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Abstract Methylation and demethylation represent major
transformation pathways regulating the net production of
methylmercury (MMHg). Very few studies have documented
Hg reactivity and transformation in extreme high-altitude lake
ecosystems. Mercury (Hg) species concentrations (IHg,
MMHg, Hg°, and DMHg) and in situ Hg methylation (M)
and MMHg demethylation (D) potentials were determined in
water, sediment, floating organic aggregates, and periphyton
compartments of a shallow productive Lake of the Bolivian
Altiplano (Uru Uru Lake, 3686 m). Samples were collected
during late dry season (October 2010) and late wet season

(May 2011) at a north (NS) and a south (SS) site of the lake,
respectively. Mercury species concentrations exhibited signif-
icant diurnal variability as influenced by the strong diurnal
biogeochemical gradients. Particularly high methylated mer-
cury concentrations (0.2 to 4.5 ng L−1 for MMHgT) were
determined in the water column evidencing important Hg
methylation in this ecosystem. Methylation and D potentials
range were, respectively, <0.1–16.5 and <0.2–68.3 % day−1

and were highly variable among compartments of the lake, but
always higher during the dry season. Net Hg M indicates that
the influence of urban and mining effluent (NS) promotes
MMHg production in both water (up to 0.45 ng
MMHg L−1 day−1) and sediment compartments (2.0 to
19.7 ng MMHg g−1 day−1). While the sediment compartment
appears to represent a major source of MMHg in this shallow
ecosystem, floating organic aggregates (dry season, SS) and
Totora’s periphyton (wet season, NS) were found to act as a
significant source (5.8 ng MMHg g−1 day−1) and a sink
(−2.1 ng MMHg g−1 day−1) of MMHg, respectively. This
work demonstrates that high-altitude productive lake ecosys-
tems can promote MMHg formation in various compartments
supporting recent observations of high Hg contents in fish and
water birds.
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Introduction

Methylmercury (MMHg) is considered as a potent neurotoxin
and represents a significant health concern (Allen et al. 2002).
Human MMHg exposure is mainly controlled by the con-
sumption of fish products (Fitzgerald and Clarkson 1991;
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UNEP 2013). MMHg can be produced in different compart-
ments of the aquatic ecosystem as influenced by biogeochem-
ical conditions (Fitzgerald and Lamborg 2004; Hintelmann
2010). In aquatic ecosystems, Hg methylation may take place
in the anoxic zone (Eckley and Hintelmann 2006) or oxic zone
(Bouchet et al. 2013; Monperrus et al. 2007; Ribeiro Guevara
et al. 2008), in the first few centimeters of sediments (Bouchet
et al. 2013; Hollweg et al. 2009) and in the periphyton mainly
associated with the roots of aquatic plants (Gentès et al. 2013;
Guimarães et al. 2000). The mechanisms of mercury methyl-
ation (M) mainly involve microbial processes linked to the
activities of various communities such as sulfate- and/or
iron-reducing bacteria (Barkay and Wagner‐Döbler 2005;
Compeau and Bartha 1984) and, to a lesser extent, abiotic
processes (Craig and Morton 1978; Weber 1993). Overall,
net production rates of MMHg, and its bioaccumulation in
the food chain of aquatic systems, is drastically regulated by
such transformation processes (Hintelmann 2010).

Mediated by biotic and abiotic processes, MMHg may be
methylated and form dimethylmercury (DMHg) (Baldi et al.
1995), and/or broken down or demethylated (D), giving rise to
inorganic Hg and elemental mercury (Hg°). In sediments, the
methylation process involves sulfate- and nitrate-reducing
bacteria as well as methanogenic bacteria, along oxidative or
reductive pathways (Oremland et al. 1991; Schaefer et al.
2004; Spangler et al. 1973). In the water column, most of
MMHg deme t hy l a t i o n l i k e l y o r i g i n a t e s f r om
photodegrada t ion reac t ions (Black e t a l . 2012;
Hammerschmidt and Fitzgerald 2006; Sellers et al. 1996).

Because of its importance for human health, Hg cycling has
been studied in different aquatic systems (oceans, lakes, la-
goons, rivers, and wetlands). Hg reactivity and transformation
in lake and wetland ecosystems is well documented
(Hintelmann 2010), but few studies have investigated Hg re-
activity in extreme high-altitude ecosystems (Marusczak et al.
2011; Qianggong et al. 2014; Ribeiro Guevara et al. 2008).
Aquatic ecosystems located in the South American Altiplano
region at 3800 m exhibit extreme thermal and solar irradiance
diurnal variability including intense UV radiations
(Blumthaler et al. 1997; Zaratti et al. 2003), contrasted sea-
sonal hydrological cycles, as well as intense primary produc-
tion (Aguirre et al. 2014). Lake Uru Uru (3686 m a.s.l.) is part
of the lake system occupying the central Bolivian Altiplano
region. This lake ecosystem acts as a sink for several mining
and urban waste effluents (Garcia 2006; Tapia et al. 2012),
while it hosts numerous endemic avian and fish species and
has social and economic importance for the region’s indige-
nous population, who live from hunting and fishing (Aguirre
et al. 2014; Garcia 2006). Elevated Hg levels were document-
ed in different species of water birds and fish from Lake Uru
Uru (Aguirre et al. 2014; Molina et al. 2012)

