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Absence of effects of different types of detergents
on the cholinesterasic activity and histological markers
of mosquitofish (Gambusia holbrooki) after a sub-lethal
chronic exposure
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Abstract The release of anthropogenic compounds into the
aquatic environment has been a particular concern, since some
of these substances exhibit biologic activity of different types
in non-target species. Among anthropogenic compounds
present in the aquatic compartment, detergents are commonly
found and may be responsible for physiological modifications
in exposed organisms. The impairment of key physiological
functions, such as neurotransmission, and tissue damage in
some important organs, has been used to assess the effects
of several classes of xenobiotics, including detergents, in
aquatic organisms. The present study intended to assess the
effect of three types of detersive compounds (sodium
dodecylsulfate (SDS), benzalkonium chloride (BZC), and
Triton X-100 (TX100)) in the acetylcholinesterase activity
(AChE) and tissue damage (gills and liver) of Gambusia
holbrooki after a chronic exposure to realistic levels of these
compounds. SDS, BZC, and TX100 did not cause any signif-
icant alteration in AChE. Furthermore, no specific gross mor-
phological changes were also observed in the gills and liver of
the exposed individuals. It is possible to conclude that, under
ecologically relevant conditions of exposure, both tissue

damage and cholinesterasic impairment are not toxicological
pathways affected by detergents in G. holbrooki.
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Introduction

Chemical contamination of the aquatic environment by an-
thropogenic compounds has raised special concerns regarding
the effects exerted on exposed organisms. The environmental
contamination by specific classes of compounds has been
characterized in terms of toxicity effects on biologic systems.
Therapeutic agents, cleansing products, and personal care
products (namely detergents), are chemical classes of major
concern, characterized by growing, indiscriminate and contin-
uous use and biological activity, worldwide dispersed, and for
which no effective treatment is usually available (Daughton
and Ternes 1999; Halling-Sørensen et al. 1998; Jones et al.
2002; Miao et al. 2002; El-Gawad 2014; Fernández-Serrano
et al., 2014). Due to these characteristics and widespread use,
these products can be considered as potentially harmful, effec-
tive, and environmentally unfriendly compounds (Nunes et al.
2005a, b). For some detergents used as therapeutic agents or
co-adjuvants in pharmaceutical formulations, extremely low
concentrations were found in the aquatic ecosystems.
However, for some compounds, high concentration values
have been reported in the aquatic environment (Kümmerer
2001; El-Gawad 2014), allowing to conclude that in general,
detergents are one of the most dispersed and abundant classes,
due to its use in personal hygiene, pharmaceutical formula-
tions, and industrial purposes (Li 2008).
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Sodium dodecylsulfate (SDS) is one of the most common
linear alkyl sulfate detergents (Chaturvedi and Kumar 2010),
being present in a large number of formulations employed in
human routine activities, such as personal hygiene and cos-
metics use, including cleansing creams, liquid soaps and
shampoos, bubble baths, bath and shower gels and tooth
pastes (Sirisattha et al. 2004). It has been found in extremely
high concentrations in natural settings, ranging from 0.2 to
10 mg L−1 in irrigation fields contaminated with wastewater
(Dizer 1990). Benzalkonium chloride (BZC) is a quaternary
ammonium cationic detergent, used as a tensioactive and pre-
servative agent essentially in dermocosmetical and pharma-
ceutical products. Due to its physical-chemical characteristics,
it acts on biological membranes being therefore responsible
for several toxic phenomena (Okahara and Kawazu 2013;
Chang et al. 2015). It is present in ophthalmic pharmaceutical
preparations (drops, emulsions, suspensions, and ointments)
and also in nasal sprays, and is widely employed as a disin-
fectant in hospitals and health centers (Marple et al. 2004;
Ferk et al. 2007; Gaber et al. 2012). Since it exhibits biocidal
activity, it has been thoroughly used not only as a conservative
agent in a large number of cosmetic preparations but also as a
disinfectant and herbicide in aquaculture facilities (Bartolomé
and Sánchez-Fortún 2005). BZC has also been suggested to be
a potential substitute for organotins, namely tributyltin paints,
since it inhibits the fouling on ship hulls (Beveridge et al.
1998). Due to the fact that it may be extensively used and
consequently released in large amounts, especially by ships,
fish farms, and from sewage disposal, it has been found in the
environment, namely in estuarine, brackish, and salt waters
(Bartolomé and Sánchez-Fortún 2005; Martinez-Carballo
et al. 2007; Clara et al. 2007). Triton X-100 (TX100) is a
non-ionic detergent, commonly used in diverse laboratory
procedures, such as extractions of lipid fractions of
biomembranes (Liu et al. 2007), biochemical studies requiring
dissolution of subcellular components or membranes
(Delaunay et al. 2008), biosensor manufacture (Liu et al.
2005), and environmental studies (Cuypers et al. 2002).
Besides its uses in laboratory practice, this type of surfactants
may be released into the environment as a result of its appli-
cations in pulp, paper, and textile industries (Lee 1999).

