis

Surrounding Miyun Reservoir, a total of 34 surface soil sam-
ples were collected in May 2015. Figure 1 shows the location
of the sampling sites. To evaluate the concentrations of trace
metals in soils and their potential adverse effects to the reser-
voir, sample locations were most densely collected around the
upper region of reservoir where the most human-impacted
areas were located. Throughout the survey, a global position-
ing system was used to determine sampling positions.
Approximately top 20 cm of surface soils were collected.
After sampling, the soil samples were stored in sealed kraft
packages to avoid contamination and transported to the labo-
ratory immediately for further analysis. Preservation and
transportation of the soil samples were performed based on
the Technical Specification for Soil Environmental
Monitoring of China (SEPAC 2004).

In the laboratory, soil samples were dried, and passed
through a 100-mesh sieve, and then powdered and stored in
acid washed and deionized water rinsed glass bottles prior to
analysis. For content determinations, about 0.1 g subsamples

Fig. 1 Study area and sampling
sites of trace metals in soils
around Miyun Reservior
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was subjected to a digestion solution with concentrated nitric
acid and concentrated hydrochloric acid. After digestion using
an electric digestion instrument, the sample solutions were
filtered and adjusted to a suitable volume with double deion-
ized water. The contents for trace metals were determinedwith
inductively coupled plasma atomic emission spectrometry and
inductively coupled plasma mass spectrometer. A necessary
analytical quality control method was designed and followed
during the analysis through careful standardization, procedur-
al blank measurements, and spiked and duplicate samples. A
total of 11 trace elements (Cd, Cr, As, Hg, Pb, Cu, Zn, Ni, Mn,
Co, and V) were measured for each soil sample. Basic descrip-
tive statistics were derived to provide a summary of the con-
centrations of these trace elements and presented in Table 1.

Contamination and exposure risk assessment

To assess the general contamination characteristics of trace
metals in soils around Miyun Reservoir, the geoaccumulation
index (Igeo) was used with the equation: Igeo= log2(Cn/1.5Bn),
where Cn is the measured concentration of the element in soil
(mg/kg), Bn is the geochemical background value of the corre-
sponding element (mg/kg), the coefficient 1.5 is used to detect
very small anthropogenic influences (Muller 1969). Figure 2
shows the boxplots of the Igeo for soil metals. Additionally, to
identify the exposure risks posed by soil metals, the dose–re-
sponse model recommended by USEPA (1989, 2001) was
employed for health risk assessment. Three groups of population
(adult males, adult females, and children) and three pathways
(soil and dust ingestion, air inhalation, and dermal contact) were
considered. Considering 1000 iterations, Monte-Carlo simula-
tion which was done by programming an evaluation algorithm
with MATLAB R2009b software was used to deal with the
uncertainty caused by probabilistic parameters (Lonati et al.
2007; Chen et al. 2015). The probabilistic parameters were pref-
erentially collected from the studies conducted in China. Those
data unfilled by localized studies were derived from the USEPA
guidelines and international agencies (see Table S1). Overview
of health risk levels for the defined three population groups due
to environmental exposure to soil metals were listed in Table 2.

Source apportionment tool

In the present study, the MCR-ALS/MLPCA model was pro-
posed for source apportionment of trace metals in soils. The
general principle of MCR-ALS/MLPCA method is to solve a
bilinear problem which can be expressed mathematically in
the following way (Tauler 2007):
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wherem, n, and p are the number of samples, compounds, and
sources, respectively; the matrix E is the residual matrix.

Owning the advantages of MLPCA (Wentzell et al. 1997),
the MCR-ALS/MLPCA model can include uncertainty infor-
mation in its curve resolution procedure with the respective
maximum likelihood projections implemented in the steps of
the alternating least-squares algorithm. It minimizes the
weighted sum of residuals (Qw) which can be expressed math-
ematically in the following way (Dadashi et al. 2012):

Qw ¼
Xm
i¼1

Xn

j¼1

di j−~di j
� �2.