This work aims at documenting for the first time Hg bio-
geochemistry and Hgmethylation capacity in the case of high-

altitude tropical productive lakes, using Lake Uru Uru as a
reference study site. In this lake, a contaminated northern
(NS) and a less impacted southern (SS) site were carefully
investigated on a diurnal and seasonal basis with the measure-
ment of different Hg compounds (IHg, MMHg, Hg°, and
DMHg) and the complementary determination of in situ Hg
methylation (M) and MMHg demethylation (D) potentials in
water, sediment, floating organic aggregates, and periphyton
compartments collected from Totora’s (Schoenoplectus
californicus) aquatic plants.

Materials and methods

Study area

Lake Uru Uru is a shallow aquatic system (1.5 m av. depth)
located at 3686 m above sea level in the central part of the
Bolivian Altiplano region, in South America (Fig. 1). Lake
Uru Uru is located downstream of Lake Titicaca and upstream
of Lake Poopó and is part of the closed, evaporative endorheic
Titicaca-Desaguadero-Poopo-salar (TDPS) basin. During the
wet season, Lake Uru Uru displays a surface area of 350 km2,
reduced to 120 km2 during the dry season. Further details on
the study area are provided in the Supplementary Material
(SM) section.

Samples collection and processing

Samples of sediment, surface waters, and organic substrates
were collected from Lake Uru Uru at two different sites
(Fig. 1). The first site (NS) located in the northern part of the
lake represents a contaminated site, under the influence of
both mining and urban effluents originating from the mining
city of Oruro (Fig. 1). The second site (SS) is located in the
southern part of the lake and is supposed to represent a less
polluted area, although lateral inputs of mining effluent from
Rio Huanuni may be considered. All samples were taken at
the end of the dry season (October 2010) and at the end of the
wet season (May 2011), respectively, for investigating season-
al differences. Diurnal cycles (24 h) were also investigated in
the water column at the two stations at a 4-h resolution step at
the NS site (only for wet season) and at a 2-h resolution step at
the SS site (both seasons). Because both NS and SS sites are
very shallow (<1 m) and present a well-mixed water column,
water sample was directly hand-collected from a rubber boat
at the subsurface (ca. 10–30 cm depth, depending on the sea-
sonal water level). Each water sample was divided into three
aliquots, two of them subsequently acidified: one was filtered
(Bdissolved fraction^) using a vacuum filtration pump and
0.45-μm porosity PVDF filters (Millipore, Bedford, MA,
USA), while the second was kept unfiltered (total content).
A last aliquot was kept intact and directly processed to purge
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and trap the gaseous Hg compounds (i.e., DGM, DMHg).
Further details for surface sediments (0–1 cm) and bio-
organic substrates (periphyton, aggregates) sampling are giv-
en in the SM section. For comparison with other lacustrine
environments of the TDPS hydrosystem, sediment samples
were also taken from Lake Titicaca during the dry season
and from Lake Poopó during the wet season. Further details
on sample processing and ancillary parameters determination
are included in the SM section.

Mercury transformations assays

Mercury species transformation potentials were determined
through in situ incubations performed using isotopically
enrichedmercury species (199HgCl2 and CH3

201HgCl) for wa-
ter, sediment, periphyton, and floating organic aggregates, ac-
cording to the incubation protocol, analyses, and calculations
of methylation (M), demethylation (D), and reduction (R) po-
tentials described elsewhere (Monperrus et al. 2007;
Rodriguez-Gonzalez et al. 2013). This methodology allows
the simultaneous and quantitative determination of newly
formed and remaining Hg species derived from each isotope,
and the determination of specific formation/degradation yields
(Monperrus et al. 2007; Rodriguez-Gonzalez et al. 2013).

Further details on the incubation protocols and the evaluation
of the net mercury methylation obtained from the incubation
experiments and diurnal cycles are described in the SM
section.

Samples analysis methodologies

For water samples, the concentrations of total and dissolved
Hg species, such as MMHg, IHg, Hg°, and DMHg were de-
termined. For solid samples, concentration ofMMHg and IHg
was determined. Hg species analysis in water, sediment, and
biological substrates was performed by capillary gas chroma-
tography connected to an inductively coupled plasma mass
spectrometer (GC-ICPMS, Trace). Analytical set-up and
methodology for the GC-ICPMS for Hg speciation analysis
are described in detail elsewhere (Monperrus et al. 2008;
Monperrus et al. 2005). The analysis of the gaseous Hg spe-
cies (i.e., Hg° and DMHg) was carried out by cryogenic trap-
ping gas chromatography connected to an inductively coupled
plasma mass spectrometer (CT-GC-ICPMS) according to pre-
vious works (Bouchet et al. 2013; Bouchet et al. 2011). Other
analytical methods used for ancillary parameters are described
in SM section.

