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Abstract Constructed wetlands are ecosystems that use
plants and microorganisms to remediate pollution in soil and
water. In this study, two parallel pilot-scale vertical flow wet-
land and horizontal flow wetland (VF-HF) systems were im-
plemented to investigate the treatment performance and mi-
croorganism community structure in the secondary effluent of
an industrial park wastewater treatment plant (WWTP) with a
loading rate of 100 mm/day near the Yangtze River in Suzhou
City, East China. Removal efficiencies of 82.3, 69.8, 77.8, and
32.3 were achieved by the VF-HF systems for ammonium
nitrogen (NH4

+-N), total nitrogen (TN), total phosphorus
(TP), and chemical oxygen demand (COD), respectively.
The VF system specialized in COD and NH4

+-N removal
(73.6 and 79.2 %), whereas the HF systemmainly contributed
to TN removal (63.5 %). The effluents in all seasons are ca-
pable of achieving the “surface water environmental quality
standard” (GB3838-2002) grade IV. In the VF system, the 16S
gene and nirK gene were significantly correlated with depth,
with the 16S gene showing significant correlations with the
dissolved oxygen (DO) level (r=0.954, p<0.05), which was
determined by real-time PCR and high-throughput sequenc-
ing. Many types of bacteria capable of biodegradation, includ-
ing nitrifiers, denitrifiers, and polyaromatic hydrocarbon

(PAH) degraders (improvement of the BOD5/COD ratio),
were observed, and they contributed to approximately 90 %
of the nitrogen removal in the VF-HF system.
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Introduction

Constructed wetlands (CWs) are artificial ecosystems (Saeed
and Sun 2012; Vymazal 2013; Zhang et al. 2012) which in-
clude a microbial community, substrate, and plants to remedi-
ate pollution in soil and water (De Jong 1976; Brix 1994a, b;
Vymazal 2005a, 2009). CWs can be employed to treat a vari-
ety of wastewaters with success, such as municipal or domes-
tic wastewater (Hamouri et al. 2007; Trang et al. 2010), storm
water, and agricultural wastewaters (Greenway 1997; Merlin
et al. 2002). Over the past two decades, the application of
CWs has also extended to industrial wastewaters (Vymazal
2014) generated by the petrochemical industry (Chapple
et al. 2002; Kadlec and Wallace 2009), pulp and paper indus-
try (Abira et al. 2005; Choudhary et al. 2010), tannery industry
(Calheiros et al. 2012; Chen et al. 2006; Hadad et al. 2006),
textile industry (Dos Santos et al. 2007; Sharma et al. 2007;
Davies et al. 2005), alcohol fermentation industry (Anastasiou
et al. 2009; Rochard et al. 2002), and food processing industry
(Gasiunas et al. 2005).

There are four types of CWs for wastewater treatment: free-
floating plants (FFP), free water surface and emergent macro-
phytes (FWS), horizontal subsurface flow (HSSF, HF), and
vertical subsurface flow (VSSF, VF) (Vymazal 2001;
Vymazal 2005b). FWS systems are not used as frequently as
HF or VF systems despite being one of the oldest designs in
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Europe (Brix 1994a; Vymazal 2001). VF systems provide
good conditions for nitrification but not for denitrification.
HF systems, however, can perform denitrification because of
their limited capacity to transfer oxygen (Vymazal 2005b). In
combined systems, the advantages of the HF and VF systems
can be combined to complement each other, especially in VF-
HF hybrid CWs, which can produce an effluent that is low in
BOD5, fully nitrified and partly denitrified, thus
resulting in much lower total nitrogen (TN) concentra-
tions (Cooper 1999).