The study of effects of detersive compounds has shown
that several key enzymatic functions, such as the activity of
acetylcholinesterase (AChE), could function as indicators of
toxicity consequent to exposure to detergents. Besides its clas-
sical role in biomonitoring studies, in which AChE was used
for the assessment of exposure to organophosphates and car-
bamates pesticides (Oliveira et al. 2007; Vioque-Fernández
et al. 2007; Nunes 2011), this particular cholinesterasic form
was shown to be responsive to detersive action (Guilhermino
et al. 2000; Arduini et al. 2006) and to other compounds, such
as metals (Labrot et al. 1996) and complex mixtures (Payne
et al. 1996). Besides the evaluation of biochemical

parameters, histopathological biomarkers can be used in envi-
ronmental screening, since it allows examining specific target
organs, such as gills and liver, which are responsible for vital
functions, such as respiration, excretion, accumulation, and
biotransformation of xenobiotics in fish (Wood and Soivio
1991; Olsson et al. 1996). Exposure to chemical contaminants
can cause a number of damages and injuries in different fish
organs suitable for histological assessment in searching for
cells and tissue damages (Bernet et al. 1999).

In order to study the potential effects concerning the im-
pairment of neurotransmission in organisms exposed to deter-
gents, the present study involved the selection of three chem-
ically distinct compounds, with common detersive properties
(SDS, BZC, and TX100). Furthermore, the effects of the se-
lected compounds were also assessed at the tissue level,
through the qualitative analysis of the histological alterations
on fish gills and liver. More than just a simple evaluation of
ecotoxicological effects, one of the aims of this study was to
clarify the putative mechanisms of toxic action elicited by
different types of detergents, using the above-mentioned tools.

Material and methods

Capture of test organisms

Gambusia holbrooki, also known as mosquitofish, is a world-
wide spread Poeciliidae fish that, due to its invasive nature and
high adaptability to adverse conditions, is found in all hydro-
graphic basins of the Iberian Peninsula (Cabral and Marques
1999). It is easy to capture, can be reared under laboratory-
controlled conditions, and is adapted to several testing proto-
cols (Nunes et al. 2008).

Fish were captured in Pateira de Fermentelos (40° 34 48″
N, 8° 31 12″W), a natural lake found in the central region of
Portugal within the hydrographic basins of the rivers Cértima
and Águeda (Ahmad et al. 2006). Fish were captured with
hand nets and, after capture, individuals (males and sexually
immature females) with size comprised between 2.0 and
2.5 cmwere kept alive; all other individuals were immediately
discarded. The selected individuals, to be used in the subse-
quent testing, were transported in the natural medium found in
the lake to the laboratory facilities. Here, they were kept under
laboratory-controlled conditions (dechlorinated tap water,
temperature 20 °C, photoperiod 16 h L−1: 8 h day−1, continu-
ous aeration) for 1 month before toxicity tests. Animals were
fed daily ad libitum with commercially available fish food
(Sera Vipan ®).

Chemicals

Benzalkonium chloride (BZC), Triton X-100 (TX100),
acetylthiocholine iodide, 5,5 -dithio-bis-γ-nitrobenzoic acid

14938 Environ Sci Pollut Res (2016) 23:14937–14944



(DTNB), and γ-bovine globulins were purchased from
SIGMA (USA). Bradford reagent was purchased from Bio-
Rad UK. SDS 99 % pure was purchased from Merck
Germany.