SS

Urban 

effluent

Oruro

NS

SS

Fig. 1 Map of Lake Uru Uru and its location in the Bolivian Altiplano
(Bolivia, South America), showing the investigated sites in the northern
(NS) and southern (SS) part of the lake, during late dry and wet seasons

(October 2010 and May 2011). The major sources of contamination are
also indicated: urban effluent (north) and mining effluent (south)
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Bacterial community characterization

Water samples (triplicates) were concentrated (250 mL for
SS and 60 mL for NS) by filtration on sterile cellulose
acetate filters (Millipore, 0.22 μm). After filtration, the
filters were immediately frozen in liquid nitrogen.
Samples from sediments, floating aggregates, or Totora’s
biofilms were directly sampled in cryovials and frozen in

liquid nitrogen. DNA was extracted with the Ultra Clean
Soil DNA Isolation Kit using the alternative lysis method
(MoBio Laboratories Inc., USA). All extracted genomic
DNA samples were stored at −20 °C until further process-
ing. T-RFLP was performed as previously used by Gentès
et al. (2013). T-RFLP profiles were compared by principal
component analysis (PCA) using MVSP v3.13d software
(Rockware Inc., UK).
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Fig. 2 a–h Diurnal variability
(24 h) of the different Hg species
(IHgT, IHgd, MMHgT, MMHgd,
Hg°, DMHg) in comparison with
oxygen and temperature at the
southern site (SS) of Lake Uru
Uru for late dry and wet seasons.
T total, d dissolved
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Statistics

For dataset comparison, statistical parametric test (Student t
test) for normal data distribution and non-parametric test
(Kruskal-Wallis test) for non-normal data distribution were
considered, using SigmaStat (version 3.0.) or R software
(R.2.14.2).

Results and discussion

Major biogeochemical characteristics

High-resolution diurnal profiles of selected parameters are
displayed in Fig. 2 (data summary in Table A, SM). At the
SS site, relative different trends can be observed during the
diurnal cycles and between the dry and wet seasons. Mean
diurnal temperature and oxygen concentrations were higher
during the dry season compared to the wet season but not
statistically different (16.3 and 13.9 °C, 6.5 and 4.6 mg L−1,
respectively), while pH values were relatively close (7.9 and
8.1). However, their diurnal gradient amplitude between sun-
rise and sunset (Fig. 2) was much higher during the dry season
(11.9–21.5 and 12.4–16.0 °C, 7.0–8.2 and 7.8–8.4, 4.7–9.4
and 3.7–5.8 mg L−1, respectively). This reflects the change
in solar radiations intensity among seasons. Solar radiation
levels measured close to the study site in Patacamaya (Oruro
Dpt, Bolivia) from September to November 2010 (dry season)
and from April to June 2011 (wet season) were, respectively,
313.8±55.4 and 243.5±36.2 W m−2. Conductivity at the SS
varied significantly (s test , p< 0.05) between dry
(6.2 mS cm−1) and wet (3.1 mS cm−1) seasons due to the
intense evaporation process, while at the NS diurnal variations
during the wet season, exhibited wider ranges for temperature,
pH, and oxygen than at SS (9.9–16.2 °C, 9.2–10.1 and 3.3–
12.5 mg L−1, respectively). Conductivity was higher at the NS
site (8.8 mS cm−1) compared to SS site (3.1 mS cm−1) during
the wet season. Since bacterial activity is one of the main
driver responsible for mercury methylation and demethyla-
tion, strong daily variations of temperature, pH, and oxygen
may strongly affect diurnal Hg cycle at short timescale. While
not measured over 24 h, dissolved organic carbon (DOC),
particulate organic carbon (POC), and suspended particulate
matter (SPM) may influence significantly mercury speciation.
For instance, DOC concentrations reach high values for both
seasons at SS and NS station (14.4–16.4 and 19.8–
24.5 mg L−1, respectively), while SPM remains rather low
(<10 mg L−1) but enriched in organic carbon (10 % of POC).
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Sulfate-reducing bacteria communities

The T-RFLP based on dsr genes polymorphism, applied to
detect sulfate-reducing bacteria, indicated that they were pres-
ent in all the samples collected at NS and SS in Lake Uru Uru.
During the dry season, the composition of sulfate-reducing
bacterial communities in sediments and bio-organic aggre-
gates was homogeneous (Fig. 4), but very heterogeneous in
water samples. Similar results were obtained in the water sam-
ples during the wet season (data not shown). This heterogene-
ity is probably due to the occurrence in different proportion of
particulate material and also to the lower abundances in dsrAB
genes. The correspondence analysis shows a strong effect of
the reducing conditions (sediments vs water) on the samples’
dsrAB diversity as distributed along the axis 1 (32 % of the
variance). It also highlights the influence of available organic
carbon (water vs bio-organic aggregates) through the axis 2,
explaining 30 % of the sulfate-reducing bacteria community
composition.

