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Abstract This study reports the potential of a soil bacterium,
Bacillus subtilis strain SPB1, to produce lipopeptide
biosurfactants. Firstly, the crude lipopeptide mixture was test-
ed for its inhibitory activity against phytopathogenic fungi. A
minimal inhibitory concentration (MIC), an inhibitory con-
centration at 50 % (IC50 %), and an inhibitory concentration
at 90 % (IC90 %) values were determined to be 0.04, 0.012,
and 0.02 mg/ml, respectively, for Rhizoctonia bataticola with
a fungistatic mode of action. For Rhizoctonia solani, a MIC,
an IC50 %, and IC90 % values were determined to be 4, 0.25,
and 3.3 mg/ml, respectively, with a fungicidal mode of action.
For both of the fungi, a loss of sclerotial integrity, granulation
and fragmentation of hyphal mycelia, followed by hyphal
shriveling and cell lysis were observed with the treatment with
SPB1 biosurfactant fraction. After extraction, separation, and
purification, different lipopeptide compounds were identified

in the culture filtrate of strain SPB1. Mass spectroscopic anal-
ysis confirmed the presence of different lipopeptide com-
pounds consisting of surfactin isoforms with molecular
weights of 1007, 1021, and 1035 Da; iturin isoforms with
molecular weights of 1028, 1042, and 1056 Da; and fengycin
isoforms with molecular weights of 1432 and 1446 Da. Two
new clusters of lipopeptide isoforms with molecular weights
of 1410 and 1424 Da and 973 and 987 Da, respectively, were
also detected. This study reported the ability of a B. subtilis
strain to co-produce lipopeptide isoforms with potential use as
antifungal compounds.

Keywords Lipopeptide .Mass spectroscopy . Surfactin,
iturin, and fengycin .Rhizoctonia sp. . Antifungal

Introduction

Attacks by fungus can be disastrous to crops despite the pre-
ventive measures adopted to keep it in control. Management
of fungus rot is generally a difficult challenge, and once initi-
ated, epidemics are difficult to contain. Extensive use of
chemicals to control plant diseases has disturbed the ecologi-
cal balance of microbes inhabiting soil, leading to develop-
ment of resistant strains of pathogens, groundwater contami-
nation, and obvious health risks to humans. One of the biggest
ecological challenges being faced by the microbiologists and
plant pathologists in the future is the development of
environmental-friendly alternatives to the currently used
chemical pesticides for combating a variety of crop diseases.
As a consequence of the recent demand for eco-friendly dis-
ease management, investigation of the antifungal activity of
microbial derived products has become of major interest. As
suggested by Fatima et al. (2009), biological control of plant
diseases is gaining attention due to increased pollution
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concerns because of pesticides use for crop protection and
development of pathogen resistance. The use of
environmental-friendly microorganisms has proved useful in
plant growth promotion and disease control in modern agri-
culture (Fatima et al. 2009). They are known to suppress soil-
borne plant pathogens through the production of secondary
metabolites including antibiotics and therefore improve the
productivity of several crops. As reported by Okigbo (2005),
Bacillus sp. and its related genera are reported for production
of wide range of cyclic lipopeptides active against various
fungal species.

Lipopeptides are among of the most popular and inter-
esting class of microbial surfactants. They include mainly
surfactin, fengycin, iturin, and lichenysin compounds
which are amphiphilic membrane active peptide antibiotics
with potent antimicrobial, antiadherent, antiinflammatory,
immune modulator, anticancer, antifibrin clot formation,
antiviral, antimycoplasma, and hypocholesterolemic activ-
ities for a large spectrum of application in medical and
pharmaceutical fields (Mnif and Ghribi 2015). They are
also of great interest in agricultural as biocontrol and in-
secticidal agents; bioremediation for their contaminant bio-
degradation and metal sequestering role; and in food pro-
cessing industries for their emulsifying, foaming, and dis-
persing properties (Mnif and Ghribi 2015; Ongena and
Jacques 2008).