Exposure to the detergents

In vivo studies were performed through exposure of fish to
sub-lethal concentrations of SDS, BZC, and TX100, for a
period of 28 days, generally following the recommendations
of the OECD 215 guideline (OECD 2000). Ranges of con-
centrations used in this study were chosen according to previ-
ously calculated lethal concentration (LC)50 values, available
in the literature. Nunes et al. (2005a) calculated a 96-h LC50

for SDS withG. holbrooki of 15.1 mg L−1. The work by Buhl
and Hamilton (2000) allowed calculating a 96-h LC50 for SDS
with rainbow trout (Oncorhynchus mykiss) of 24.9 mg L−1.
The review by Cserháti et al. (2002) also summarized LC50

values for SDS, with distinct aquatic organisms, such as crabs
(Callinectes sapidus; LC50 = 9.8 mg L−1), grass shrimp
(Palaemonetes spp.; LC50 = 34 mg L−1), and misids
(LC50=48 mg L−1). SDS was tested in the following nominal
concentrations: 0.05, 0.10, 0.20, 0.40, and 0.80mg L−1, which
were at least two orders of magnitude below previously cal-
culated LC50 values for aquatic organisms.

The compilation prepared by Mayer and Ellersieck evi-
denced a 96-h LC50 of 11.5 mg L−1 for rainbow trout exposed
to benzalkonium chloride (Mayer and Ellersieck 1986).
Nominal concentrations of this toxicant were 0.025, 0.050,
0.100, 0.200, and 0.400 mg L−1, which were also at least
two orders of magnitude below previously calculated LC50

values, for aquatic organisms.
According to the compilation by Crompton (2007), Triton

X-100 acute toxicity towards aquatic organisms occurs in the
range of the 10 to 100 mg L−1; data presented by the chemical
manufacturer General Electric Healthcare also indicate a tox-
icity from 4.5 to 6 mg L−1 for Pimephales promelas, and from
12 to 531 mg L−1 for Lepomis macrochirus (GE Healthcare
2006). The selected nominal levels of exposure were 0.00025,
0.0005, 0.0010, 0.0020, and 0.0040mg L−1 for TX100, which
were three to four orders of magnitude below previously pub-
lished lethality data. This choice was justified by the low use
of this substance, which is not comparable to either SDS or
BZC. By testing low doses of TX100, we intended to obtain
ecologically realistic data.

Each assay had an independent control (non-exposed fish).
Fish (with size comprised between 2.0 and 2.5 cm, and weight
of 0.140±0.03 g) were individually exposed in 200 mL of
dechlorinated tap water. Ten replicates were used per treat-
ment (10 individually exposed fish). Abiotic conditions were
controlled during the exposure period (photoperiod 16 h L−1;
8 h day−1, temperature of 20 ± 1 °C, continuous aeration).
Food was supplied ad libitum during exposure, once every

2 days. Media were replaced twice every week. Exposure
apparatuses were composed of plastic containers, previously
thoroughly rinsed with distilled water. Parameters such as
mortality, pH, temperature, and dissolved oxygen were mon-
itored during exposure for test validation purposes. After ex-
posure, fish were processed for the determination of
acetylcholinesterasic activity and observation of histological
alterations.

The use of test organisms was previously sanctioned by the
Ethical Committee of the institution where the work was car-
ried out. This work took into consideration the Portuguese
animal welfare testing regulations (DL 113/2013).

Determination of acetylcholinesterasic activity

After the end of exposure, five animals per treatment were
anesthetized by immersion in an ice-water (4 °C) bath
(Wilson et al. 2009), euthanized by decapitation, and head
tissues were homogenized in ice-cold phosphate buffer
(0.1 M, pH=7.2). Homogenized tissues were centrifuged at
3300 G for 3 min and supernatants were used for enzymatic
determinations. Data published by Nunes et al. (2005b)
showed that the main cholinesterasic form in the head tissue
of G. holbrooki was acetylcholinesterase. The activity of
AChE was determined by the method of Ellman et al.
(1961) adapted to microplate, but using 0.050 mL of fish head
homogenate and 0.250 mL of the reaction mixture. Protein
concentration in the samples was determined according to
the method of Bradford (1976) adapted to microplate, in order
to express enzymatic activities as function of the protein con-
tent of the analyzed samples.