Hg species distribution and transformation in the water
column

Mercury species seasonal and diurnal variations

Hg species concentration average and range obtained over the
diurnal high-resolution sampling at the two sites are reported
in Table A (SM). At the SS, higher concentrations of total
mercury (HgT) and total methylmercury (MMHgT) were ob-
served during the dry season (3.1±1.7 and 0.7±0.2 ng L−1,
respectively) than for the wet season (1.4±0.3 and 0.3±
0.1 ng L−1) (p<0.05). This is consistent with the difference
observed for conductivity and other metallic cations (data not
shown), likely reflecting a concentration effect resulting from

the enhanced evaporation at the end of the dry season. At the
NS, the concentrations of total mercury (HgT) (4.6–
7.0 ng L−1) and total methylmercury (MMHgT) (2.0–
4.5 ng L−1) were significantly higher (p<0.05) than at the
SS for the two seasons. Interestingly, the relative proportion
of dissolved MMHg (MMHgd) was found extremely high,
representing between 57±5 and 23±9 % at SS during the
dry and wet season, respectively, with a maximum value of
64±8 % at NS during the wet season. This high-dissolved
MMHg partition is probably the highest ever reported in
high-altitude lake ecosystems, compared to the southern oli-
gotrophic Moreno Lake (Patagonia, atl 768 m, 0.4 to 2.4 %,
Arcagni et al. 2013) or in the hypereutrophic contaminated
Dianchi Lake (Tibet, 1881 m, 0.2–1.5 %, Wang et al. 2012).
Concentrations of total dissolved mercury (HgTd) at the SS
site were 0.6±0.1 ng L−1 in the dry season and 1.3±
0.8 ng L−1 during the wet season, although higher values were
measured at the NS site 3.8±0.8 ng L−1 for the same season.
Overall, HgTd values in Lake Uru Uru are similar to measure-
ments in Moreno Lake (1–5 ng L−1, Arcagni et al. 2013) or in
waters from Andean glaciers (2.2 to 2.6 ng L−1, Maurice-
Bourgoin et al. 2000), with the relative proportion of MMHg
being significantly higher.

DGM concentrations were mainly composed by 97.0 to
99.9 % of Hg° with only 0–3 % DMHg. DGM accounted
for 0 to 15 % of HgTd. DGM concentrations (as Hg°) at the
SS averaged 16.8±11.7 pg L−1 during the dry season and 49.7
±43.8 pg L−1 during the wet season, whereas the NS exhibits
concentrations averaging 39.8±14.3 pg L−1 in the wet season.
The Hg° concentrations in Lake Uru Uru (3.3–124.7 pg L−1)
are in the same range as those documented for Alaskan lakes
(20.0–46.1 pg L−1) (Tseng et al. 2004) or Canadian lakes
(32.1–58.2 pg L−1) (Amyot et al. 1997). Levels of DMHg
(<LD=0.04–1.64) are rather low if compared with published

Table 1 Inorganic mercury methylation, methylmercury
demethylation, inorganic mercury reduction, and mercury net
methylation (mean±SD, n=3) estimates in the water column of the

Lake Uru Uru, under dark and diurnal conditions, during late dry and
wet seasons (October 2010 and May 2011) at both southern and northern
sites

Matrix Station Season Diurnal Dark Diurnal Diurnal Dark

M D M D R Net methylation Net methylation
% day−1 % day−1 % day−1 % day−1 % day−1 ng L−1 day−1 ng L−1 day−1

Surface water NS Dry 4.9±0.8 21.0±1.8 7.7±1.7 20.5±1.4 0.6±0.2 0.20±0.30 0.45±0.48

Wet 0.6±0.4 6.0±2.5 0.7±0.1 3.7±3.9 0.3±0.2 −0.11±0.08 −0.06±0.10
SS Dry 1.0±1.0 6.7±1.2 0.9±0.8 4.0±1.9 1.0±0.2 −0.01±0.04 0.00±0.03

Wet 0.04±0.02 0.4±0.6 < LD 0.2±0.3 0.1±0.1 −0.00±0.00 −0.00±0.00
Filtered surface

water
NS Dry 1.0±0.9 0.8±1.2 0.6±0.2 0.02±0.23 0.01±0.04 0.01±0.00

Wet 0.7±0.4 4.3±1.2 0.7±1.5 3.0±2.7 −0.06±0.08 −0.03±0.16
SS Dry <LD <LD 0.7±0.9 < LD 0.00±0.00 0.02±0.02

Wet <LD <LD 0.1±0.1 2.0±0.4 −0.01±0.00 0.00±0.00

Limit of detection of the M and D method: LD=0.02 % day−1

M mercury methylation, D methylmercury demethylation, R inorganic mercury reduction, SS southern, NS northern
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marine studies in the Mediterranean Sea (4–84 pg L−1)
(Monperrus et al. 2007) or in the Artic Ocean (7.9±
4.4 pg L−1) (Kirk et al. 2008).

The diurnal concentrations of MMHgT during the wet sea-
son decreased from sunrise (~6 h) to sunset (~18 h) and in-
creased overnight until sunrise (Figs. 2c and 3b). The concen-
tration of Hg° in SS and NS (Fig. 2h) increased from 06 h,
with a peak between 12 and 15 h to further decrease until
sunset. The same behavior was also observed for Hg° and
DMHg in NS during the wet season (Fig. 3d).