σ2
i j

S;Rf g ¼ arg⋅min
S;R

Qw; sik ≥0; rik ≥0 ; k ¼ 1; 2;…p

8>><
>>: ð2Þ

Where dij is the measurement of the jth chemical compo-

nent for the ith sample and ~di j is the prediction with the model
given a complexity; σij is the uncertainty associated with ele-
ment dij of the data matrix D.

The basic algorithms for MCR-ALS/MLPCA are de-
scribed in detail as follows. Initially, the number of significant
factor and an initial estimation for matrix R or S must be
provided. Due to its symmetry of the MCR-ALS algorithm,
either of the factor loadings or factor scores can be chosen as
the starting point. Herein, the factor loading matrix R is con-
sidered to be initialized since it will be smaller and follow a
more systematic variation (Wentzell et al. 2006). Several
methods, such as the random assignment with positive values
(RAPV), random selection from the original data D (RSOD),

Fig. 2 Boxplots of the
geoaccumulation index for trace
metals in soils around Miyun
Reservoir

Table 2 Boxplots of the geoaccumulation index for trace metals in soils around Miyun Reservoir

Adult males Adult females Children

Mean S.D. Percentiles Mean S.D. Percentiles Mean S.D. Percentiles

50th 90th 50th 90th 50th 90th

Non-carcinogenic Hazard Index

Cd 1.20E−02 4.90E−03 1.10E−02 1.80E−02 1.00E−02 4.50E−03 9.50E−03 1.60E−02 1.80E−02 7.70E−03 1.60E−02 2.70E−02
Cr 2.50E−01 5.00E−01 1.30E−01 3.20E−01 2.20E−01 4.60E−01 1.20E−01 2.90E−01 3.90E−01 8.00E−01 2.10E−01 5.10E−01
As 9.10E−03 5.30E−03 8.20E−03 1.30E−02 9.60E−03 5.60E−03 8.70E−03 1.40E−02 1.90E−02 1.10E−02 1.80E−02 2.80E−02
Hg 4.50E−04 3.90E−04 3.70E−04 5.80E−04 4.20E−04 3.60E−04 3.40E−04 5.40E−04 7.40E−04 6.30E−04 6.10E−04 9.50E−04
Pb 2.00E−03 2.70E−03 1.50E−03 2.80E−03 2.30E−03 3.00E−03 1.60E−03 3.10E−03 4.90E−03 6.40E−03 3.50E−03 6.70E−03
Cu 1.10E−03 7.40E−04 8.60E−04 1.60E−03 1.00E−03 7.00E−04 8.10E−04 1.50E−03 1.80E−03 1.30E−03 1.50E−03 2.80E−03
Zn 1.10E−04 2.90E−05 1.10E−04 1.50E−04 1.20E−04 3.00E−05 1.10E−04 1.60E−04 2.30E−04 6.00E−05 2.20E−04 3.10E−04
Ni 7.40E−03 3.90E−03 6.40E−03 1.60E−02 6.80E−03 3.50E−03 5.90E−03 1.50E−02 1.20E−02 6.20E−03 1.00E−02 2.60E−02
Carcinogenic risks

Cd 1.00E−10 4.40E−11 9.50E−11 1.60E−10 1.20E−10 5.20E−11 1.10E−10 1.90E−10 1.10E−10 4.80E−11 1.00E−10 1.70E−10
Cr 7.20E−06 1.50E−05 3.80E−06 9.50E−06 8.40E−06 1.70E−05 4.40E−06 1.10E−05 8.20E−06 1.70E−05 4.30E−06 1.10E−05
As 4.40E−06 2.60E−06 4.00E−06 6.40E−06 4.20E−06 2.50E−06 3.90E−06 6.10E−06 3.00E−06 1.70E−06 2.70E−06 4.30E−06
Pb 3.00E−08 4.00E−08 2.20E−08 4.20E−08 3.50E−08 4.60E−08 2.50E−08 4.80E−08 3.40E−08 4.50E−08 2.50E−08 4.70E−08
Ni 1.90E−09 9.70E−10 1.60E−09 4.10E−09 2.20E−09 1.10E−09 1.90E−09 4.90E−09 2.00E−09 1.10E−09 1.70E−09 4.40E−09
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and simple to use interactive self-modeling analysis
(SIMPLISMA), can be used to initially defined the elements
S (Windig and Guilment 1991; Stanimirova et al. 2011).

