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and sediment from the southwestern Mediterranean (coast of Sfax)
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Abstract The concentrations of heavy metals (Cd, Cu, Fe, Pb,
Ni, and Zn) were measured in the liver, gills, andmuscle of Solea
vulgaris, Liza aurata, andDiplodus annularis, collected from the
south coast of Sfax (Gabes Gulf, southwestern Mediterranean).
The concentrations of heavy metals in water exhibited
the following decreasing order (expressed in μg l−1):
Fe>Ni>Zn>Cu>Pb>Cd whereas the trend is somewhat dif-
ferent in sediments (mg kg−1 D.W.) Fe>Zn>Pb>Ni>Cu>Cd.
The levels of heavy metals varied significantly among fish spe-
cies and tissues. Heavy metal levels were found generally higher
in the liver and gills than the muscle in all species. The liver was
the target organ for Cd, Cu, Fe, Ni, and Zn accumulation. Nickel
and lead, however, exhibited their highest concentrations in the
gills. The three studied fishes showed a difference
in metals accumulation decreasing in following order S.
vulgaris>D. annularis>L. aurata. Solea vulgaris with the
highest TFwater, TFsediment, and metal concentrations in tissues
would be considered as a potential bio-indicator in the south coast
of Sfax for the assessment of environmental pollution status.
Comparative studies with Luza zone indicate considerable bioac-
cumulation of heavy metals (Pb and Zn) in the various tissues of
fish samples of the south coast of Sfax.

Keywords Bioaccumulation . Heavymetals . Sfax south
coast . Liza aurata . Solea vulgaris .Diplodus annularis

Introduction

Gabes Gulf (southwestern Mediterranean) is considered
the main seafood resource contributing about 65 % of
the national fish production in Tunisia (D G P A 2004;
Ben Rebah et al. 2010). However, due to the increase of
urbanization, industry, overfishing, tourism, and the dis-
charge of huge amounts of phosphogypsum and other
pollutants, this gulf has been reported to be densely pol-
luted (Hamza-Chaffai et al. 1997). The city of Sfax is one
of the main harbors of the Gulf of Gabes and an important
industrial center whose pollution level is in contrast with
the nearby and beautiful Kerkennah Island (Zaghden et al.
2005). The south coast of Sfax is under a high environ-
mental pollution pressure and concentrates many industri-
al and anthropogenic activities. Previous studies have
shown that this area was mainly affected by heavy metal
pollution, mainly related to the industry of phosphates as
well as other heavy metal transmitters such as salt works,
tanneries, textiles, lead foundries, soap factories, ceramics
industries, and building materials (Hamza-Chaffai et al.
1995; Barhoumi et al. 2009; Kessabi et al. 2009;
Messaoudi et al. 2009a, b; Smaoui-Damak et al. 2009;
Rabaoui et al. 2013; Ben Salem et al. 2015).

Due to their toxicity, persistence bioaccumulation in
the environment, and ecological risks, heavy metals are
of increasing global concern (Zhou et al. 2007; Gao and
Chen 2012; Gu et al. 2012b). Heavy metals are catego-
rized as potentially toxic (e.g., Cd, Pb, and Ni) and essen-
tial (e.g., Cu, Zn, and Fe). Even at low concentrations,
toxic metals can be very harmful to human health when
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ingested over a long time period. Essential metals can also
produce toxic effects with excessive intake (Ashraf et al.
2006; Uluozlu et al. 2007; Tuzen 2009).

In aquatic ecosystems, organisms may be considered as
bio-indicators in determining the impact of toxic heavy
metals (Arain et al. 2008), an approach that was used in
the south coast of Sfax. Since they are at the top of the
aquatic food chain, fish can accumulate heavy metals
from food, water, and sediments and are widely used to
biologically monitor the degree of metal pollution in
aquatic ecosystems (Chovanec et al. 2003; Brumbaugh
et al. 2005; Yılmaz et al. 2007; Al Sayegh Petkovšek et
al. 2012; Zhao et al. 2012). The specific advantages of
using fish are the following: (1) they are long living and
absorb a variety of pollutants over time, (2) they live in
water and/or sediment and enable continuous surveillance
of pollutant presence, and (3) they are easily sampled.

The study of metal accumulation in fish tissues (gills,
liver, and muscle) is of interest in assessing pollution in
sea water. These tissues in fish were chosen because (1)
the liver is the main accumulation organ for bio-
transformation and excretion of pollutants, including
metals (Moon et al. 1985; Triebskorn et al. 1997); (2)
the gills reflect the metal levels in the water since they
are in direct contact and are the primary sites of gas ex-
change, acid–base regulation, and ion transfer (Randall
1990); and (3) the muscle is the part consumed by
humans.