Histological evaluation

The organs (gill and liver) of five individuals per treatment
were fixed in Bouin solution (24 h); decalcified (12 h, only for
gills); dehydrated through a graded series of alcohols (70, 80,
90, and 100 %); cleared with xylene; embedded in paraffin
wax (56–58 °C); and sectioned (5–7 μm) using a manual
microtome (Reichert-Jung 2030). Sections were stained with
hematoxylin-eosin, mounted with DPX in glass slides, and
examined at ×100 and ×400 by light microscopy (Olympus
CX41). Micrographs were taken using a digital camera
(Olympus SC30). Identification of the histological alterations
in fish was based on standard protocols (Takashima and
Hibiya 1995; Jagoe et al. 1996) and prevalence of histopath-
ological findings in gills and liver were recorded.

Statistical analysis

After testing for normality and homogeneity of variances,
acetylcholinesterasic activity data were compared by one-
way analysis of variance, followed (if needed) by a Dunnet
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multi-comparison test to discriminate differences of treat-
ments in relation to the control treatments. Chi-square analysis
was used to test differences in the prevalence of histological
alterations between treatments within each experiment. The
adopted level of significance (α) was 0.05. Data were present-
ed as mean and respective standard error. Statistical analyses
were performed with the software Sigmaplot 11.

Results

The chronic exposure of G. holbrooki to BZC did not cause
any significant alteration in AChE activity (F = 2.95;
d.f. = 5.24; p>0.05; Fig. 1a). However, it was noticeably a
non-significant, albeit evident, rise in the cholinesterasic ac-
tivity of exposed organisms. Acetylcholinesterasic activity of
animals exposed to SDS was also not altered when compared

to control (F=1.88; d.f. =5.24; p>0.05; Fig. 1b). A similar
finding was obtained after exposure of organisms to TX100
(F=0.8; d.f. = 5.24; p>0.05; Fig. 1c).

No specific gross morphological alterations were observed
in the organs of fish in any of the treatments. Almost all gills
presented a normal architecture (Fig. 2a), but a few presented
intraepithelial oedema, epithelial lifting, and partial fusion of
the secondary lamellae (respectively, 27, 16, and 11 % of the
overall individuals) (Fig. 2b). Livers showed a normal archi-
tecture (Fig. 2c), but some of them exhibited some degree of
cytoplasmic vacuolization of hepatocytes (11 % of the overall
individuals) (Fig. 2d). These histological changes were, how-
ever, observed for all individuals, exposed and unexposed,
without no evidence of any dose-effect relationship (SDS:
X2 = 12.267, n = 15, p = 0.659; BZC: X2 = 8.715, n = 15,
p=0.892; TX100: X2 =5.218, n=15, p=0.990).

Discussion

Due to the fact that detergents are common anthropogenic
compounds that are released into the wild, it is with great
concern that their effects are assessed by ecotoxicologists. A
large number of studies point to the involvement of detergents
in the impairment of key physiological functions in several
test organisms. Several studies report effects such as mortality
of crustaceans (Warne and Schifko 1999; Chukwu and
Odunzeh 2006; Sibila et al. 2008), growth inhibition of algal
cultures (Sibila et al. 2008), genotoxicity (Liwarska-Bizukojc
et al. 2005), and activity inhibition in key enzymes
(Guilhermino et al. 2000; Nunes et al. 2006; Li 2008;
Nunes, 2011). The fact that a large number of distinct deter-
gents are simultaneously released into the aquatic compart-
ment can turn the analysis of their combined effects evenmore
complicated, since the consequent toxic activity may be en-
hanced due to combination effects (Warne and Schifko 1999).
Thus, it is licit to conclude that a biochemical/enzymatic/his-
tological marker for aquatic contamination and effects by de-
tergents is most needed. According to this trend, some studies
pointed acetylcholinesterase inhibition as a putative marker
for detergent contamination. It has been suggested that
TX100 could promote a direct interaction with this enzymatic
form that could culminate in its inhibition (Millar et al. 1979).
However, the general interaction of tensioactive compounds
with living cells was mediated via a previously solubilization
of membranar portions, to which AChE may be adherent, and
the inclusion of these membranar portions into micellar struc-
tures (Foster et al. 1976). A more recent study showed that the
inhibition of AChE of G. holbrooki by an anionic detergent
(such as sodium dodecylsulfate) was reversible and was par-
tially abolished through alteration of the dieletric constant of
an aqueous medium (Nunes et al. 2005a, b). This finding
suggests that the inhibition of AChE was mediated through