Second, the estimation of D* in the subspace defined by its
principal components, which can be obtained using MLPCA,
is then given by the maximum likelihood projection of D, as
described by Eq. (3) (Wentzell et al. 2006). In contrast to
conventional principal component analysis, MLPCA incorpo-
rates uncertainty information into the decomposition process
and can deal with heteroscedastic errors and correlated error
structures (Wentzell et al. 1997).

d*i⋅ ¼ di⋅Σ
−1
i V p VT

pΣ
−1
i V p

� �−1
VT

p ð3Þ

Where, di· represents the ith row vector ofD; ∑i is the error
covariance matrix for ith row; Vp is the derived loadings ma-
trix for the p component either by PCA (once at the beginning
of the optimization) or MLPCA (at each ALS iteration of the
optimization) (Dadashi et al. 2012);D* is the projection of the
original dataset onto the loadings subspace.

After data projection, the factor score matrix S can be ob-
tained given loading matrix R using the following equations
described by Eq. (4) to solve the non-negative least-squares
problem. In order to limit the problem of the rotational ambi-
guity of the solutions, non-negativity constraints were im-
posed to matrix S. The simple method is to replace negative
elements with zero or an extremely small value (i.e., 10−12).
Other approaches, such as the non-negativity least-squares
(NNLS), fast non-negativity least-squares algorithm
(FNNLS) can also be used (Van and Keenan 2004).

Sf g ¼ arg⋅min
S

D*−SR
�� ��; Sk j≥0; k ¼ 1; 2;…p

S ¼ D*RT RRT
� �−1

(
ð4Þ

Following this step, the estimation obtained for S is then
used to re-estimate the profiles matrix R under the non-
negativity constraint in the following way:

Rf g ¼ arg⋅min
R

D*−SR
�� ��; Sik ≥0; k ¼ 1; 2;…p

R ¼ STS
� �−1

STD*

(
ð5Þ

The iterative procedure described by Eqs. (3)∼(5) is repeat-
ed until convergence, which can be tested by checking for the
insignificant changes in S and/or R, or the difference in theQw

values obtained in two consecutive iterations.
As a comparison, PMFwas also applied to the same dataset

of soil metals. Similar toMCR-ALS/MLPCA, the PMFmodel
also use a weighted least-squares fit with the known error
estimates of the elements to minimize the Qw (Paatero and
Tapper 1994). Over the past years, the bilinear PMF2 and
multilinear engine (ME-2) algorithms have been developed
to solve the minimization problem described by Eq. (2)

(Paatero and Tapper 1994; Paatero 1999). Here, the latest ver-
sion of EPA PMF program, EPA-PMF5.0, which is based on
the ME-2 engine, was comparably employed for source ap-
portionment of trace metals in soils around Miyun Reservoir.
Further details of applications of EPA PMF5.0 can be found
elsewhere (Norris and Duvall 2014).