Currently, industrial parks play a significant role in the
development of China’s economy and society (Bai et al.
2014; Shi and Yu 2014). The secondary effluent treatment of
industrial park wastewater treatment plants (WWTPs) cannot
achieve the receiving water body standard (“surface water
environmental quality standard” (GB3838-2002) grade IV)
because of a lack of effective advanced treatment technology.
Different advanced treatment technologies have been investi-
gated, including activated carbon adsorption (Pramanik et al.
2014, 2015), advanced oxidation processes (AOPs) (Zhao
et al. 2014; James et al. 2014), ultrafiltration (UF) (Urtiaga
et al. 2013), nanofiltration membranes (NF) (Aryal et al.
2015), and reverse osmosis (RO) (Yang et al. 2015; Meng
et al. 2014); however, secondary effluent treatment for indus-
trial park WWTPs requires high investment and maintenance
costs. Among wastewater treatment technologies, CWs exhib-
it great advantages in terms of their low required investments
and operation costs, high removal efficiency of N and P, and
limited secondary pollution. The secondary effluent treatment
of industrial park WWTPs is usually characterized by low
biological degradability, high refractory organic matter, and
variable water quality and quantity, which are difficult to ef-
fectively treat with single CWs. Nitrogen removal from the
secondary effluent of industrial park wastewater becomes
more difficult under severe conditions (such as a low COD/
TN ratio). Therefore, a more effective integrated process
should be constructed to accumulate an enhanced microbial
community for better performance.

Microbial activities are recognized as a major contributor
to the removal of wastewater nutrients, especially nitro-
gen. However, little is known of the critical roles played
by various microbial communities, especially for the
spatial evolution of microbial information in the com-
bined processes (Caselles-Osorio and García 2006;
Petitjean et al. 2012). Real-time PCR can effectively
investigate functional gene density in the CWs but can-
not reveal the associated microbial communities. High-
throughput sequencing (HTS) techniques have shown
great potential for analyzing microbial communities be-
cause of their unprecedented sequencing depth (Breitbart
et al. 2009; DeLong et al. 2006); however, quantifying
and determining correlations with other factors, such as
dissolved oxygen (DO) and organic loads, are difficult

with this technology. Thus, only a combination of mul-
tiple technologies can reveal detailed microbial informa-
tion on CWs.

Therefore, we implemented two parallel pilot-scale VF-HF
systems to investigate the treatment performance and micro-
organism mechanisms of CWs used to treat the secondary
effluent from an industrial park WWTP near the Yangtze
River in Suzhou City, China. Our objectives were to (i) deter-
mine the removal efficiencies of the VF-HF systems for the
secondary effluent treatment of the industrial parkWWTP and
(ii) provide a better understanding of the spatial evolution of
microbial community and the biological mechanisms of spa-
tial nitrogen reduction in VF-HF systems.

Methods and materials

Experimental design

The experiment was set up at the industrial park WWTP (N
31°47′26.23″, E 120°47′50.97″) near the Yangtze River in
Suzhou City, East China. The study site has a typical subtrop-
ical monsoon climate characterized by four distinct seasons
(spring from March to May; summer from June to August;
autumn from September to November; winter fromDecember
to February), a mild climate (average annual temperature of
15.4 °C), and abundant rainfall (average annual rainfall of
1054 mm).

Outdoor mesocosms were set up as VF-HF systems.
Po l yme thy l me th a c r y l a t e VF t ank s ( 0 . 49 m3 :
70 cm×70 cm×100 cm) were filled with three layers of grav-
el (particle size: 0.5–3.0 mm; hydraulic conductivity:
0.068 cm/s; layer thickness: 75 cm) at the top and rock (par-
ticle size 8–16 mm; hydraulic conductivity: 15.77 cm/s; layer
thickness: 15 cm) placed at the bottom (Fig. 1).
Po lymethy l methac ry la t e HF tanks (0 .35 m3:
50 cm×100 cm×70 cm) were filled with one layer of
gravel (particle size: 0.5–3.0 mm; hydraulic conductivi-
ty: 0.068 cm/s; thickness: 40 cm) (Fig. 1). Young (1 year
old) reed plants (P. australis) were planted as a mono-
species during spring in both the VF and HF tanks at a
density of 16 strains/m2, and there were 8 strains in
each tank. Immediately after the transplantations, the
VF-HF systems were filled with the secondary effluent
from the industrial park WWTP (Table 1). Both
mesocosms were monitored from March 2013 to
July 2014.