Fig. 1 Chronic effects of sub-lethal concentrations of BZC (a), SDS (b)
and TX100 (c) on AChE activity (mean ± SE) of Gambusia holbrooki.
There are no significant differences between experimental groups (one-
way ANOVA, p> 0.05)
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the same mechanism described earlier, consequent to the sol-
ubilization of membrane-anchored AChE residues. Due to the
fact that AChE is inside micelles, it is not possible to establish
a hydrolytic interaction with the substrates used to quantify
this enzyme’s activity. However, it is noteworthy that this
apparent inhibition caused by SDS only occurred at high
doses. In fact, several previous studies reported that the dele-
terious interaction of SDS with AChE of aquatic organisms
was possible, with inhibition of these enzymatic forms, but
only for doses much higher than those employed in our study.
For instance, Feng et al. (2008) reported that SDSwas capable
of interfering with the hydrolytic capacity of Tilapia nilotica
AChE, but only following an in vitro exposure to extremely
high levels (e.g., 0.5 and/or 1 g L−1). Similarly, the work
conducted by Wang et al. (2014) showed that exposure levels
ranging from 0.8 to 4 mg L−1 of SDS were also causative of a
significant inhibition of AChE of the crustacean Moina
macrocopa. These levels are well above those we selected to
develop our study, since we aimed to increase the ecological
relevance of our data by setting exposure levels to amounts
already reported to occur in the wild. Thus, it is possible to
assume that the pathway of AChE inhibition may not occur at
low (and environmentally relevant) concentrations, as shown
by the here-obtained results.

None of the three types of tensioactive compounds (anion-
ic, cationic, and non-ionic detergents) showed to have AChE
inhibition properties, at concentrations similar to the ones
found in the aquatic compartment and under the lethal levels
documented for several fish species. In fact, the presence of
several detergents may even enhance the hydrolytic activity of
AChE of selected species. The work by Rosenfeld et al.
(2001) showed that the presence of Triton X-100 in

mammalian tissue homogenates increased the overall hydro-
lytic activity of the cholinesterasic forms present. The study
by Martín-Valmaseda et al. (1995) showed that another form
of cholinesterase, from sheep platelet, was not altered after
extraction with Triton X-100. In fact, extraction of AChE from
tissue homogenates is a common practice, in order to obtain
purified extracts for subsequent testing (Vidal et al. 1987;
Cabezas-Herrera et al. 1997 Perrier et al. 2002). This type
of interaction is physical (i.e., it is established between amphi-
philic tetrameric and/or globular forms of anchored AChE and
the micelles of the detergent, usually Triton X-100) but may
not constitute a true inhibition of the hydrolytic activity of the
enzyme. This fact is of the uttermost importance for environ-
mental monitoring, since it is not predictable, likely, or even
possible, to attain in the wild the high levels of detergents
necessary to elicit measurable effects on AChE activity, thus
leading to a re-evaluation of the role of this enzyme as an
environmental assessment tool.