Between both seasons, total MMHg and IHg exhibit differ-
ent trends at SS that might be related to the occurrence of
higher particle contents (and aggregates) during the dry season
in the water column. MMHg showed a decreasing trend with
increasing oxygen at the SS site during the dry season and at
the NS for the wet season (r2=0.8, p<0.002 and r2=0.8,
p<0.05, respectively) but no trend for SS during the wet sea-
son (p>0.05) (Figure A.a,b in SM). This result suggests that
MMHg net accumulation in the water column is likely en-
hanced when lower oxygen concentrations occur, especially
at night when oxygen consumption processes are dominant.
Besides MMHg has been reported to be produced within the
anoxic layer of lake waters (Eckley and Hintelmann 2006), no

anoxia has been observed in this study. This may suggests that
more reductive conditions in the water column likely associ-
ated to organic matter mineralization can promote Hg meth-
ylation as previously observed (Bouchet et al. 2013;
Monperrus et al. 2007). The occurrence of anaerobic bacteria
communities in the water column located into anoxic micro-
environments (e.g., particles) playing a role in Hg methyla-
tion, such as SRB, has been shown in this study and also
previously established in other aquatic systems (Acha et al.
2012). During daytime, water in Lake Uru Uru exhibited ox-
ygen supersaturation, demonstrating intense primary produc-
tivity whenMMHg levels are decreasing. Such photosynthetic
activity may inhibit Hg methylation triggered under more re-
ductive conditions. Also, this may be due to increased activity
of filamentous algae Oedogonium sp. and other algae that
have been found to accumulate MMHg (Lanza et al. 2015).
The explanation of such decline in MMHg concentrations
may also be associated to stronger light-induced demethyla-
tion (Black et al. 2012; Lehnherr and St. Louis 2009). As
shown in Fig. 2b–d, lower MMHg concentrations coincide
with daylight maxima, which mean that solar radiation may
influence decline of MMHg. However, the in situ incubations
described later (BBiogeochemical transformation of mercury

Fig. 4 Correspondence analysis based on T-RFLP results for the dsrAB
genes in the samples collected during the late dry season at stations SS
and NS and in different compartments (W water, Sed sediments, Agg

floating bio-organic aggregates). The letters A, B, and C refer to
triplicates for each sample
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species in water^ section) have shown that light-induced path-
ways might not be so significant in these waters, since high
DOM contents can play an important inhibition effect for UV
light-induced demethylation pathways (Black et al. 2012).
The behavior of volatile Hg species also obeys diurnal chang-
es (Figs. 2g, h and 3d); Hg° formation processes may be in-
duced by solar radiation (Amyot et al. 1997). Low concentra-
tions of Hg° can be attributed to high-DOC concentrations,
which decrease the availability of UV-B radiation to reduce
IHg (Amyot et al. 1997). We can also observe (Figs. 2c–h and
3b–d) that a small fraction of decreasing MMHg might be
converted to DMHg (Monperrus et al. 2007). Overall, we
have shown that MMHg and IHg in both dissolved and par-
ticulate (or total) phases can exhibit strong diurnal variations
which are controlled by various biotic and abiotic processes
difficult to be constrained for each season and site. Several
pathways such as methylation, demethylation, or reduction of
Hg species in water are able to contribute to these variations
(see below BBiogeochemical transformation of mercury spe-
cies in water^ section), while the dynamic exchange with other
compartments such as surface sediments and Totora’s sub-
strates (see BMercury methylation and demethylation in sur-
face sediments^ and BMethylation and Demethylation in Bio-
organic substrates^ sections) might involve other sources and
sinks for the water column.

Biogeochemical transformation of mercury species in water

Methylation M potentials obtained in unfiltered water sam-
ples from Lake Uru Uru ranged between <0.02 and
4.9 % day−1. Under light conditions, M potentials obtained
from unfiltered water samples varied with seasonal changes
at both sites (see Table 1, Fig. 5), with higher methylation

during the dry season (p<0.05, Kruskal-Wallis test). M poten-
tials were 4.9±0.6 and 0.6±0.4 % day−1 at the NS and 1.0±
0.9 and 0.04±0.02 % day−1, at the SS, during the dry and wet
seasons, respectively. Dark condition incubations exhibited M
potential between 0.7±0.1 and 7.7±1.7 % day−1, for the dry
and wet seasons, respectively, at the NS site, although no
differences were found at the SS site among seasons (0.9±
0.8 and <0.02 % day−1).

For filtered water, M potentials, obtained from light and
dark incubations, were lower than M potential measures in
unfiltered water (p<0.05). While M potentials obtained at
NS site under light and dark conditions were still significant,
those obtained at SS site were below the detection limit
(<LD=0.02% day−1) under light conditions and rather limited
M potentials in dark condition (Table 1). This finding corrob-
orates the observation made on the variations of MMHg con-
centrations during the 24-h cycles. This also confirms that Hg
methylation is probably mediated by micro-organisms and
organic matter in the absence of sunlight and may also benefit
from higher temperatures in the dry season. SRB were detect-
ed in all matrices, but the structure of the community was
highly variable and specific to the matrix incubated (water,
sediments, floating organic aggregates) (Fig. 4).