Synthetic dataset development

Before applying to the dataset of soil metals, the capability of
the MCR-ALS/MLPCA model was investigated using simu-
lated dataset which was generated in the case of noisy inter-
ference, considering six hypothetical environmental sources
(p=6). The simulated dataset contained 15 variables (J=15)
and 50 samples (I=50). The initial source profiles (R0 and S0)
were generated from a log normal distribution of random
numbers (mean, 0.01 and standard deviation, 1). Previous
studies showed that the shapes of the initially generated pro-
files in this way were very similar to those obtained in envi-
ronmental data in which scores for only some of the samples
and loadings for some of the variables were much larger than
for the others (Dadashi et al. 2012). Sequentially, the error-free
data matrix D0 was generated by multiplying the initial distri-
bution profile matrix S0 (50×6) by the composition profile
matrix R0 (6×15). Considering the most general case of error
structure for environment data, error matrix with constant and
proportional uncorrelated errors were generated and added to
the error-free datasetsD0 to generate simulated dataset D. The
elements of error matrix of standard deviations, σij, were ob-
tained as the square root of the sum of the squares of the
constant part, a, and the proportional part as (Stanimirova et
al. 2011):

σi j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2d2i j

q
ð6Þ

where b is the proportional coefficient. In this simulated case,
different noise levels were considered and compared with a
dataset of parameters. The constant part was taken to be 1 and
5 % of the maximum value of the error-free data, while the
proportional part was taken as 5, 10, 15, 20, 25 and 30 % of
the elements in dataset D0. Thus, a total of 12 datasets with
different noise levels were calculated. The final error matrix in
each case was found by multiplying element by element the
matrix of normally distributed numbers by the matrix of stan-
dard deviations, and was then added to the error-free datasets
giving the 12 dataset configurations.

The validation analysis was performed applying non-
negativity constraint with FNNLS algorithm (Van and
Keenan 2004). The initial estimate of loading matrix S was
obtained from the purest variables using the SIMPLISMA
method in all cases (Windig and Guilment 1991). All calcula-
tions, according to the implemented routines, were performed
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with MATLAB R2009b software on a personal computer
(Intel(R) Core (TM) 2 Duo CPU P8700, 2.53 GHz with
4 GB RAM) using the Microsoft Windows XP (service pack
3) operating system.

Results and discussion

Validation results of MCR-ALS/MLPCA using synthetic
datasets

The MCR-ALS/MLPCA model was validated using the sim-
ulated dataset. To check and evaluate the performance of the
apportionment tool, the lack of fit (lof) and explained variance
(R2) were calculated (Tauler et al. 2009). Additionally, evalu-
ation of the quality in the recovery of source profiles is possi-
ble because the true profiles are known beforehand. Therefore,
the comparable pairwise correlation coefficients (r2) were also
calculated between the theoretical profiles and the model re-
sults with different levels of measurement errors (Dadashi et
al. 2013).

It can be seen from Table 3 that the MCR-ALS/MLPCA
model reproduced each source profile well. For the lower error
levels with constant noise of 1 %, the comparison between
theoretical andMCR-ALS/MLPCA results shows a difference
in the calculated lack of fit values from 5.8 to 23.3 %. On the
other hand, for the higher levels of constant noise (5 %), the
relevant values for lof and R2 were 18.9∼25.3 and
98.20∼96.75 %, respectively. The pairwise correlation coeffi-
cients calculated between the corresponding profiles obtained
from MCR-ALS/MLPCA and the hypothetical true profiles
also supported the conclusion that the fitted profiles were re-
solved for synthetic dataset with constant and proportional
measurement errors (r2 >0.8). Generally, if the results of the
correlation coefficient are close to 1, this indicates that there is

a strong linear relationship between the profiles (Dadashi et al.
2012). On contrast, if it is zero, this means that there is no
linear relationship between them. Previous studies suggested
that correlation coefficients more than 0.80 would represent
acceptable precision for an individual model analysis (Terrado
et al. 2009).

However, as was expected, the profiles were recovered
with higher lack of fit when data had higher levels of mea-
surement errors (Table 3). It was also not surprising that a
higher noise would imply greater difficulty in recovering the
true profiles with lower pairwise correlation coefficients.
Overall, according to the validation results shown in Table 3,
it could be found that the MCR-ALS/MLPCA model might
obtain acceptable recovered profiles even when the constant
noise was 5% of the maximum value and the proportional part
was up to 25 % of the elements in the error-free data matrix.