The secondary effluent from the industrial park WWTP
was induced intermittently into the VF-HF systems each day
to yield a hydraulic loading rate (HLR) of 100 mm/day during
the start-up stage and operation period. The pH of sec-
ondary effluent ranged from 7.0 to 9.0, and the DO was
about 6.0 mg/L.
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Sample collection

Twelve sampling points along the VF-HF systems (Fig. 1)
were used to investigate the spatial evolution of the pollutants,
and these points were labeled Vinf, V1, V2, V3, V4, and Vefl in
the VF system and Hinf, H1, H2, H3, H4, and Hefl in the HF
system. The VF-HF systems influent and effluent were sam-
pled approximately three times a week. Microorganism sam-
ples were collected from sampling points V1, V2, V3, V4, H1,
H2, H3, and H4, and the biomass attached to the gravel was
subjected to microbial community analysis and gene
quantification.

The water samples were stored at −20 °C and transported in
an ice box. The microorganism samples (biofilm attached to
the substrates) were collected at the specified sites in the VF-
HF systems and stored at −80 °C.

Water quality analysis

The chemical oxygen demand (COD), biological oxygen de-
mand (BOD5), total nitrogen (TN), ammonium nitrogen
(NH4

+-N), nitrate nitrogen (NO3
−-N), nitrite nitrogen (NO2

−-

N), and total phosphorus (TP) were determined according to
standard methods (APHA 2005).

The DO, pH, and total dissolved solids were recorded using
oxygen meters (HQ30d, HACH, Loveland, Colorado, USA),
pH meters (PHS-3D, Shanghai Precision & Scientific
Instrument Co., Ltd., Shanghai, China), and total dissolved
solids (TDS) meters (SX650, Shanghai Sanxin Instrument
Factory, Shanghai, China).

Real-time PCR assays

The denitrifying bacteria were quantified by nirK gene-
targeted real-time PCR, which codes a type of nitrite
reductase wi th copper. Two pr imers , nirK876
( AT YGGCGGVAYGGCGA ) a n d n i r K 1 0 4 0
(GCCTCGATCAGRTTRTGGTT), were used. The con-
ditions for nirK real-time PCR assays were 120 s at
50 °C and 900 s at 95 °C for enzyme activation. Six
touchdown cycles were performed: 15 s at 95 °C, 30 s
at 63 °C, and 30 s at 72 °C (also for the data acquisi-
tion step). The annealing temperature was progressively
reduced by 1 °C. Finally, a cycle with an annealing
temperature of 58 °C was repeated 40 times (Henry
et al. 2004). Quantification of the AOB (nitrifying bac-
teria) was characterized by amoA genes targeted real-
t i m e P C R u s i n g t h e p r i m e r s a m o A - 1 F
(GGGGTTTCTACTGGTGGT ) a n d amoA - 2R
(CCCCTCKGSAAAGCCTTCTTC) (Peralta et al.
2010). The experimental conditions were 900 s at
95 °C, 40 cycles of 15 s at 95 °C, 30 s at 63 °C,
and 30 s at 72°. One last step from 60 to 95 °C with
an increase of 0.2 °C/s was added to obtain a specific
denaturation curve for all of the experiment.

Plasmids (pEASY-T1 Cloning Kit, Transtaq) contain-
i n g c l o n e d 1 6 S g e n e s ( V 3 r e g i o n , 3 3 8 f :
C C T A C G G G A G G C A G C A G , 5 1 8 r :
ATTACCGCGGCTGCTGG), nirK genes, or amoA
genes (which were cloned to DH5α before plasmid

Fig. 1 Diagram of the VF-HF
systems

Table 1 Characteristics
of the influent Parameter Mean value ± SD

COD (mg/L) 35.90 ± 10.30a

BOD5 (mg/L) 7.34 ± 1.22

TN (mg/L) 4.71 ± 1.75

NH4
+-N (mg/L) 2.46 ± 1.21

NO3
−-N (mg/L) 1.21 ± 0.26

TP (mg/L) 0.123 ± 0.108

Cl− (mg/L) 1297.68± 144.18

TDS (mg/L) 3055± 65

pH 7.41 ± 0.36

a The data was presented as mean value
± standard deviation
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extraction) were used to draw standard curves (r2 > 0.99
for all genes; amplification efficiencies were 100.4,
99.1, and 97.1 % for the 16S genes, nirK genes, and
amoA genes, respectively).