Comparison to literature values (Table 3) shows that the
maximum M potential obtained under light condition (NS,
4.9 % day−1) is significantly higher than the maximum values
obtained in the Arcachon Bay (0.8 % day−1, Bouchet et al.
2013) or in estuarine and coastal waters (0.4 % day−1; Sharif
et al. 2014). However, these significant M potential values
remain in the range of M potential rates determined in the
anoxic waters of Canadian lakes (0.6–14.8 % day−1, Eckley
and Hintelmann 2006), in oxic waters from the Mediterranean
(0.3–6.3 % day−1) (Monperrus et al. 2007) and in Moreno

Table 2 Inorganic mercury methylation, methylmercury
demethylation, and mercury net methylation (mean±SD, n=3)
estimates in surface sediments and bio-organic substrates (aggregates
and periphyton) in the Lake Uru Uru, under dark and diurnal

conditions, during late dry and wet seasons (October 2010 and
May 2011) at both southern and northern sites and Lake Titicaca and
Popoo (sediments only)

Matrix Station Season Diurnal Dark Diurnal Dark

M D M D Net methylation Net methylation
% day−1 % day−1 % day−1 % day−1 ng g−1 day−1 ng g−1 day−1

Surface sediment NS Dry 1.1±0.2 68.3±0.2 5.1±0.5 27.8±3.3 3.4±1.2 19.7±4.0

Wet 1.0±0.1 10.1±3.2 1.3±0.2 28.8±3.6 2.0±0.5 2.0±1.0

SS Dry 0.25±0.04 15.6±1.9 0.35±0.02 28.0±1.3 0.5±0.2 0.6±0.1

Wet 0.14±0.05 9.2±1.8 0.26±0.04 5.2±0.7 0.19±0.15 0.5±0.1

TC Dry 0.10±0.00 78.1±1.9 0.10±0.01 78.1±1.7 −0.17±0.03 −0.17±0.03
PP Wet 0.06±0.02 26.0±4.0 < LD 29.1±1.4 −0.02±0.03 −0.03±0.01

Bio-organic aggregates SS Dry 9.58±0.05 18.0±2.4 16.51±2.8 15.1±2.6 5.8±1.8 12.2±5.1

Totoras periphyton NS Wet 0.1±0.0 13.4±1.3 0.1±0.0 13.0±0.4 −2.1±0.6 −2.1±0.5

Limit of detection of the M and D method: LD=0.1 % day−1

M mercury methylation, D methylmercury demethylation, SS southern, NS northern, TC Lake Titicaca, PP Popoo
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Lake, Argentina (23±11 % day−1) (Ribeiro Guevara et al.
2008).

Demethylation Significant demethylation potentials (D) were
measured in surface unfiltered water of Lake Uru Uru (0.4 to
21 % day−1), with almost no significant difference between
daylight and in dark conditions (Table 1, Fig. 6). However, D
potentials varied seasonally and among sites, being higher in
the dry season compared to the wet season (p<0.05) and
higher at the NS compared to SS for both season (p<0.05).
At NS, D potentials in dry season were significantly higher
(21 % day−1) than for the wet season (3.7–6.0 % day−1). At
SS, D potentials during the dry season were also much higher
(4.0–6.7 for dark and light) than during the wet season (0.2–
0.4 % day−1). In filtered water, D was either below the detec-
tion limit for SS or lower to the values obtained from unfil-
tered water (except for wet season/dark conditions in SS).
These results suggest that demethylation remains a major
pathway in waters of Lake Uru Uru, mostly associated to the
presence of suspended particulate material and via biotic pro-
cesses, while direct light-induced photochemical pathways
appear to be of a lower importance. As previously observed
in various coastal environments (Bouchet et al. 2013; Sharif
et al. 2014), biotic-induced demethylation can be a significant
pathway to reduce MMHg extent in the water column.

D potentials results for unfiltered water incubation are
higher than those measured in the anoxic waters of lakes in
Canada (0.12 % day−1) (Eckley and Hintelmann 2006), com-
parable with those measured in a tidal bay by (Bouchet et al.
2013) (6.2–11.9% day−1) but lower compared to those record-
ed in coastal and marine waters (6.4–24.5 % day−1,
Monperrus et al. (2007) and 6.6–55.3 % day−1, Sharif et al.
(2014), respectively) (Table 3).

Reduction The reduction potential (R) in Lake Uru Uru was
found of limited intensity and could only be detected during
the dry season (0.6–1.0 % day−1, Table 1). These low R po-
tentials are consistent with the low Hg° concentrations mea-
sured in the lake (Table A). The high content of DOC found in
the lake is large enough to potentially inhibit UV and visible
light radiations that may induce mercury reduction reactions
(Amyot et al. 1997). Further on, Hg° concentrations can also
be limited by concomitant photo-oxidation processes cata-
lyzed by organic radicals (Lalonde et al. 2001; Mason et al.
2001).