Heavy metals accumulate as they move up the food
chain and may reach dangerous levels for human health
(Ip et al. 2005; Sapkota et al. 2008; Yi et al. 2011; Gu et
al. 2012a). The Diplodus annularis (Linnaeus, 1758),
benthopelagic species common in the bottoms covered
by Posidonia (Derbal et al. 2007; Chaouch et al. 2013);
Liza aurata (Risso, 1810), pelagic species often encoun-
tered in estuaries, backwaters, and inshore areas of the
Mediterranean; and Solea vulgaris (Quensel, 1806), ben-
thic species feeding on organisms living in the sediments
are important target species for Tunisian fisheries and par-
ticularly for those in the Gulf of Gabes. Thus, it is impor-
tant to analyze the heavy metal concentrations in widely
consumed fish species. The level of heavy metal contents
in marine wild fish species from the Gabes gulf and par-
ticularly in Sfax coast are scarce.

The previous studies have been focused on the levels
of heavy metal contamination in water and sediments
(Gargouri et al. 2011; Serbaji et al. 2012). The present
study is undertaken to evaluate the metal concentrations
in the tissues (gills, liver, and muscle) of L. aurata, D.
annularis, and S. vulgaris in water and sediments. The
study is imperative in assessing polymetallic pollution
since rapid urbanization and industrialization have ad-
versely affected the south coast of Sfax.

Material and methods

Sampling

Water and sediment sampling

Water and sediment sampling were taken at 15 points in the
south coast of Sfax and 10 points in Luza, located about 50 km
north of Sfax. Luza was chosen as a control area, not directly
subjected to sources of anthropogenic pollution (Fig. 1).Water
samples were collected in 250-ml sterile bottles which were
immediately stored at 4 °C for preservation until preparation
and analysis. The samples were filtered through a 0.45-μm
membrane and 25-ml aliquots from each one were prepared
with 6 ml HNO3 before analysis. Sediments were sampled
with an Ekman bucket (10 cm diameter) at about 10/15 cm
depth so as to obtain both sludge deposits. After collection,
samples were wet sieved through a 5.0-mm pore-size polypro-
pylene mesh with reagent grade water, for sediment fraction
separation and elimination of detritus. The samples were then
left to settle, and the water later decanted. Samples were dried
in an oven at 80 °C for 3 days. The samples were later ho-
mogenized using a mortar and pestle and sieved to pass
<63 μm (metals are most often associated with small grains;
Morillo et al. 2004). The mortar, pestle, and sieve were
cleaned before and after each sampling with 10 % redistilled
HNO3 and then rinsed with reagent grade water. One gram of
each sediment sample underwent 3 h microwave digestion at
105 °C with 3 ml 6 M HNO3 and 9 ml 5 M HCl.

Fish sampling

Three commercial fish species were purchased from fishing
boats in two areas with different anthropogenic and natural
impact in the south coast of Sfax and Luza, during
December 2014. The collected species were the following:
Liza aurata, Solea vulgaris, and Diplodus annularis. These
fishes represent different biotopes and are economically im-
portant (Table 1). The set of investigated fishes was deter-
mined by the fact that they are the major edible fishes in
Sfax. Collected fishes were wrapped in polyethylene plastic,
put into an insulated cold container, and brought to the uni-
versity laboratory where they were classified, weighed, mea-
sured by total length, and kept frozen at −20 °C until
dissection.

For bioaccumulation analysis, the gills, liver, and muscle
were taken from each fish (10 specimens of each species were
analyzed). The fish in each composite sample had similar
biometric parameters. The tissues were prepared for metal
analysis as follows: muscle and liver were removed with stain-
less steel utensils, and gill filaments were removed from the
gill arch scraped to remove overlying tissues. All were then
dried at 80 °C for 3 days. One gram of each sample was
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digested with 6 ml HNO3 (65%). Digestion was performed on
a hot plate at 103 °C, for about 6 h.

Heavy metal analysis

The concentrations of heavy metals in water, sediments, and
fish samples were determined with an atomic absorption spec-
trometer (AAS, Perkin Elimer). Detection limits obtained with
AAS were 0.05 mg l−1 for Cd, Cu, and Pb and 0.5 mg l−1 for
Ni. Metal concentrations were expressed either in milligrams
per kilogram dry weight (D.W.) for sediment and fish or
micrograms per liter in the water. To compare them with the
FAO/WHO (1989, 2004) andWHO (1989) maximum permis-
sible levels for human consumption, concentrations of metals
in the liver and muscle were expressed in milligrams per ki-
logram wet weight (W.W.).