Surfactin is the most known, interesting, and studied
compound among the whole. It has been characterized for
the first time in 1968 by Arima et al. (1968) with a primary
structure described as a macrolide consisting of a heptapeptide
sequence L-Glu(1)-L-Leu(2)-D-Leu(3)-L-Val(4)-L-Asp(5)-
D-Leu(6)-L-Leu(7) linked to a ß-hydroxy fatty acid with 13,
14, or 15 carbon atoms (Arima et al. 1968). After that,
surfactin production and structure elucidation have been re-
ported in many studies (Ben Ayed et al. 2014; Kowall et al.
1998; Lin et al. 1994). In fact, a vast natural diversity occurs,
giving rise to homologues or isomers differing from each oth-
er by the length (12 to 16 atoms of carbon) and the ramifica-
tion of the fatty acid chain, and to isoforms, characterized by
some differences in the peptidic sequence (Dufour et al. 2005;
Leclère et al. 2005; Price et al. 2007; Pecci et al. 2010). Rather
than being genetically determined, these variations depend on
the specific Bacillus strain and environmental conditions
(Kowall et al. 1998). Also, they can be related to alterations
in nutritional culture conditions, especially feeding with some
specific amino acid residues (Coronel-León et al. 2015).
Loiseau et al. (2015) reported the co-production of two
surfactin isoforms by B. subtilis. However, previous works
noticed that surfactin can possess six isoforms (Kowall et al.
1998; Leclère et al. 2005). Bacon et al. (2012) reported the
production of seven isomers with fatty acid chain ranging
from C11 to C17, while Abdel-Mawgoud et al. (2008) report-
ed the production of nine different isoforms. Among the

produced lipopeptides, surfactin is the most recognized fami-
ly. It can be produced mainly by B. subtilis species (Abdel-
Mawgoud et al. 2008; Huang et al. 1993; Kowall et al. 1998;
Liu et al. 2015; Sang et al. 2005; Willenbacher et al. 2014;
Zeriouh et al. 2013), B. pumilis species (Morikawa et al. 1992;
Seydlová and Svobodová 2008), B. licheniformis species (Li
et al. 2008, 2010; Lin et al. 1994; Tendulkar et al. 2007),
B. amyloliquefaciens species (Buensanteai et al. 2008;
Horowitz and Griffin 1991; Sun et al. 2006), and
B. mojavensis species (Ben Ayed et al. 2014). Similarly,
B. subtilis species can produce other lipopeptide isoforms be-
longing to fengycin (Guo et al. 2013; Yánez-Mendizábal et al.
2012; Pathak et al. 2012; Tang et al. 2014; Yánez- Rebib et al.
2012), bacillomycin (Gong et al. 2014; Luo et al. 2014a), and
iturin families (Jin et al. 2014; Yun-feng et al. 2012).

Lipopeptides are largely produced by microorganisms be-
longing to the Bacillus genus. In this work, we aimed to purify
and identify lipopeptide compounds produced by B. subtilis
strain SPB1, showing potent antifungal activities against phy-
topathogenic fungi. Lately, we have reported that B. subtilis
strain SPB1 could produce lipopeptide biosurfactants with
highly emulsification activity (Ghribi et al. 2012a). It was
demonstrated as enhancer of hydrophobic compound bio-
availability and biodegradability and could be widely applied
in bioremediation technology (Mnif et al. 2013a, 2015a).
Moreover, previous studies proved that SPB1 biosurfactant
could be of a great interest in the bread-making industry
(Mnif et al. 2012, 2013b). Here, we report the purification
and identification of the biosurfactant produced by
B. subtilis strain SPB1 along with potential antifungal
activity against phytopathogenic fungi. Recently, we reported
the effective use of the crude lipopeptide preparation of
B. subtilis strain SPB1 as a natural fungicide for the control
of Fusarium solani infestation in tomato and potato tubers
(Mnif et al. 2015b).