High-throughput sequencing of the 16S rRNA gene

To better understand the spatial evolution of the bacte-
rial communities along the VF-HF, MiSeq (HTS of the
16S rRNA gene) was conducted. After PCR amplifica-
tion over 20 cycles, the sequencing and data analysis
were performed by the Jiangsu Zhongyijinda Analytical
& Testing Co., Ltd. The assemblage of species in each
functional group was selected based on previous reports
(Seviour and Nielsen 2010). Heat maps and cluster anal-
yses were obtained using the R programming language
(R 3.1.0). Typical genera that have known associations
with denitrification were a focus of the calculations and
analysis.

Statistical analysis

The statistical analysis was performed using the SPSS
17.0 software package for Windows. A two-sided t test
was used to detect any significant differences in the
mean influent and effluent values between different pa-
rameters as well as the pollutant removal efficiencies of
the two wetland microcosms, with p< 0.05 defined as a
significant difference according to the Pearson correla-
tion analysis.

Results

Pollutant removal and nitrogen transformation

The VF-HF systems were implemented in June 2013 and
became stable in August 2013 (approximately 3 months).
During the operational period, the pollutant removal effi-
ciency exhibited a positive correlation with temperature
( seasona l va r i a t i on ) and presen ted a t r end of
summer > autumn> spring >winter. However, the effluents
in all seasons could reach the “surface water environmen-
tal quality standard” (GB3838-2002) grade IV (COD,
BOD5, NH3-N were 30 mg/L, 6 mg/L, 1.5 mg/L).

(1) COD removal The mean influent concentration of COD
was 35.9mg/L, the mean effluent concen-
tration of COD was 24.1 mg/L, and the
mean removal rate of COD was 32.3 %.
From the overall trend, COD removal was
the first parameter to decrease, with the

lowest values in winter and the highest
values in summer (Fig. 2).

(2) Nitrogen removal
and transformation

The mean influent concentration of
NH4

+-N was 2.46 mg/L, the mean
effluent concentration of NH4

+-N
was 0.42 mg/L, and the mean re-
moval rate of NH4

+-N was 82.3 %
(Fig. 3), which is higher than the
rates previously reported by Zhai
et al. (2011) (71.7 %).

The mean TN removal efficiency
was 69.8 %, which is higher than
that previously reported by Ong
et al. (2009) (60–67 %). Although
different nature of wastewater as
well as the CW configuration can
influence removal performances,
the VF-HF systems applied in this
study exhibited satisfying nitrogen
removal ability. Throughout the ex-
perimental period, the average efflu-
ent TN concentration was 1.34 mg/
L (Fig. 3), the denitrifier density was
much higher in the HF than in the
VF, and the HF was responsible for
63.5 % of the TN removal.

(3) TP removal As shown in Fig. 4, the mean removal effi-
ciency of TP was 77.8 % and the mean ef-
fluent concentration was 0.02 mg/L. The
most effect removal of P occurred with the
quartz sand matrix, which is consistent with
previous reports (Saeed and Sun 2011).

Spatial reduction of pollutants and distribution
of functional genes

The spatial reduction of nitrogen and organics was further
investigated by analyzing the removal efficiencies at different
spatial sites of the VF-HF systems. Additionally, the microor-
ganism abundance of different functional genes that play key
roles in pollutant removal (Peralta et al. 2010) was also ana-
lyzed to reveal any interrelationships.

The best performance in summer for the entire VF-HF
system was analyzed, and Fig. 5 presents the spatial reduction
of COD, NH4

+-N, and TN and the functional gene abundance
of the 16S, amoA, and nirK genes, which were used to ap-
proximate the total eubacteria, nitrifiers, and denitrifiers,
respectively.

A reduction in the CODmainly occurred in the VF system,
which accounted for 73.6 % of the total COD reduction.
Moreover, the VF system contributed to 79.2 % of the

Environ Sci Pollut Res (2016) 23:10990–11001 10993



NH4
+-N removal. This indicates that the VF system (especial

for V1 and V2 parts) was significant in COD and NH4
+-N

removal in the integrated CWs. Correspondingly, the HF sys-
tem was significant in TN removal and accounted for 63.5 %
of the TN removed. The removal of these pollutants was pri-
marily related to microorganism effects, including the enrich-
ment of total eubacteria, nitrifiers, and denitrifiers.