Transfer factor

The transfer factor (TF) in fish tissues from the aquatic eco-
system, which includes water and sediments, was calculated
according to Kalfakakou and Akrida-Demertzi (2000) and
Rashed (2001) as follows: where Mtissue is the metal concen-
tration in fish tissue and Msediment is the metal concentration in
sediment or in water.

TF ¼ Mtissue=Msediment or water

Metal load

The concentration of a single metal was divided by the
mean concentration of that metal measured in tissues of
fish from clean site (Luza zone). At each site, 10

Table 1 The ecological characteristics and recorded morphometric measures of examined fish species

Scientific name English name Family Habitat No. of samples Length (cm) Weight (g)

Diplodus annularis (Linnaeus, 1758) Sparaillon Sparidae Benthopelagic 10 13.4 ± 0.46 25.80± 2.73

Solea vulgaris (Quensel, 1806) Sole Soleidae Benthic 10 15.44 ± 0.47 34.25± 1.52

Liza aurata (Risso, 1810) Mullet Mugilidae Pelagic 10 26.31 ± 0.49 60.74± 1.93

Fig. 1 Location map of the study area, south coast of Sfax. The black circle are the points of sediments samples
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specimens of each species were captured, and metal
levels were measured in the tissues. Standardized values
were then added using the formula MLj = [∑(Cij/Cri)]/N
where MLj is the relative metal load in a tissue at site j,
Cij is the concentration of metal i at site j, Cri is the
concentration of metal i at the reference site, and N is
the number of metals measured (Bervoets and Blust
2003). When Cij <Cri, the Cij/Cri was considered one.
Thus the relative ML is a measure of the enrichment of
the tissue with the measured metals, compared to those
in fish from unpolluted sites. As a consequence, when
no enrichment occurred, ML= 1.

Data analysis

Contour plots were made using the Surfer® 11 software.
The results were expressed as means ± S.D. Data were
statistically analyzed using Tukey’s multiple range test
to determine difference in means as indicated by differ-
ent case letters in the descending order, a, b, and c at
P < 0.05 using the Statistical Package for the Social
Sciences software (SPSS, ver.20).

Result

Water analysis

The spatial distribution of heavy metal concentrations in the
water is presented in Fig. 2a–f. Heavy metal concentrations
i n w a t e r s a m p l e s d e c r e a s e d i n t h e o r d e r
Fe >Ni > Zn >Cu > Pb >Cd. The highest contents of Cd
(0.21 μg l−1), Cu (4.34 μg l−1), Fe (30.74 μg l−1), Ni
(10.21 μg l−1), Pb (3.43 μg l−1), and Zn (5.78 μg l−1)
(Table 2) were found in station fronts to the points of the
outfall of untreated domestic and industrial sewage and mu-
nicipal leachate. The contents of Cu (stations 2, 5, 6, 8, 11, 12,
13, 14, and 15) (Fig. 2e) and Ni (stations 1, 2, 3, 5, 6, 11, 13,
and 15) (Fig. 2f) exceeded the criterion continuous concentra-
tion (CCC) and the criteria maximum concentration (CMC),
values of the USEPAwater quality criteria (USEPA 1999).

Sediment analysis

Metal concentrations decreased in the following order:
Fe >Zn>Pb>Ni >Cu>Cd. Averages, standard deviations,

a b c

d e f

Fig. 2 Distribution maps of Pb (a), Zn (b), Fe (c), Cd (d), Cu (e), and Ni (f) concentrations (μg l−1) in water
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and ranges of heavy metal concentrations in superficial sedi-
ments, in the south coast of Sfax, are presented in Table 3. The
metal concentrations (mg kg−1 D.W.) ranged from 65.06–
151.50 for Pb, 47–546 for Zn, 50,564–11,956 for Fe, 4.42–
7.92 for Cd, 8.23–28.56 for Cu, and 9.13–30.51 for Ni
(Fig. 3a–f). The concentrations of the studied metals in sedi-
ments are higher than those in water. In an index of toxicity
risk, Cd, Fe, Pb, and Zn suggest a potential toxicity on
sediment-dwelling organisms in the south coast of Sfax.
According to MacDonald et al. (2000), the reliability of the
threshold effect concentration (TEC) and probable effect con-
centration (PEC) for assessing sediment quality conditions is
determined based on their predictive ability. The average of Pb
and Zn exceed the PEC, and the average of Cd and Fe exceed
the TEC of quality assessment guidelines (SQGs) (Table 3).