General characteristics of trace metals in soils

Table 1 lists the concentration range, standard deviation, skew,
and coefficient of variation of trace metals in soils around
Miyun Reservoir. To facilitate the evaluation and comparison,
the average background concentrations (ABCs) of soils in
Beijing and the soil quality standards of China are also pre-
sented in Table 1. As shown in Table 1, the average concen-
trations of all analyzed metals except for As, Zn, and Co are
higher than their corresponding ABCs (CNEMC 1990).
Especially, the pollution indices by comparing median con-
centration of Cd, Hg, and Cu with respect to relevant back-
ground value were 3.8, 1.6, and 1.4, respectively, indicating
moderate contamination. In the soil quality standards of China
(Chinese Environmental Protection Administration (CEPA)
1995), the grade II level can be used as the threshold values
for protecting human health. In this study, approximately
15 % samples for Ni exceeded their corresponding grade II

Table 3 Validation results for
synthetic datasets using theMCR-
ALS/MLPCA model with
different levels of measurement
errors

Simulation run Noise levels lof% R2% Pairwise correlation coefficients (r)

a (%) b (%) s1 s2 s3 s4 s5 s6

1 1 5 5.8 99.83 0.937 0.997 0.999 0.989 0.977 0.989

2 1 10 8.9 99.60 0.920 0.989 0.998 0.983 0.989 0.982

3 1 15 12.6 99.20 0.901 0.977 0.995 0.956 0.991 0.952

4 1 20 16.2 98.68 0.907 0.960 0.994 0.939 0.986 0.921

5 1 25 19.8 98.02 0.861 0.993 0.928 0.951 0.967 0.896

6 1 30 23.3 97.25 0.868 0.984 0.922 0.947 0.970 0.879

7 5 5 18.9 98.20 0.917 0.948 0.912 0.939 0.932 0.900

8 5 10 19.6 98.06 0.853 0.923 0.891 0.901 0.969 0.904

9 5 15 21.1 97.75 0.812 0.909 0.834 0.937 0.863 0.919

10 5 20 22.6 97.41 0.889 0.858 0.826 0.957 0.813 0.859

11 5 25 24.0 97.08 0.803 0.847 0.841 0.858 0.851 0.839

12 5 30 25.3 96.75 0.804 0.815 0.858 0.804 0.742 0.843
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values. The results showed that the soils in the study area had
been influenced by trace metals in varied degree, which was
consistent with the previous studies where mining activities
and agricultural application had caused heavy metal contam-
ination in the soils around Miyun Reservoir (Luo et al. 2009;
Huang et al. 2013). Meanwhile, it can also be seen from
Table 1 that the elements Cr, Hg, Pb, Cu, and Ni had relatively
wide concentration ranges and high coefficients of variation
(>50 %), which suggested that these metal inputs to the soils
would be attributable to anthropogenic sources.

To further identify the impact of anthropogenic activities,
the Igeo for each element in every sample was considered.
Generally, the soils can be classified as unpolluted (Igeo≤0),
unpolluted to moderately polluted (0< Igeo≤1), moderately
polluted (1 < Igeo ≤ 2), moderately to heavily polluted
(2 < Igeo≤ 3), heavily polluted (3 < Igeo≤ 4), heavily to ex-
tremely polluted (4< Igeo≤5), or extremely polluted (Igeo>5)
(Muller 1969). As shown in Fig. 2, the Igeo values of most
elements varied the most, mainly ranging from unpolluted
level to moderately polluted level, indicating human activities.
In particular, it should be noticed that the Igeo values for Cd in
85 % samples lay above the moderately contaminated level.
High Cd concentration could be associated with industrial
activities and anthropogenic wastes, including industrial dis-
charges, sewage sludge, and municipal solid waste (Huang
et al. 2013; Zhao et al. 2014).