Materials and methods

Microorganism

B. subtilis strain SPB1 (HQ392822), a biosurfactant produc-
ing bacterium, was isolated in our laboratory from a Tunisian
soil contaminated by hydrocarbons. It was selected on the
basis of the high hemolytic and emulsification activities of
its biosurfactant and which exhibited also a broad spectrum
of action, including insecticidal activity against lepidopteran
larvae (Ghribi et al. 2011, 2012a, 2012c) and antimicrobial
activity against microorganisms with multidrug-resistant pro-
files (Ghribi et al. 2012b). It was identified as B. subtilis by
morphological, biochemical, and 16S rDNA sequence analy-
sis (Ghribi et al. 2012b).
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Lipopeptide biosurfactant extraction and purification

Culture conditions and a crude lipopeptide preparation were
carried out as described by Mnif et al. (2015b). This serves as
a crude lipopeptide to study the antifungal activity. For iden-
tification study, lipopeptide extraction and purification were
performed as suggested by Coronel-León et al. (2015). The
obtained crude lipopeptide was subjected to three extractions
with an ethyl acetate-methanol mixture (2:1, v/v). The organic
phases were combined, passed over anhydrous sodium sul-
fate, concentrated in a rotary vacuum evaporator (Büchi,
Switzerland), and weighed. Lipopeptide compounds were
chromatographed on a silica gel column. Elution was carried
out with chloroform/methanol/ammonium hydroxide
(65:35:5); the fractions were collected in vials. The process
was monitored by thin layer chromatography with the same
solvent of elution. They were revealed by ninhydrin specific
for amino acid moiety and phosphomolybdic acid specific
for fatty acid moiety. Fractions showing the presence of
both amino acid and fatty acid parts were analyzed by
tandem mass spectrometry (4800 Plus MALDI TOF/TOF,
AB SCIEX, CA, USA).

Mass spectrometry

The molecular weight of the components of the surfactants
was determined by negative- and positive-ion mode
electrospray ionization (ESI) analyses (LC/MSD-TOF,
Agilent Technologies, CA, USA) (Coronel-León et al.
2015). The capillary voltage were 4 and 3.5 kV for the posi-
tive and negative modes, respectively, with nitrogen as the
nebulizing and drying gas. Tandem mass spectrometry (4800
Plus MALDI TOF/TOF, AB SCIEX, CA, USA) was used in
the experiment. The full mass spectrum was acquired in the
reflector positive-ion mode for the lipopeptide, using
dihydroxybenzoic acid (DHB) as matrix.

Phytopathogen fungus

R. bataticola and R. solani were kindly provided by Dr.
Mohamed Ali Triki (Olive Tree Institute of Tunisia). They
were maintained at 4 °C in potato dextrose agar plates and at
−20 °C in tryptone salt medium (tryptone 1 g, NaCl 8.5 g,
Tween 20 1 %, glycerol 15 %, and distilled water 1 l).

Study of the antifungal activity of SPB1 biosurfactant

In vitro antifungal activity of SPB1 biosurfactant was checked
initially by the disk diffusion method. After that, we studied
the inhibition of radial growth of R. bataticola and R. solani.
Both studies were performed as described by Mnif et al.
(2015b). The mycelial growth inhibition was calculated ac-
cording to the present formula:

MGI (%)=((dc−dt)/dc)×100, where dc and dt represent
the mycelial growth diameter in control and treated Petri
plates, respectively.

The minimal inhibitory concentration (MIC) defined as the
smallest concentration that inhibits the fungal growth totally
and the 50 % inhibitory concentration of the lipopeptide
(IC50) values were determined.

The fungistatic–fungicidal nature of the SPB1 lipopeptide
biosurfactant was tested by controlling revival of growth of
the inhibited mycelia disk following its transfer to nontreated
PDA (Mnif et al. 2015b). A fungicidal effect was where there
was no growth, whereas a fungistatic effect was where tem-
porary inhibition of fungal growth occurred. The agar disks of
R. bataticola and R. solani, which failed to grow, were either
transferred onto agar media without SPB1 biosurfactant. Petri
plates were incubated for 5 days. The experiments were con-
ducted in triplicates.

Results and discussion

Study of the antifungal activity of the B. subtilis SPB1
crude biosurfactant

Study of the antifungal activity of SPB1 biosurfactant
against R. bataticola

We examined the growth of R. bataticola during 3 days of
incubation in presence of different biosurfactant concentra-
tions. Growth patterns were observed in the presence of five
increasing concentrations (0.02, 0.04, 0.06, 0.08, and 0.1 %)
in comparison to a negative control without biosurfactant ad-
dition. As presented in Fig. 1, a total inhibition of almost
100 % was observed for concentrations equal and superior
to 0.04 mg/ml. A very few growth was detected in the pres-
ence of 0.02 mg/ml of SPB1 biosurfactant, and the percentage
of inhibition recorded is statistically significant from negative
control and the other studied doses. Mean values were statis-
tically significant according to Duncan test at p values <0.05.
In fact, a MIC, an IC50, and IC90 % values were determined
to be 0.04, 0.012, and 0.02 mg/ml, respectively. Hence,
R. bataticola was shown very sensitive towards SPB1
biosurfactant.