Fish analysis

Concentrations of heavy metals (Cd, Cu, Fe, Ni, Pb, and Zn)
in the muscle, liver, and gills of the S. vulgaris, L. aurata, and
D. annularis are given in Table 4.

The highest Cu, Cd, Fe, Ni, and Zn concentrations were
detected in the liver of S. vulgaris. The highest Pb concentra-
tion (mean±SD; 5.06±0.10 mg kg−1 D.W.) was recorded in
gills of S. vulgaris.

The pattern of metal accumulation in three species was, in
decreasing order:

– For S. vulgaris: Fe>Zn>Cu>Ni>Cd>Pb
– For D. annularis: Zn>Fe>Pb>Cd>Cu>Ni
– For L. aurata: Zn>Fe>Cu>Ni>Pb>Cd

The accumulation of metals in a single species showed
significant inter-specific variations in all metals. However, it
can be noticed that different tissues exhibited different patterns
in metal accumulation.

Transfer factor and metal load

TFs from water and sediments are given in Table 5. For Zn,
TFs from the water were found to be greater than 1 in all tissue
of all studied species. TFs from the water were found to be
greater than those from sediments for all the analyzed ele-
ments. Except for Ni, all TFwater exceeds one in gills and/or
liver in the three studied fishes. TFwater of Cd and Fe exceed
one in the muscle S. vulgaris and D. annularis. These results
confirm an intensive accumulation of those metals from water
in these tissues. The highest TFs (organ/sediment ratio) were
recorded in S. vulgaris tissues and the lowest were registered
in L. aurata tissues.

Table 5 gives the mean relative metal load (ML) for the
individual metals per tissue. Since the MLj the level of metal i
in a tissue at site j, divided by the level of metal i at the
reference site (Luza zone), MLj gives an indication of the
enrichment of a certain metal in a tissue. The metal load
exceeded one in the gills and/or liver of the studied species.
The metal load analysis in the muscle remains important given
that is destined for human consumption. The muscle MLj
exceeds one in:

– L. aurata for Fe and Zn
– D. annularis for Cd, Fe, Ni, Pb, and Zn
– S. vulgaris for Cu, Fe, Ni, Pb, and Zn

Discussion

Heavy metals in water and sediment

The concentrations of the non-essential metals (Cd, Ni, and
Pb) as well as essential metals (Fe, Cu, and Zn), that in high
concentrations induce toxic effects in aquatic organisms
(Oliveira et al. 2004), were quantified in the water and sedi-
ments of the south coast of Sfax. The metal pollution, in sea-
water, is due essentially to the presence of continuous dis-
charge of local industrial and municipal effluent which

Table 2 Heavy metals concentrations in the water (μg l−1) in the south
coast of Sfax (mean values and standard deviation are reported)

Average Standard deviation Range CMCa CCCa

Cd 0.1 0.04 0.05–0.21 42 9.3

Cu 3.27 0.66 2.03–4.34 4.8 3.1

Fe 28.97 1.5 25.78–30.74

Ni 9.44 0.73 8.03–10.21 74 8.2

Pb 2.72 0.44 1.98–3.43 210 8.1

Zn 4.59 0.78 3.43–5.78 90 81

aUSEPA (1999)

Table 3 Heavy metals concentrations in sediments (mg kg−1 D.W.) in
the south coast of Sfax (mean values and standard deviation are reported)

Average Standard deviation Range PECa TECa

Cd 6.53 0.99 4.42–7.92 1 5

Cu 13.94 5.47 8.23–28.56 32 150

Fe 83,794 18,430 50,564–11,956 20,000 40,000

Ni 13.61 6.31 9.13–30.51 23 49

Pb 98.15 28.87 65.06–151.50 36 130

Zn 225.2 137.05 47–546.00 120 460

aMacDonald et al. (2000)
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contains a variety of organic and inorganic compounds, in-
cluding heavy metals (Hamza-Chaffai et al. 2003; Smaoui-
Damak et al. 2003; Banni et al. 2005, 2007; Messaoudi et al.
2009a, b; Gargouri et al. 2011). Indeed, the phosphogypsum
stock is a product of the manufacture of phosphoric acid in the
fertilizer industry which is not eliminated in the manufacturing

process and thus, it enriches the seawater with dehydrated
calcium sulfate and heavy metals as cadmium, zinc, chromi-
um, copper, nickel, and lead (Degirmenci 2008; Kuryatnyk et
al. 2008). The heavy metal concentrations in sediment were
higher than those in water. The hypothesis that the sediment is
the major sink and source of heavy metals in the marine