Net methylation assessment During the dry season, the diur-
nal net methylation capacity (see SM for details) obtained
from unfi l tered water samples at NS was 0.20 ±
0.30 ng L−1 day−1 under light conditions, compared to 0.45
±0.48 ng L−1 day−1 in dark conditions. During the wet season,
the net methylation capacity exhibits a loss of MMHg within
the same range under light (−0.11±0.08 ng L−1 day−1) and
dark conditions (−0.06±0.10 ng L−1 day−1), while this was
rather limited when compared to the dry season. At the SS
site, net MMHg production for both seasons was found insig-
nificant for both dark and diurnal conditions (Table 1). The
rather limited net MMHg production observed in the water
column of the lake contrasts with the high MMHg concentra-
tions determined in this compartment (Figs. 2 and 3; Table A).
This suggests that MMHg present in the water column likely
originates from another source. The comparison between the
extent of the diurnal variation of MMHg concentrations in
water with the net M potentials integrated for the same com-
partment during the same period of time (24 h) (details in SM,
Table C) shows that the high accumulation of MMHg mea-
sured in water reflects mainly MMHg released from sediment

Fig. 5 Diurnal methylation
potentials of Hg determined in the
different compartments (bulk and
filtered water, sediments, bio-
organic substrates) at station SS
and NS of Lake Uru Uru for the
dry (solid bars) and wet (striped
bars)
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or bio-organic substrates as previously suggested in other eco-
systems (Table 3, Bouchet et al. 2013; Guimaraes et al. 1999;
Guimarães et al. 2000; Point et al. 2007).

Mercury methylation and demethylation in surface
sediments

MMHg concentrations in sediments from Lake Uru Uru were
found to range from 0.9±0.2 to 4.0±1.3 ng g−1 and those of
IHg from 200±12 to 394±35 ng g−1, with the highest values
being observed at the NS site (Table B). Also, the percentages
of organic carbon (~ 5.8 %) and sulfur (~1 %) were similar in
magnitude at both sites. Concentrations of MMHg and IHg in
sediments from Lakes Titicaca and Poopó were very low in
comparison to those in Lake Uru Uru (Table B).

Methylation Overall, diurnal M rates in Lake Uru Uru sedi-
ments ranged from 0.14±0.05 to 1.1±0.2 % day−1 (Table 2,
Fig. 5). Higher M values were found at NS (1.0–1.1 % day−1)
than for SS (0.14–0.25 % day−1) for both seasons (p<0.05). M
potentials remained significantly higher in dark conditions at
both sites and for both seasons. Complementary data obtained
from nearby Lake Titicaca and lake Poopó showed similar
(p>0.05) but low M potentials (give values here), in the same
range as those measured at SS for the same season (Table 2).
These data probably reflect a baseline value for Hg methyla-
tion in undisturbed sediment of the TDPS watershed. The
diurnal M potential in the sediments of Lake Uru Uru are also
comparable with other lacustrine or coastal sites previously
investigated under similar experimental conditions (Table 3).

Demethylation Demethylation potentials in Lake Uru Uru
sediments during the dry season, under daylight conditions,
were significantly different between NS and SS sites

(p<0.05), exhibiting 68.3±0.2 and 15.6±1.9 % day−1, respec-
tively (Table 2, Fig. 6). Under dark conditions, the D poten-
tials were similar (28±3 and 28±1 % day−1) at both sites. In
the wet season, the D potentials were significantly lower for
both NS and SS (respectively, 10.1±3.2 and 9.2±1.8 % day−1,
p<0.05). While under dark condition, the D potentials were
29±4 % day−1 for the NS and 5.2±0.7 % day−1 for SS.

In Lake Poopó, D values were similar under daylight and
darkness conditions (26.0–29.1 % day−1, Table 2) (p>0.05),
while much higher D potentials were measured in Lake
Titicaca (ca. 78 % day−1). In all sediment types from the dif-
ferent lakes of this Altiplano region, D always remains a sig-
nificant process, as previously shown in sediments from other
locations (Table 3). Degradation of MMHg in sediments of
Lake Uru Uru cannot be clearly attributed to either light-
induced or dark processes, but likely involving more specifi-
cally different bacteria communities and assemblages. For
instance, a study carried out by Oremland et al. (1991) in
anoxic sediments found that communities of metallogenic
and sulfate-reducing bacteria are involved in MMHg demeth-
ylation processes. Bouchet et al. (2013) also found significant
demethylation rates in a shallow coastal lagoon under similar
experimental conditions (Table 3) which was clearly not en-
hanced under light exposition.