In order to assess the nature of the antifungal potency of the
lipopeptide fraction of B. subtilis strain SPB1 towards
R. bataticola, an agar with mycelia of the studied fungi show-
ing a total inhibition of growth (in the presence of 0.04 mg/ml
biosurfactant) was placed on the center of a new Petri dish
without biosurfactant addition and incubated at 25 °C for
5 days. Obtained result showed that the mycelium of
R. bataticola was able to regain growth. So, we can assume
that SPB1 biosurfactant had a fungistatic mode of action to-
wards R. bataticola. Microscopic observations demonstrate
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that SPB1 biosurfactant reduced highly growth of
R. bataticola and altered hypha and sclerotium morphol-
ogies. In fact, as presented in Fig. 2, bloomed sclerotia
with teared mycelium were observed when R. bataticola
was treated with 0.04 mg/ml SPB1 biosurfactant. Growing
concentration accentuates the degree of alteration. In fact, a
loss of sclerotial integrity, granulation and fragmentation
of hyphal mycelia, followed by hyphal shriveling and cell
lysis were observed when using 0.04 mg/ml SPB1
biosurfactant.

R. bataticola is a diverse omnipresent soil and seed-borne
necrotrophic fungal pathogen. It has a global distribution and
can infect more than 500 plant species including monocot and
dicot plant hosts (Sharma et al. 2012). As reported by
Sundravadana et al. (2011) and Sharma et al. (2012), high
levels of pathogenic and genetic variations in R. bataticola
(RB) from different parts of the world were described. This
pathogen causes different types of diseases, viz., seedling
blight, root rot, charcoal rot, wilt, stalk rot, stem blight, fruit
rot, seedling decay, and leaf blight in crop plants, and can
therefore cause up to 60 % yield loss in crop production
(Sundravadana et al. 2011). In contrast to many pathogens
favored by change to moisture conditions (Garrett et al.
2006), R. bataticola may become more problematic in agri-
cultural areas, where climate change results in longer drought
periods and higher temperatures when the crop is exposed to
moisture stress conditions (Sharma et al. 2012). So, an urgent
need for the control of these three disastrous fungi was
developed.

Study of antifungal activity of SPB1 biosurfactant towards
R. solani

Growth of R. solaniwas observed during 3 days of incubation
in the presence of different biosurfactant concentrations.
Growth patterns observed in the presence of increasing con-
centration of SPB1 biosurfactant ranging from 0.1 to 4 mg/ml
show a weak inhibition of the mycelia growth of R. solani in
comparison to a negative control without biosurfactant addi-
tion as observed in Fig. 3. In fact, mycelium growth of
R. solani in the presence of 0.5 and 2 mg/ml were about
21.22 and 12.56 mm, respectively. At 4 mg/ml of
biosurfactant, a total inhibition of the growth of the respective
fungi was recorded. Hence, a MIC, IC50, and IC90 % values
were determined to be 4, 0.25, and 3.3 mg/ml, respectively.
An agar with mycelia of the R. solani fungi showing a total
inhibition of growth (in the presence of 4 mg/ml biosurfactant)
was placed on the center of a novel Petri dish without
biosurfactant addition and incubated at 25 °C for 5 days.
Result show that the respective fungus was not able to regain
growth. With this, we can assume that SPB1 lipopeptide ex-
tract had a fungicidal activity towards R. solani.

Microscopic observations of the inhibited mycelium of
R. solani by different concentrations of lipopeptide prepara-
tion demonstrate that SPB1 biosurfactant was able to lyses
hyphae of the respective fungi (Fig. 4). In fact, the negative
control shows normal articulate hyphae. Hyphal fragmenta-
tion and cell wall lysis indicated the fungicidal nature of the
metabolite.