Exposure risks of soil metals

As shown in Table 2, overall, the exposure risks posed by
trace metals in soils to human health were acceptable.
According to USEPA (1989), carcinogenic risks surpassing
1×10−4 are viewed as unacceptable. Herein, the average car-
cinogenic risk values of Cr, As, Cd, Pb, and Ni for all three
populations were less than 1×10−5, and the average total car-
cinogenic risk index which was estimated by summing the
individual carcinogenic risk index for Cd, Cr, As, Pb, and Ni
were below 1×10−4. Similarly, the soil metals potentially
posed low non-carcinogenic risks to the public. For the total
exposure hazard index which was calculated by summing the
individual non-carcinogenic hazard index for all metals ap-
plied to the three populations, the proportion of soils whose
hazard index lay between 0.1 and 0.5 was higher than 95 %,
suggesting the exposed individual is unlikely to experience
obvious adverse health effects (USEPA 2001).

Comparatively speaking, people were most exposed to Cr
and Cd because of their high concentrations in soils or low
reference dose values. For instance, the average hazard indices
of Cr and Cd through all three exposure pathways for children
respectively accounted for 87.3, and 4.0 % of the total expo-
sure hazard index (TEHI). Similarly, for adult males and fe-
males, the total average hazard indices of Cr and Cd through
three pathways accounted for 92.9 and 91.9 % of the TEHI

value, respectively. From Table 2, it should be noticed that the
carcinogenic risks for children was less than that for adults.
However, due to the behavioral and physiological character-
istics of hand-to-mouth activities for soils, higher respiration
rates per unit body weight, and increased gastrointestinal ab-
sorption of some substances, children have a higher suscepti-
bility of non-carcinogenic exposure risks to soil metals per
unit body weight than adults (Chen et al. 2015).

Source apportionment of trace metals in soils

In the present study, the validated MCR-ALS/MLPCA model
was employed to identify the potential sources of soil metals
and apportion their contributions. Information about the mea-
surement uncertainty was incorporated during the analyses of
MCR-ALS/MLPCA algorithm. To determinate the significant
number of factors, the cumulative percent variance, and the
weighted sum of squares of differences between calculated
and measured data, Qw, were considered. In a common case,
the Qw value should approximately equal the number of de-
grees of freedom, df =m× n− p × (n +m) for a good fit
(Bzdusek et al. 2006). Herein, with PCA, two factors would
explain more than 85 % of the variances. However, the
weighted sum of square residuals for four factors was approx-
imately equal the number of degrees of freedom. Meanwhile,
for the MCR-ALS/MLPCA model, a relatively large reduc-
tion for the Qw value was not observed with complexities
larger than four. Therefore, four factors, which explained
91.5 % of the variances were further considered in this study.

Comparison of source profiles generated
by the MCR-ALS/MLPCA and PMF

To facilitate the evaluation, the EPA PMF program (v5.0) was
comparatively applied to the same dateset of trace metals in
soils around Miyun Reservoir. According to the operation
guides of EPA PMF software, before applying apportionment
model to the dataset, individual sample was inspected and
those with unusually high or low concentrations were identi-
fied as possible outliers (Marmur et al. 2005). Concentration
values below the detection limit were substituted by half of the
detection limit as recommended in the literature. Additionally,
it should be noticed that the selection of the matrix initializa-
tion can influence the final solution of PMF and MCR-ALS/
MLPCA, in part because their solutions may represent only
one of a range of feasible solutions (Wentzell et al. 2006).
Therefore, in order to guarantee the optimality of the solution,
the global minima of PMF solution was tested 20 times using
different seeds for pseudo-random initial values, and the
MCR-ALS/MLPCA algorithm has also been run 20 times
from different initial estimates of the composition profiles
which were obtained from the purest variables using the
SIMPLISMA (Windig and Guilment 1991) method at each
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rerun. The final solution of PMF andMCR-ALS/MLPCAwas
the one with the lowest value of the respective objective
function.