Table 4 Metal concentrations in tissues of Diplodus annularis, Solea vulgaris, and Liza aurata expressed in milligrams per kilogram D.W. (mean
values ± standard deviations)

Cd Cu Fe Ni Pb Zn

Diplodus annularis G 1.84± 0.05b 0.34 ± 0.08b 104.30± 0.08b 0.35 ± 0.07a 1.97 ± 0.05c 137 ± 0.03b

L 3.01± 0.11c 1.69 ± 0.02c 240.80± 0.11c 0.90 ± 0.14c 0.28 ± 0.05b 275 ± 0.10c

M 0.761 ± 0.02a 0.11 ± 0.02a 12.20 ± 1.09a 0.66 ± 0.10b 0.17 ± 0.01a 135.77± 2.43a

Solea vulgaris G 3.69± 0.16b 20.43 ± 0.16b 343.22± 1.81b 5.82 ± 0.08b 5.06 ± 0.10c 179.00± 0.94a

L 6.47± 0.26c 40.81 ± 0.06c 563.33± 0.03c 6.42 ± 0.08c 2.27 ± 0.72b 284.90± 1.01c

M 1.03± 0.09a nd 43.50 ± 0.37a 2.22 ± 0.49a 1.85 ± 0.01a 193.00± 0.45b

Liza aurata G 0.30± 0.03b 0.04 ± 0.00b 54.37 ± 0.06b 0.08 ± 0.01a 1.97 ± 0.35c 171.2 ± 0.02c

L 0.55± 0.01c 7.28 ± 1.12c 197.92± 2.61c 3.72 ± 0.84c 0.57 ± 0.14b 127.5 ± 0.06b

M 0.10± 0.05a nd 15.83 ± 0.06a 1.23 ± 0.02b 0.17 ± 0.05a 106 ± 0.21a

Different letters indicate significant differences between tissues a < b < c (P< 0.05)

Tissue concentrations found in dry weight were converted to wet weight by multiplying by a factor of 0.2 (considering average water content in fish
tissues of 80 %)

nd not detected

a b c

d e f

Fig. 3 Distribution maps of Pb (a), Zn (b), Fe (c), Cd (d), Cu (e), and Ni (f) concentrations (mg kg−1 D.W.) in surface sediments
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environment (Connor 1984; Monikh et al. 2013; Naser 2013)
was confirmed in the present study. Therefore, metals bound
to the sediment might be released back into water columns
with changed environmental conditions (Bryan and Langston
1992), resulting in potential long-term implication on human
health and ecosystem.

Heavy metal concentrations in fish tissues

The study of heavy metal concentrations in fish tissues is
crucial when it comes to human consumption. Considerable
variations have been reported by several studies of heavy met-
al accumulation in various tissues of several fish species
which may be related to metabolism and feeding patterns.
The lowest concentrations of metals are shown in the muscle.
The essential metals Cu, Fe, and Zn were accumulated mainly

in the liver, while Pb exhibited the highest concentrations in
the gills.

Differences in metal accumulation in fish tissues are con-
ditioned by some factors depending on the intensity of fish
metabolism. After incorporation into the fish body, heavy
metals were distributed among different tissues via a process
that depends on biological needs (Zubcov et al. 2012).

Cadmium is a non-essential highly toxic and ecotoxic met-
al (Stancheva et al. 2013). It may accumulate in the human
body and may induce skeletal, hepatic, renal, pulmonary, and
reproductive effects and cancer (FAO/WHO 2004). The
highest amount of cadmium was found in the liver of S.
vulgaris (6.47±0.26 mg kg−1 D.W.) and the lowest amount
of Cd was found in the muscle of L. aurata (0.10
±0.05 mg kg−1 D.W.). Our experimental study revealed that,
except for liver of S. vulgaris (1.30 mg kg−1 W.W.), Cd con-
centrations in the selected fishes from the south coast of Sfax