The existent works concerning the effect of detergents in
fish gills and liver are scarce. However, for linear
alkylbenzene sulfonates (LAS), which is the most widely uti-
lized class of synthetic anionic surfactants for cleaning pur-
poses, changes in the gill architecture of fish have been ob-
served after acute and chronic exposures. These include epi-
thelial lifting, fusion of gill lamellae, stagnation of gill vessels,
oedema, and aneurisms, especially after acute exposure
(Alvarez-Munoz et al. 2009; Naeemi et al. 2013). Chronic
exposures resulted in hypertrophy, hyperplasia, fusion of ad-
jacent lamella, and telengeastases were observed (Hampel
et al. 2008; Rejeki et al. 2008). Moreover, in the liver tissue,
hepatocyte degeneration, congestion, and dilation of sinusoid
and vacuolar degeneration were observed for a short-term

B
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AFig. 2 a Gills of Gambusia
holbrooki showing a normal
architecture (control group). b
Gills from an individual exposed
to SDS (0.08 mg L−1) showing
epithelial lifting (white arrow)
and interlamellar hyperplasia
(black arrow). c Liver of
Gambusia holbrooki showing a
normal parenchyma (control
group). d Liver from and
individual exposed to TX100
(0.002 mg L−1) showing
cytoplasmatic vacuolization
(asterisk). H&E ×40
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exposure (Naeemi et al. 2013). Concerning the hereby tested
compounds, a single work exists which reported histopatho-
logical gill damage in Oncorhynchus tshawytscha after an
acute exposure (1 h) to SDS, in levels above 3.0 mg L−1

(Hoskins and Dalziel 1984). However, no specific gross mor-
phological alterations were observed in the present study.
Only occasional, slight, and reversible alterations that do not
alter the function of the tissues (stage I alterations: Poleksic
and Mitrovic-Tutundzic 1994; Simonato et al. 2008), were
observed in the gills and liver. Furthermore, since these alter-
ations were also recorded in some fish of the control group,
they cannot be associated with the presence of the tested xe-
nobiotics and could be considered as a natural occurrence
(Costa et al. 2009). Moreover, the progressive gills histologi-
cal alterations recorded hereby (epithelial lifting, hyperplasia,
and lamellar fusion) can be also considered responses to an
unspecific stressor agent, such as water temperature or pH,
and not necessarily to a chemical xenobiotic (Mallatt 1985).
Additionally, cytoplasmic vacuolation of hepatocytes is fre-
quently considered a common non-pathological liver histolog-
ical change which may reflect any nutritional problem
resulting from the adoption of a different feeding regime of
fish in captivity (Caballero et al. 2004).

In summary, the results obtained in this work clearly
showed the absence of toxic effects of the three selected de-
tergents towards G. holbrooki individuals, even when fish
were chronically exposed to environmentally realistic levels
(especially for the detergents SDS and BZC). Since no effects
were registered concerning the impairment of the
cholinesterasic activity, it is possible to suggest that the cho-
linergic impairment pathway is not likely to occur for realistic
levels of exposure to detergents. Furthermore, no tissue dam-
age or indication of initial noxious alterations was also report-
ed. Absence of liver damage reinforces the absence of uptake
of all three detergents. On the contrary, and considering that
the gills are directly exposed to the external media, the ab-
sence of toxic modifications in this tissue demonstrates the
lack of toxic potential of all tested detergents, under the
adopted experimental conditions. Despite the non-
occurrence of toxicity, it is possible to suggest that other phys-
iological pathways may be involved in the response to expo-
sure to detergents, such as increased detoxification capacity or
enhanced metabolism of exposed organisms. In addition, it is
also possible to hypothesize thatG. holbrookimight be refrac-
tory to detergents, under the here-proposed experimental con-
ditions. Even only considering the here-presented lethality
data (please see BExposure to the detergents^ subsection), it
is possible to conclude about large differences among distinct
taxa—evidencing that species-specific mechanisms of toxici-
ty may explain this large diversity in terms of toxicity data.
This assumption is in agreement with biochemical data previ-
ously obtained by Nunes et al. (2008) after exposing
G. holbrooki to a series of xenobiotics, including the detergent

SDS. In this study, authors found that the antioxidant, bio-
chemical, behavioral, oxidative stress defense, and metabolic
response of this fish species towards SDS was null or negligi-
ble, evidencing its refractory behavior when exposed to deter-
gents. These possibilities require further research to devise the
nature of toxicological interactions between aquatic organ-
isms from distinct taxa and levels of organization and
detergents.
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