(a) (b) (c)

Fig. 1 Antifungal activity of
SPB1 biosurfactant towards
R. bataticola. Effect of different
concentration on the antifungal
potency, negative control (a), in
the presence of 0.02 mg/ml
biosurfactant (b), and in the
presence of 0.04 mg/ml
biosurfactant (c)

(a) (b) (c)

Fig. 2 Effect of SPB1
lipopeptide on R. bataticola
mycelial growth. Representative
microscopic pictures (10×25
magnification) of hypha and
sclerotium of R. bataticola grown
inmediumwithout lipopeptide (a,
control) and with lipopeptide at
concentrations of 0.02 mg/ml (b)
and 0.04 mg/ml (c)
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According to literature reviews and studies, fungus
R. solani, which causes black scurf of potato tubers and makes
its quality worsen, belong to commonly appearing potato
pathogens (Kurzawinska and Mazur 2008). Sclerotia of the
mentioned fungi occurring on sets can be the source of infec-
tion for plants and descendant tubers (Kurzawinska and
Mazur 2008). However, many biocontrol strategies were de-
veloped to combat these phytopathogenic fungi. Many litera-
ture reviews described the use of biopreparation and chemical
compounds to inhibit the growth of R. solani (Kurzawinska
and Mazur 2008; Walters et al. 2004; Erper et al. 2011). Other
studies reported the application of microbial isolates such as
bacteria and fungi as biosystems to control the invasion of
these fungi (Asaka and Shoda 1996; Montealegre et al.
2010; Naeimi et al. 2010). Here, we evaluated the efficiency
of the biosurfactant fraction to control R. solani growth.

Present studies reported the efficiency of SPB1 lipopeptide
preparation to inhibit R. bataticola and R. solani growth.
Results are similar to those published by Senthilkumar et al.
(2009), reporting the loss of sclerotial integrity, the granula-
tion and fragmentation of hyphal mycelia, and cell lysis of the
pathogenic fungi R. bataticola when treated by antifungal
metabolite produced by Paenibacillus sp. Similar report

describe the inhibition of R. solani sclerotium production
when treated with many Trichoderma isolates (Naeimi et al.
2010). Therefore, iturin A produced by B. subtilis strain BS-
99-H had inhibition potency towards Pestalotiopsis eugeniae
presented by a swelling and a deformation of fungus hyphae
leading to a fungicidal effect (Lin et al. 2010).

Identification of lipopeptide biosurfactants produced
by B. subtilis strain SPB1

The key components of the use of emulsifiers are essentially
the cost of their production and the ease of their recovery.
Several techniques were developed to extract and purify
lipopeptides. As described in the methodology part,
lipopeptide fractions were extracted by a mixture of ethyl
acetate/methanol (2:1) followed by an elution through silica
gel (60) column chromatography.

Mass spectrum analyses of the purified fractions are pre-
sented in Fig. 5a, b. They showed five well-resolved clusters
of peaks, the first at m/z values between 996 and 1010 Da
(family A), the second at m/z values between 1030 and
1058 Da (family B), the third at m/z values between 1051
and 1079 Da (family C), the fourth at m/z values between

(a)      (b)    (c)      (d)

Fig. 3 Antifungal activity of
SPB1 biosurfactant towards
R. solani. Effect of different
concentrations on the antifungal
potency, negative control (a) and
in the presence of 0.5 mg/ml
biosurfactant (b), 2 mg/ml
biosurfactant (c), and 4 mg/ml
biosurfactant (d)

(a)

(c) (d)

(b)
Fig. 4 Effect of SPB1
lipopeptide on R. solani
mycelium growth. Representative
microscopic pictures (10×40
magnification) of hypha R. solani
grown in medium without
lipopeptide (a, control) and with
lipopeptide at different
concentrations (b, c, and d)
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1433 and 1447 Da (family D), and the fifth at m/z values
between 1455 and 1469 Da (family E). By comparing the
mass with the mass numbers reported for the lipopeptide com-
plexes from other Bacillus strains, each group of peaks could
be attributed to different lipopeptide isoforms. Each isoform
group can belong to the same family and have probably the
same amino acid sequence with difference in the length of the
fatty acid chain. Family B corresponds to the surfactin family
with molecular weights of 1007, 1021, and 1035 Da (Kowall
et al. 1998; Price et al. 2007; Chen et al. 2008; Pecci et al.
2010; Pyoung et al. 2010; Luo et al. 2014a, b; Ben Ayed et al.
2014); family C corresponds to the iturin family with molec-
ular weights of 1028, 1042, and 1056 Da (Price et al. 2007;
Chen et al. 2008; Pyoung et al. 2010); and family E corre-
sponds to the fengycin family with molecular weights of 1432
and 1446 Da (Vater et al. 2002; Pathak et al. 2012; Guo et al.
2013; Luo et al. 2014b; Tang et al. 2014; Ben Ayed et al.
2014) (Table 1). However, the other two families, A and D,
corresponded to two new clusters of lipopeptide families with
molecular weights of 1410 and 1424 Da and 973 and 987 Da,
respectively (Table 1).