Table 5 Transfer factor
(TF) from sediment and
water and metal load
index

Species Transfer factor and metal load Tissues Metals

Cd Cu Fe Ni Pb Zn

Liza aurata TF sediment G 0.05 0 0 0.01 0.01 0.64

L 0.08 0.54 0 0.31 0 0.48

M 0.02 / 0 0.1 0 0.4

TF water G 2.88 0.01 1.83 0.01 0.62 32.3

L 5.29 2.01 6.65 0.4 0.18 24.06

M 0.96 / 0.41 0.13 0.04 20

Metal laod G 2.31 0.8 2.35 / / 4.97

L 5 1.78 3.5 / / 4.84

M 0.05 / 2.68 / / 8.81

Diplodus annularis TF sediment G 0.28 0.03 0 0.03 0.04 0.51

L 0.46 0.13 0 0.07 0 1.02

M 0.12 / 0 0.05 0 0.51

TF water G 17.69 0.09 3.5 0.04 2.18 25.85

L 28.94 0.47 8.09 0.1 0.09 51.89

M 7.32 / 0.53 0.07 0.05 25.62

Metal laod G 1.45 4.68 3.01 1.94 3.38 5.16

L 0.66 2.52 4.29 4.29 2.15 3.4

M 1.9 / 7.57 6 3.4 3.27

Solea vulgaris TF sediment G 0.56 1.51 0 0.48 0.03 0.67

L 0.99 3.02 0.01 0.53 0.01 1.06

M 0.16 0.01 0 0.18 0.01 0.72

TF water G 35.48 5.63 11.53 0.63 1.58 33.77

L 62.21 11.24 18.92 0.69 0.71 53.75

M 9.9 0.03 1.46 0.24 0.58 36.42

Metal laod G 3.32 2.31 3.97 5.2 0.91 3.97

L 2.15 2.24 1.95 2.41 17.46 3.89

M / 3.67 3.87 1.59 2.13 5.67

Average relativemetal load (ML) is reported; mean concentration of a metal in a tissue divided by the concentration of that
metal in that tissue of unpolluted site (Luza zone)

L liver, G gill, M muscle
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were below the permissible limits 1 mg kg−1 W.W. set by
world human organizations (FAO/WHO 1989), but a long
period of accumulation of Cd in fish may pose health hazards.
Copper is an essential part of several enzymes and is necessary
for the synthesis of hemoglobin (Sivaperumal Sankar et al.
2007; Monteiro et al. 2009). However, high intake of Cu has
been recognized to cause adverse health problem (Flemming
and Trevors 1989; Gorell et al. 1997; Hernández et al. 2006).
Cu concentrations were below the detection limits in the mus-
cle of L. aurata andD. annularis. The highest copper levels in
fish species were found as 40.81±0.06 mg kg−1 D.W. in the
liver of S. vulgaris. Cu concentrations in all tissues of studied
species were below the maximum permitted copper level,
30 mg kg−1 W.W. established by FAO/WHO (1989) and
WHO (1989). Iron is an essential element and has a vital role
in the enzymatic and respiratory processes of fish (Paez-
Osuna and Ruiz-Fernandez 1995); however, it is toxic at high
concentrations (Cairo et al. 2006). In the present study, Fe
concentrations ranged from 563.33 mg kg−1 D.W. (liver, S.
vulgaris) to 12.20 mg kg−1 D.W. (muscle, D. annularis). Fe
concentrations in the liver (112.66 mg kg−1 W.W.) of S.
vulgaris exceed the WHO permissible level 100 mg kg−1

W.W. for safe human consumption (WHO 1989). Lead is a
non-essential element, and it is well documented that Pb can
cause neurotoxicity, nephrotoxicity, and many other adverse
health effects (García-Lestón et al. 2010). The higher average
concentration is measured in the gills (5.06 mg kg−1 D.W.) for
S. vulgaris. This concentration (1.01 mg kg−1 W.W.) is two
times higher than the maximum permitted level 0.5 mg kg−1

W.W. (FAO/WHO 1989). Nickel is an essential element, but it
is a potentially toxic element and can cause variety of pulmo-
nary adverse health effects, such as lung inflammation, em-
physema, tumors, and fibrosis (Forti et al. 2011; Sfakianakis et
al. 2015). In the present investigation, the highest amount of
nickel was found in the gills and liver of S. vulgaris, and it is
below the detection limit in the muscle of L. aurata. The Ni
concentrations in the gills and liver of S. vulgaris (1.16 and
1.28 mg kg−1 W.W., respectively) exceed the maximum per-
mitted level 0.5–1 mg kg−1 W.W. (FAO/WHO 1989). Zinc is
an essential element, known to be involved in most metabolic
pathways in humans, such as the immune system, neurotrans-
mission, and cell signaling (Tuzen 2009), but at high levels,
they can be toxic (Niyogi and Wood 2006). The concentra-
tions of Zn ranged from 284.90±1.01 mg kg−1 D.W. in the
liver of S. vulgaris to 106±0.21 mg kg−1 D.W. in the muscle
of L. aurata. Except for Zn concentration in the liver of S.
vulgaris (56.98 mg kg−1 W.W.), the amount of Zn did not
exceed the FAO/WHO permissible level 40 mg kg−1 W.W.
for safe human consumption (FAO/WHO 1989). As a variety
of metal load (Ni, Pb, and Zn) was found in S. vulgaris, a high
metal load was likewise found in D. annualris and L. aurata.
It thus appears that for good bio-monitoring of environmental
pollution, different species must be analyzed.