Source profiles for the trace metals in soils around Miyun
Reservoir were generated using PMF and MCR-ALS/
MLPCAwith complexity four and presented in Fig. 3. From
the qualitative viewpoint, it can be concluded that most of the
data in the figure showed the relatively highly overlapping
profiles, with little differences among them. To further evalu-
ate their similarities, pairwise correlation coefficients between
resolved profiles obtained from the two models were calculat-
ed and listed in Table 4. It can be seen that the pairwise cor-
relation coefficients between source profiles obtained by PMF
andMCR-ALS/MLPCAwere higher than 0.90. Therefore, the
probable conclusion was that the two methods, MCR-ALS/
MLPCA and PMF which are based on completely different

algorithm, extracted the similar source profiles for the studied
environmental data. The results also indirectly suggested the
performance of MCR-ALS/MLPCA as a potential apportion-
ment tool. For conciseness reasons, the MCR-ALS/MLPCA
solution was further discussed and interpreted here.

Source identification of trace metals in soils

As shown in Fig. 3a, the first factor (loading 1 of 4) that
accounted for 68.2 % of the total variance was predominantly
loaded on Hg and Pb and slightly loaded on Cu and Cd. In
Beijing area, high concentrations for Hg could be associated
with coal combustion (Chen et al. 2015). The released amount
of Hg from coal combustion cannot be ignored since coal
consumption around Beijing-Tianjin-Hebei region has in-
creased significantly over the past several decades (Jiang

Fig. 3 Loading profiles (a) and contribution profiles (b) of tracemetals in soils aroundMiyunReservoir derived from the PMF andMCR-ALS/MLPCA
models
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et al. 2006). On the other hand, as has been found in previous
studies in other areas, Pb and Cd are likely to have mainly
come from anthropogenic sources of vehicular traffic (Kadi
2009; Zhao et al. 2014). Although leaded gasoline has not
been used in Beijing since 1997, soils could act as a reservoir
for lead pollution over the years. Therefore, the first factor
may be an anthropogenic component due to the industry dis-
charge, coal combustion, and traffic emission through atmo-
spheric deposition.

The second factor (loading 2 of 4) that was responsible for
17.7 % of the total variances was heavily weighted on Ni and
Cr and slightly loaded on Cu and V, which was also likely due
to anthropogenic influences. Previous studies showed that the
significant human activities that affect concentrations of Cr
and Ni in soils around Miyun Reservoir were primarily iron
ore mining activities (Xue et al. 2000). According to Luo et al.
(2010), mining activities in the northeast areas of the Miyun
Reservoir have caused serious Cr contamination and the ele-
vated concentrations of Ni in the soils. In Miyun Country, the
iron ore deposit is about 9×109 tons, accounting for 98 % of
its total deposit in Beijing. The mining activities, such as iron,
chromite, and gold mines, were historically existing in the
north areas of the Miyun Reservoir (Liu et al. 2005) and pre-
sented in Fig. 1. Thus, it was reasonable to assign this factor to
mining operations.

The third factor (loading 3 of 4) was predominantly loaded
on As and Co. However, the mean and median concentrations
of As and Co were not very high, indicating that the element
was probably predominantly presented at the natural back-
ground concentrations controlled by the parent material
(Table 1). Approximately 60.0 % of samples for As and
70.6 % of samples for Co were below their corresponding
background concentrations. Meanwhile, about 94.1% of sam-
ples for As and 91.2 % of samples for Co were identified as
uncontaminated using geoaccumulation index (Fig. 2). It
should be noticed that high concentrations for As could be
associated with industrial activities and coal combustion
(Luo et al. 2012). Thus, the third factor might be a mix source.