Structurally, lipopeptides are amphiphilic anionic cyclic
compounds that contain peptidic moieties linked to a ß-fatty
acid tails (Mnif and Ghribi 2015). They consist of short linear
chains or cyclic structures of amino acids, linked to a fatty acid
via ester or amide bonds or both (Mnif and Ghribi 2015). A
lactone bridge between the β-hydroxyl function of the acid
and the carboxy-terminal function of the peptide confers a
cyclic structure to this molecule (Mnif and Ghribi 2015).
Lipopeptides constitute a diverse group of metabolites

produced by various bacterial and fungal genera (Mnif and
Ghribi 2015). Moreover, there is considerable structural diver-
sity as a consequence of differences in the nature of the fatty
acid component, as well as in the type, number, and configu-
ration of the amino acids in the peptide chain (Fracchia et al.
2012). Cyclic lipopeptides belonging to surfactin, fengycin,
iturin, and lichenysin families represent the four major classes
of lipopeptide biosurfactant isoforms produced by Bacillus
strains.

In the context of biocontrol of plant diseases, the three
families of Bacillus lipopeptides—surfactins, iturins, and
fengycins—were at first mostly studied for their appreciable
antibacterial or antifungal properties (Ongena and Jacques
2008). Regarding many literature reviews and studies,
microbial-derived lipopeptides were described as potential in-
hibitors of phytopathogen growth. As suggested by
Raaijmakers et al. (2010), the main natural functions of
lipopeptides from Bacillus species are believed to the control
of other microorganisms, motility, and attachment to surfaces,
although they may also have a signaling function to
coordinated growth and differentiation. Canova et al. (2010)
reported the suppression of R. solani by Paenibacillus sp.
(IIRAC30) derived surfactin series. Moreover, lipopeptide
biosurfactant remains a very interesting alternative to control
R. solani invasion. To know, iturin A produced by
B. amyloliquefaciens (Yu et al. 2002) and cyclic lipopeptides
produced by fluorescent Pseudomonas spp. (Nielsen et al.
2002) were discussed to suppress R. solani. Mycelial growth
of Fusarium moniliforme and F. graminearum and Sclerotinia
sclerotiorum were effectively inhibited in vitro by B. subtilis

Fig. 5 a Mass spectroscopy
(LC/MSD-TOF) spectra of
molecular mass of SPB1
lipopeptide biosurfactants.
Spectra of lipopeptides (a),
surfactin (b), and iturin (c)
produced by B. subtilis SPB1. b
Mass spectroscopy (LC/MSD-
TOF) spectra of molecular mass
of SPB1 lipopeptide
biosurfactants. Spectra of
lipopeptides (d) and fengycin (e)
produced by B. subtilis SPB1
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B-FS01 derived fengycin (Hu et al. 2007) and bacillomycin
and fengycin derived from Bacillus spp. (Ramarathnam et al.
2007), respectively. Also, iturin A produced by B. subtilis BS-
99-H inhibits germination of P. eugeniae spores (Lin et al.
2010). In fact, fengycin-type lipopeptides were as suppressing
agent of Fusarium wilt and foot rot (Rebib et al. 2012; Cao
et al. 2012).