Variations in organs ability to accumulate metals

Distribution of pollutants among the various organs within an
organism is heterogeneous, but rather they accumulate in spe-
cific target organs (Terra et al. 2007). The liver has been recom-
mended by many authors as the best environmental indicator,
since the amount of pollutants in fish liver is directly proportion-
al to the degree of pollution in the aquatic environment (Agah et
al. 2009; Messaoudi et al. 2009a; Yilmaz 2009; Tapia et al.
2012). The liver is targeted due to its role in trace metal storage,
redistribution, detoxification or transformation, and importance
to individual fish health (Cizdziel et al. 2003; Licata et al. 2005;
Hasyimah et al. 2011). Fish respond to metal exposure by pro-
ducing metallothioneins (MTs), particularly in the liver (Kargin
1998). The accumulation of essential metals in the liver is likely
linked to its role in metabolism (Zhao et al. 2012); high levels of
Zn and Cu in hepatic tissues are usually related to a natural
binding protein such as MTs (Qadir and Malik 2011) which
act as an essential metal store (Zn and Cu) to fulfill enzymatic
and other metabolic demands (Roesijudi 1996; Amiard et al.
2006). In the same way, Fe tends to accumulate in hepatic tis-
sues due to the physiological role of the liver in blood cells and
hemoglobin synthesis (Korkmaz Görür et al. 2012; Omar et al.
2014). On the other hand, the liver also showed high levels of
non-essential metals such as Cd and Ni; liver tissues are
expressed to be the main site of trace metal detoxification within
fish. High concentrations of Cd could be explained by the ability
of this element to displace the normally MT-associated essential
metals in hepatic tissues (Amiard et al. 2006). Similar results of
high Fe, Zn, Cu, and Cd in the liver were observed inmany field
studies (Dural et al. 2007; Zhao et al. 2012; El-Moselhy et al.
2014). Gills are the main route of metal ion exchange from
surrounding seawater (Romeo et al. 1999; Farkas et al. 2003;
Qadir andMalik 2011) as they have very large surface areas that
facilitate rapid diffusion of metals (Farkas et al. 2003; Dhaneesh
et al. 2012). High concentration of various metals in the gills
could be due to the element complexing with the mucus, which
has an affinity to be bound with metal ions (Usero et al. 2004;
Doraghi et al. 2011). The lowest metal values were found in the
muscle; this may be due to the fact that the muscle is not an
active tissue in the accumulation of heavy metals (Karadede et
al. 2004; Tekin-Özan and Kir 2008; Ebrahimpour et al. 2011).
Although fish muscle tended to accumulate low concentrations
ofmetals, it is important to compare these to known safety levels
because the muscle constitutes the greatest edible part of the fish
(Yilmaz 2003; Storelli et al. 2006; Castro-González and
Méndez-Armenta 2008; Zhuang et al. 2013; Ben Salem et al.
2014). In the present study, the amounts of studied heavy metals
are higher than those reported by other studies in the
Mediterranean Sea. Thus, the concentrations of Cd, Pb, Fe,
Cu, Ni, and Zn in the muscle of L. aurata are higher than those
found by Ketata Khitouni et al. (2014, Gabes gulf area), Ersoya
and Celik (2009, Iskenderun Bay). D. annularis show high
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concentrations of Pb and Fe than those reported by Ersoya and
Celik (2009, Iskenderun Bay). For S. vulgaris, Cd concentra-
tions in the gills and liver were slightly higher than those
founded by Barhoumi et al. (2009, Gabes gulf area).