Netmethylation assessment The netM calculations (Table 2)
indicate that the methylation capacity of sediments was much
higher relative to the water compartment and leading to higher
yield during the dry season. The comparison of the two sites
shows that MMHg was mainly produced in the sediment at
NS, for both seasons (3.4±1.2 and 2.0±0.5 ng g−1 day−1 for
the dry and wet seasons, respectively). Although net methyl-
ation rates at SS were lower than those at NS, they remained
slightly positive (0.5±0.2 and 0.19±0.15 ng g−1 day−1 for the

Fig. 6 Diurnal demethylation
potentials of Hg determined in the
different compartments (bulk and
filtered water, sediments, bio-
organic substrates) at station SS
and NS of Lake Uru Uru for the
dry (solid bars) and wet (striped
bars) season

Environ Sci Pollut Res (2016) 23:6919–6933 6929



dry and wet seasons, respectively). In contrast, the negative
net M in Lakes Titicaca and Poopó suggest that the sediment
may not be a significant source, but a sink of MMHg (−0.17±
0.03 and −0.02±0.03 ng g−1 day−1, respectively).

Methylation and demethylation in bio-organic substrates

Organic floating aggregates presented higher concentrations of
IHg (86.4±13.5 ng g−1) than the periphyton associated with the
Totora plant (33.5±2.5 ng g−1) (Table B). Similar concentrations
of MMHg were found in the Totora’s periphyton (16.1±
3.2 ng g−1) and in floating organic aggregates (13.5±0.8 ng g−1).

The M potential of the floating organic aggregates incubat-
ed under sunlight conditions was 9.58±0.05 and 16.51±
2.8 % day−1 under dark conditions (Table 2, Figs. 5 and 6).
Diurnal and dark D rates were in a similar range, with 18.0±
2.4 and 15.1±2.6 % day−1, respectively. This indicates that in
floating organic aggregates, methylation takes place principal-
ly by means of dark biotic mechanisms. This process is prob-
ably linked to sulfate-reducing bacterial community identified
in this matrix, which is also different from other SRB commu-
nities found in the waters and sediments of Lake Uru Uru
(Fig. 4). The formation of anoxic niches in the organic aggre-
gates may also promote Hg methylation mediated by
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anaerobic communities. In this sense, it should be taken into
account that the particulate matter, and more specifically large
and small organic aggregates, may be also components con-
tributing to MMHg burden in the water column as observed
during the dry season.

Hg methylation capacity of the periphyton associated with
Totora plants was found negligible (<LD=0.1 % day−1).
However, significant D extents were measured (13.4±
1.3 % day−1), with no difference with the incubation made
under darkness (Table 2, Figs. 5 and 6). Conversely, these
results show a high MMHg demethylation capacity involving
the participation of diverse aquatic micro-organisms, includ-
ing bacteria communities. Periphyton associated with Totora’s
plant tend to accumulate MMHg. Interestingly, Lanza et al.
(2015) suggest that algae found in these periphyton, such as
Oedogonium sp. can bioconcentrate metals and also MMHg
in Lake Uru Uru showing that periphyton could be beneficial
in reducing aqueous MMHg by both accumulation and
degradation.

Net methylation assessment The floating organic aggregates
were characterized by a net methylation capacity of 5.8±
1.8 ng g−1 day−1, which is twice higher under dark conditions,
while Totora’s periphyton showed a net demethylation capac-
ity of 2.3±0.7 ng g−1 day−1, with no change in dark conditions
(Table 2). MMHg production in periphyton isolated from
Totora plants seems very low in comparison to previous ex-
periments with periphyton associated to macrophytes from the
Bolivian Amazon (Table 3). Meanwhile, the diurnal methyla-
tion potential of floating organic aggregates (9.58±
0.05 % day−1) was found to be in the same range than the
periphyton associated with macrophytes from tropical ecosys-
tems and from other temperate lakes (Table 3).

Implications for MMHg contamination in Lake Uru
Uru

Lake Uru Uru (and part of the TDPS watershed, Bolivian
Altiplano) acts as a sink for several mining and urban waste
effluents (Garcia 2006; Tapia et al. 2012). Mercury pollution
may become an important threat for local population living
from hunting and fishing of several endemic species. Potential
exposure to elevated MMHg levels was assessed in various
species of water birds and fish from Lake Uru Uru exhibiting
Hg levels averaging around 2 and 1 μg g−1 in birds and fish
muscle, respectively (Aguirre et al. 2014; Molina et al. 2012).
Thus, the elucidation of the main processes controlling the
production of MMHg in the lake is of primary importance
and is summarized in Fig. 7. During the dry season, the
highest Hg methylation potential was found in floating organ-
ic aggregates, followed by sediments (Fig. 7a). A lower meth-
ylation capacity in sediments was found during the wet season

(Fig. 7b). The origin of the floating organic aggregates and
their biological composition is not well understood. Their
presence was only reported during the dry season and may
result from the decomposition and flocculation of fresh organ-
ic matter originating from the autotrophic production of plank-
ton, Totora’s periphyton exudates, and suspended particulate
matter in combination with the higher conductivity reported
during this season. The complementary contribution of organ-
ic matter originating from the discharge of urban effluents
localized in the northern part of Lake Uru Uru has also to be
considered. Hg methylation potentials measured were low in
the water column compared to the sediments. This suggests
that the increasing MMHg concentrations measured in the
water during the 24-h cycle may also reflect the contribution
of MMHg originating from other aquatic compartments, such
as bio-organic substrates during the dry season, but with a
constant resupply from the sediment compartment.
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