Furthermore, Fig. 5 indicates that correlations occurred
among the abundance of different functional genes, the dis-
tance (along the water direction) and concentration of DO. In
the VF, the eubacteria and nitrifierswere mainly distributed at
the surface layer (V1 site), and this was most likely caused by
the oxygen concentration in the CWs. The nitrifiers showed
an especially high correlation with the DO concentration.
However, the denitrifiers were mainly enriched in the HF,
and the detailed correlation analysis is presented in discussion
part.

Spatial evolution of the microbial community

In addition to the functional gene analysis, determining the
spatial distribution of microbial communities is an effective
method of revealing CW biodegradation mechanisms, which
include the removal of nitrogen and organics. These spatially
distributed samples were further analyzed by HTS of the 16S

rRNA gene, which helped produce a greater understanding of
the bacterial diversity in these systems compared with the
results of previous studies that have utilized conventional mo-
lecular technologies (Ramond et al. 2012).

Figure S1 showed that the Proteobacteria, Bacteroidetes,
and Actinobacteriawere dominant category, which accounted
for over 80 % in V1-V4. And the abundance of Proteobacteria
was increased from V1 (36.19 %) to V4 (64.35 %). For HF,
these three phyla also took up over 80 %, while the
Proteobacteria abundance variation from H1 to H4 was not
obvious.

Figure 6 shows the microbial community structures
(heat map) in the VF-HF systems. Haliscomenobacter
and Pseudomonas were the most dominant genera of the
VF and HF systems and featured abundances of 5–10 %
and 8–12 %, respectively. Obvious variation trends in the
abundance of certain functional microbial communities
were observed with distance, especially in the VF system.
According to the cluster analysis, V1 and V2 were similar
but exhibited great differences relative to V3 and V4 (sim-
ilar results were observed in the HF system). The micro-
bial community investigation and cluster analysis can help
to distinguish function modules and present more coherent
microbial information compared with the analysis of the
entire system (Adrados et al. 2014).
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Although recent reports have applied HTS technology to
reveal the microorganisms of CWs and produce accurate

accounts of the dominant communities (Arroyo et al. 2015),
analyses of the functional community groups in CW are
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lacking, and additional investigations must be performed to
provide detailed information on the relationships of these
groups with pollutant removal. In this study, the functional
microorganisms were further classified into functional
groups (Fig. 7), and their variation trends (abundance)
were analyzed along with the influent. The MiSeq analysis
identified a number of functional microorganisms (at the
genus level) related to pollutant removal, including
Aminobacter (related to ammoniation); Nitrosococcus,
Nitrobacter, and Nitrospira (related to nitration);
Acidovorax, Azoarcus, Rhodobacter, Thauera, etc. (related
to denitrification); Rhizobium, Bradyrhizobium, etc. (related
to fixation of nitrogen); Thiobacillus and Sulfurimonas (re-
lated to desulfuration); and Novosphingobium (related to
polyaromatic hydrocarbon (PAH) degradation).

The concentration of PAH-degrading bacteria in the effluent
(Fig. 7a, abundance as high as 1.4 %) indicated that PAH pol-
lutants still remained in the tail water, which was because the
water originated from an industrial park. Moreover, the PAH-
degrading bacter ia were dis t r ibuted as fol lows:
V1<V2<<V3<V4. This order demonstrates that the PAHswere
most likely degraded at the bottom of the VF system. Figure 7b
shows the distribution of the Aminobacter community, and the
highest abundance of 1.0 % was observed at site V4.

The nitrifiers were distributed as follows: V1>V2>V3>V4

(Fig. 7c). The highest abundance of nitrifiers was 4.4 % at V1,
which represents the oxygen-rich surface of the VF system
(DO=3.7 mg/L). The variation trend was similar to that ob-
served by Wang et al. (2012); however, differences in the dom-
inant nitrifiers were observed, with Nitrosomonas observed by

Wang et al. and Nitrosococcus observed in this study. In addi-
tion, a higher biodiversity of nitrifiers was obtained in this study
compared with that of Adrados et al. (2014), and this
diversity indicated a higher potential for NH4

+-N re-
moval. The higher abundance of nitrifiers in the system
was partially caused by the optimal pH (7.41 ± 0.36) of
the influent because nitrifiers are most active in a pH
range of 7.0–7.8 (Liang et al., 2003).