Inter-specific variations in metal accumulation

Previous researchers highlighted that there were differences be-
tween metal levels in studied species and concluded that this
aspect was very significant from both an ecotoxicological view
point and concerning public health risks associated with their
consumption (Storelli et al. 2006). It is very difficult to compare
metal concentrations, even between the same tissues of two dif-
ferent species, because of different feeding habits (as S. vulgaris
feed on a wide variety of prey types, copepods, polychaetes,
algae, mollusks, seagrasses, and amphipods with frequent quan-
tities of sediments (El-mor and Ahamed 2008)), L. aurata feed
mostly on zooplankton and D. annularis feeding preferentially
on gastropods and small crustaceans (Pita et al. 2002), ecological
needs, metabolisms, types of tissues analyzed, differences in the
aquatic environment concerning the type and levels of water
pollution, and other factors (Valle et al. 2003; Oliveira et al.
2010; March et al. 2011; Kucuksezgin et al. 2014).

In our findings, the concentrations of trace metals in fish
samples indicate that S. vulgaris seemed to be more contam-
inated than were other fish species, followed by D. annularis
and L. aurata. Unlike others, S. vulgaris appeared to tend to
concentrate large amounts of Cu, Ni, and Pb, demonstrating a
potential as a bio-indicator of pollution of the coastal ecosys-
tems. These observations are mainly due to different fish hab-
itats (S. vulgaris is a benthic species whileD. annularis and L.
aurata are benthopelagic and pelagic species, respectively)
and surrounding ecosystem status. In agreement with
Bustamante et al. (2003) who has suggested that benthic fish
are likely to have higher heavy metal concentrations than fish
inhabiting the upper water column because they are in direct
contact with the sediments. One important implication of our
findings is related to the levels of the essential elements, nor-
mally considered as essential to living organisms, although
almost all become toxic when present at high levels. Indeed,
several attentions may be given to the non-essential elements
to prevent toxic effect and ensure safe human consumption.

Transfer factors and metal load

ATF greater than 1 indicates bioaccumulation (Kalfakakou and
Akrida-Demertzi 2000; Rashed 2001). Zinc was found to be
highly accumulated in the fish species of the present study,
and it is attributed to the high amounts of domestic and industrial
wastes from the surrounding inputs. The high TFwater of Zn
(53.75) and Cd (62.21) signify slow accumulation and their
potentiality for chronic effects and accretion in the food chain
of organisms (Jayaprakash et al. 2015; DeForest et al. 2007).

According to the TFwater values, the species could be or-
dered as S. vulgaris<D. annularis<L. aurata. According to
Dallinger (1993), the fish species can be classified based on
the TFsediment values which include the macroconcentrator
(TFsediment > 2), microconcentrator (1 < TFsediment < 2) and
deconcentrator (TFsediment < 1). Our results revealed that D.
annularis and L. aurata are deconcentrators and S. vulgaris
can be considered as macroconcentrator. Thus, the species S.
vulgaris with the highest (3.02) TFsediment would be consid-
ered as a potential bio-indicator in the south coast of Sfax for
the assessment of environmental pollution status. The metal
load (ML) exceeding one, namely in the muscle of the studied
fish. The highest ML values were recorded in gills of D.
annularis for Zn (5.16), in the liver of S. vulgaris for Pb
(17.46), and in the muscle of L. aurata for Zn (8.81). These
results highlight the enrichment of the fishes from the south
coast of Sfax on heavy metals especially on Pb and Zn in
comparison with Luza zone.

Conclusion

The south coast of Sfax as an important ecosystem has received
an increased attention due to its obvious role on the fishery. This
study evaluated the levels of metal accumulation in water and
sediment and gills, liver, and muscle of the three fishes S.
vulgaris, L. aurata, and D. annularis. Concentrations in sedi-
ment were generally higher than in water, and based on the
comparison with sediment quality guidelines (SQGs), Cd, Fe,
Pb, and Zn exceed PEC values causing adverse effects on
sediment-dwelling organisms. Bioaccumulation of heavymetals
in seafood is a major health concern worldwide. The metal
content in fish liver and gills was considerably higher than in
muscle. Concentrations of Fe and Zn were higher than Cd, Cu,
Pb and Ni in tissue analyses. Given that concentrations in fish
tissues reflect the environmental conditions in fish habitat (ex-
cept for Cd, Pb, and Ni), we can presume that the south coast of
Sfax is heavily loaded with Fe and Zn. Indeed, the metal load
index indicates that the study site is submitted on Pb and Zn
pollution. Thereby, the fish resources were threatened by metal-
lic pollution. Our results showed that metal accumulation varied
between species depending on species-specific factors like feed-
ing behavior, fish habitat, and surrounding ecosystem status that
caused variation in metal accumulations between fish. Further
investigations remain necessary to identify the probable health
hazards for the people in the Sfax city who consume more
seafood than an average inhabitant.
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