The fourth factor (loading 4 of 4) was only responsible for
3.6 % of the total variances and was heavily weighted on Cu
and Zn and slightly loaded on Cd, Co, Mn, and V. Previous
studies showed that the applications of fertilizers, pesticides,
and fungicides for agricultural practices had increased the

concentrations of Zn and Cu in soils (Luo et al. 2009).
According to statistics, a total input of ∼1.4×105 tons of fer-
tilizer was estimated to be applied as agrochemical products to
agricultural land in Beijing annually. The applications of
metal-containing fungicides in orchards which were histori-
cally distributed to the east of the reservoir would result in
increased Cu content in soils. Additionally, the animal feeding
is usually regarded as the other major source of Zn, Cu, and
Cd in surface soils (Wu et al. 2010). According to Liu et al.
(2005), there was quite a scale of livestock and poultry farm-
ing in the reservoir’s upstream watershed and the farms were
concentrated in the surrounding villages of the reservoir.
Therefore, the fourth factor may be related to agricultural ac-
tivities due to livestock farming, fertilizers, and agrochemical
application.

Source contributions

Figure 3b shows the obtained contribution profiles. It can
be seen that the soil metals in sites F1∼F16 were mainly
determined by mining operation and coal combustion. The
apportionment results were compatible with that area’s en-
vironmental data. Historically, there existed an iron mine
named as Feng JiaYu Mine in the sampling area (Fig. 1).
The main component of iron mine tailings was ferrous chro-
mite. Although most of the mining occurred in a closed pit,
the process involving the depositing of many tailings was
the most likely cause of elevated contaminations for Cr and
Ni in soils (Huang et al. 2013). The results also indicated
that it was unworthy to ignore the influence of human ac-
tivities for trace metals in the study area due to industriali-
zation in the past decades. Based on the average of the
individual percent contributions, the overall percent contri-
bution from each source was calculated. Mining activities
occupied the largest contribution (24.8 %), followed by
agricultural activities (14.6 %) and atmospheric deposition
(13.3 %). The metals released from different sources would
transport to the reservoir and directly or indirectly impacted
the water quality and ecologic system of that region to a
considerable extent. To protect the drinking water reservoir
of Beijing, agricultural and industrial activities in this area
should be strictly limited and regulated.

Table 4 Pairwise correlation
coefficients between source
profiles of trace metals in soils
around Miyun Reservoir derived
from the PMF and MCR-ALS/
MLPCA models

PMF vs. MCR-ALS/MLPCA Loading profiles Contribution profiles

1 2 3 4 1 2 3 4

Factor 1 0.924 0.520 0.371 0.197 0.913 0.354 0.026 0.100

Factor 2 0.469 0.944 0.291 0.424 0.356 0.915 0.631 0.302

Factor 3 0.080 0.277 0.959 0.152 0.185 0.384 0.937 0.465

Factor 4 0.224 0.321 0.183 0.913 0.272 0.005 0.662 0.906
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Conclusions

To identify the contamination characteristics of trace metals in
soils around Miyun Reservoir of Beijing, in this study, an
extended chemometrics model of MCR-ALS/MLPCA was
proposed for source apportionment. Model validation with
synthetic dataset showed that the MCR-ALS/MLPCA could
obtain acceptable results even considering relatively larger
error levels. When applying to identify measurement data, it
extracted similar source profiles with PMF, albeit they were
based on completely different algorithms. In addition, com-
pared with PMF, MCR-ALS/MLPCA is a relatively simpler
algorithm that only requires the optimization of fewer param-
eters. Therefore, MCR-ALS/MLPCA will be an optional
method to be employed for source apportionment of trace
metals in soils. Overall, the soils around Miyun Reservoir
were contaminated by trace metals in moderate degree.
Mining activities, atmospheric deposition, and fertilizers and
agrochemicals were apportioned as the potential anthropogen-
ic sources determining the contents of trace metals in soils
with contributions of 24.8, 13.3, and 14.6 %, respectively. If
the water quality of the Miyun Reservoir is to be protected,
concentrations of Cd, Cr, Pb, Hg, Cu, and Ni in its surround-
ing soils should not be allowed to increase further.
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