The highest denitrifier abundance was approximately 18 %
(Fig. 7d), which was much higher than the abundance ob-
served in natural wetlands (Peralta et al. 2010). This result
also indicated that the VF-HF systems achieved enhanced
nitrogen removal over long periods of microorganism
enrichment.

Discussion

Correlation analysis between pollutant reduction
and microorganism communities in the VF-HF system

Microorganisms play a key role in reducing pollutants in
CWs, and correlation analyses between microorganisms and
other factors within CWs may help evaluate and estimate the
potential of these environments, which has recently earned
increased attention. Höfferle et al. (2010) demonstrated that
nitrifying genes exhibited a significant correlation with CW
depth. Peralta et al. (2010) confirmed that the microbial com-
munities of CWs exhibited a great correlation to the C/N ratio.
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However, a more thorough analysis of the relationship among
the CW spatial location, environmental factors, and microor-
ganisms has not been performed.

Figure 5 shows the variation of functional genes along with
certain environmental factors, such as distance (water direc-
tion) and DO level.

The Pearson correlation analysis showed that in the VF
system, the 16S gene and nirK gene were significantly
correlated with depth (r= 0.995, p< 0.01 for 16S, and
r=0.97, p<0.05 for nirK gene), which indicates that the
ability to remove COD and TN varies gradually with the
increasing depth. However, the amoA gene did not show a

Water direction

Water direction

(a)

(b)

(c)

Fig. 5 The spatial reduction on
nitrogen and organics removal in
the VF-HF systems. a Spatial
reduction of COD and 16S genes
abundance. b Spatial reduction of
NH4

+-N and amoA genes
abundance. c Spatial reduction of
TN and nirK genes abundance
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significant correlation with the depth, which is inconsistent
with the results of a previous study (Höfferle et al. 2010).
Instead, the abundance of the amoA gene, which indicated

an enhanced NH4
+-N removal ability, varied sharply from

the surface to deeper sites in the VF system, which is
shown in Fig. 5c.

Fig. 6 Heatmaps of the microbial community structures in VF-HF systems, showing different genus based on the 16S rRNA reads

(a) (b) 

(d)(c)

Fig. 7 a The abundance variation of PAHs degrading bacteria. b Aminobacter variation. c Nitrifiers variation. d Denitrifiers variation
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In addition, the VF system was typically characterized by a
good oxygen supply (Saeed and Sun 2012), which was sig-
nificantly correlated to microorganism activity as well as the
removal of organics and nitrogen. The 16S gene exhibited a
highly significant correlation with the DO concentrations
(r=0.999, p<0.001), which indicates that the DO most likely
determined the total growth rate of eubacteria and removal of
COD. The nitrogen removal-related genes did not show sig-
nificant correlations with the DO concentration, which indi-
cates that nitrogen removal in the VF system was determined
by factors other than DO, such as the NH4

+-N concentration
(Sims et al. 2012).

For the HF system, the amoA gene abundance exhibited a
more significant correlation with distance (along the water
direction, r=0.954, p<0.05) relative to the nirK gene, which
had a greater likelihood of being affected by the location of
plants (Chen et al. 2014). Moreover, the 16S gene showed a
more significant correlation to the DO (r=0.976, p<0.05)
than did the amoA and nirK genes, which is similar to the
results for the VF system. This result also confirmed that the
nitrogen removal rate was reliant on the DO level as well as
other factors, such as the rate of nitrogen loading and effect of
plant roots.

Therefore, nitrogen removal, which was enhanced in the
VF-HF systems, was dependent on DO concentrations as well
as mechanisms that are more complex and require further
discussion.

Enhanced nitrogen removal in the VF-HF system

The combination of “VF-HF” systems has been characterized
by a high nitrogen removal ability (Saeed and Sun 2012). Our
integrated VF-HF system showed a much higher nitrogen re-
moval efficiency relative to other studies on industrial waste-
water (Table 2), which indicates that the VF-HF system in this
study was enhanced. The lower COD of the influent and the
C/N ratio caused low COD removal efficiencies in this study
(Table 2); however, this result confirmed the high nitrogen
removal rate when presented with a low carbon source.

According to the performance difference between the start-
up period (no microorganism participation) and stable

operational period (with microorganisms participation,
Fig. 3), the microorganisms play the key role in pollutants
removal, especially for the enhanced nitrogen removal, and
the four functional groups in Fig. 7 are related to nitrogen
removal in the VF-HF systems, and they all have relatively
high abundance.

It can be observed that the nitrifier mainly distributed at the
surface of the system, and its abundance gradually decreased
in the VF system but slightly decreased in the HF system,
which was mainly caused by DO variations in the systems
(Fig. 5). However, the abundance of denitrifiers gradually in-
creased in both the VF and HF systems, whichmainly resulted
from the changes in the DO and organics concentrations (pro-
duced by hydrolysis bacteria).

Saeed and Sun (2012) reviewed the biological nitrogen
removal mechanisms of CWs, including ammonification, ni-
trification, denitrification, and other recently discovered effec-
tive nitrogen removal routes, such as partial nitrification-
denitrification and anammox. In the study presented here, a
limited community was observed for the newly effective
routes, although this community improved the nitrogen re-
moval efficiency because it contained PAH-degrading bacte-
ria. Figure 7a shows that the abundance of Novosphingobium
(related to PAH degradation) was as high as 1.4 % at the
bottom of the VF system. These types of bacteria are seldom
found in CWs (Zhao et al. 2011) but were especially enriched
in the VF system in this study (Fig. 7a), which indicates that
certain PAHs remained in the tail wastewater and suggests that
our VF-HF systems became adapted to the wastewater after a
long period of operation. These bacteria degraded the
nonbiodegradable pollutants into smaller compounds that
were more easily utilized by microorganisms. Therefore,
based on the VF component, the BOD5/COD ratio (B/C)
was elevated from 0.12 to 0.27, which was not only conve-
nient for COD removal but also enhanced nitrogen removal
because a superior carbon resource was provided for
denitrification.

Figure 5b, c shows that the VF system was critical to nitri-
fication, and the HF system was primarily responsible for
denitrification. According to the cluster analysis and the
denitrifying bacteria abundance, the entire system can be

Table 2 Removal efficiencies of different industrial wastewater treatment with similar treatment systems

Type of wastewater HLR
(mm/day)

Treatment system Removal efficiencies (%) Reference

COD NH4
+-N TN TP

Secondary effluent treatment of industrial park WWTP 100 VF-HF systems 32.3 82.3 69.8 77.8 This study

Dairy/cheese 100 VF-HF systems 72 –a 50 30 (Comino et al. 2011)

Textile 12.5 VF-HF systems 84 – 52 – (Bulc et al. 2006)

Mixed industrial – VF-HF-VF systems 67 24 – 62 (Zupančič Justin et al. 2009)

a Not available in the reference
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divided into two functional modules. V1 and V2 can spatially
be considered the “nitrifying modules,” and they promote the
B/C ratio for improved denitrification, whereas V3, V4, and
H1-4 can be regarded as the “denitrifying modules.” Each
module performs its own functions with higher efficiency.
Divisions based on the community structure are more scien-
tific than divisions based on the spatial structure because spe-
cific types of microorganisms played important roles in re-
moving pollutants from the VF and HF systems.

Conclusions

Mean removal efficiencies of 82.3, 69.8, 77.8, and 32.3 %
were achieved for NH4

+-N, TN, TP, and COD, respectively,
by the VF-HF system, which treated the secondary effluent of
an industrial park WWTP at a loading rate of 100 mm/day.

The spatial distribution of the functional gene abundance
was correlated with the distance and DO level of the VF-HF
systems. In the VF system, the 16S gene and the nirK gene
were significantly correlated with depth, and the 16S gene
exhibited a highly significant correlation with the DO level
(r=0.954, p<0.05).

The microbial community analysis at different spatial loca-
tions showed a high abundance of nitrifiers and denitrifiers
and certain B/C improvement bacteria, and these communities
accounted for approximately 90 % of the nitrogen removal in
the VF-HF system.
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