In the past decades, research on lipopeptides has been
fueled by their antimicrobial, antitumor, immunosuppressant,
and surfactant activities (Raaijmakers et al. 2010). Owing to
their microbial origin, lipopeptide compounds are low or non-
toxic, biodegradable, demonstrate excellent surface activity,

possess high specificity, show effectiveness under extreme
conditions, and can be reused through regeneration too as
compared to synthetic surfactants (Lima et al. 2011; Sachdev
and Cameotra 2013). Consequently, they are widely used in
many fields such as environment, chemical, food and cosmet-
ic industries, medical and pharmaceutical fields, and in agri-
cultural field (Sachdev and Cameotra 2013).

In this study, we report the potential involvement of differ-
ent lipopeptide isoforms in the biocontrol activity of B. subtilis
SPB1 towards phytopathogenic fungi. In fact, cyclic
lipopeptides (CLPs) produced by B. subtilis strains have been
shown to protect host plants from a number of pathogens

Table 1 Different lipopeptides
identified by mass spectrometry Family Mass peak

(m/z)
Nature of the lipopeptide
isomers

References

Family A 996 Lipopeptide [M + Na]+

974 Lipopeptide [M + H]+

973 Lipopeptide

1010 Lipopeptide [M + Na]+

988 Lipopeptide [M + H]+

987 Lipopeptide

Family B 1030 C13-surfactin [M + Na]+ Kowall et al. 1998; Price et al. 2007; Chen et al. 2008;
Pecci et al. 2010; Pyoung et al. 2010; Ben Ayed
et al. 2014; Luo et al. 2014a, b

1008 C13-surfactin [M + H]+

1007 C13-surfactin

1044 C14-surfactin [M + Na]+

1022 C14-surfactin [M + H]+

1021 C14-surfactin

1058 C15-surfactin [M + Na]+

1036 C15-surfactin [M + H]+

1035 C15-surfactin

Family C 1051 C13-iturin [M + Na]+ Price et al. 2007 ; Chen et al. 2008 ; Pyoung et al. 2010
1029 C13-iturin [M + H]+

1028 C13-iturin

1065 C14-iturin [M + Na]+

1043 C14-iturin [M + H]+

1042 C14-iturin

1079 C15-iturin [M + Na]+

1057 C15-iturin [M + H]+

1056 C15-iturin

Family D 1433 Lipopeptide [M + Na]+

1411 Lipopeptide [M + H]+

1410 Lipopeptide

1447 Lipopeptide [M + Na]+

1425 Lipopeptide [M + H]+

1424 Lipopeptide

Family E 1455 C14-fengycin [M + Na]+ Vater et al. 2002; Guo et al. 2013; Ben Ayed
et al. 2014; Luo et al. 2014b; Tang et al. 20141433 C14-fengycin [M + H]+

1432 C14-fengycin

1469 C15-fengycin [M + Na]+

1447 C15-fengycin [M + H]+

1446 C15-fengycin
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(Falardeau et al. 2013). Our findings are similar to those pub-
lished by Li et al. (2014) and Waewthongrak et al. (2014)
reporting the co-production of surfactin, iturin, and fengycin
isoforms involved in the biocontrol of Plasmodiophora
brassicae and F. solani and Penicilium digitatum,
respectively. Also, Liu et al. (2014) reported that the involve-
ment of three isoforms, surfactin, iturin, and fengycin, affected
spore germination and membrane permeability of spores from
four fungal plant pathogens (Alternaria solani, Fusarium
sambucinum, Rhizopus stolonifer, and Verticillium dahliae).
Similarly, Ben Slimene et al. (2012) showed the production
of iturins, surfactins, and fengycins with long-chain fatty acids
and other not yet identified compounds by spores of
B. subtilis, an antagonist L194 strain against Phoma
medicaginis pathogenic fungi. In a study published by Luo
et al. (2014b), B. subtilis 916 co-produce not only the three
families of well-known lipopeptides, surfactin, bacillomycin
L (iturin family), and fengycin but also produce a new family
of lipopeptide called locil lomycin active against
F. oxysporum. However, Cao et al. (2012) reported the in-
volvement of B. subtilis SQR 9-derived fengycin and
bacillomycin in the inhibition of mycelial growth and spore
germination of F. oxysporum. Waewthongrak et al. (2014)
suggested that fengycin and surfactin act as elicitors of
defense-related gene expression in “Valencia” fruit following
infection by P. digitatum.

According to literature reviews and studies, many es-
sential oils were described as potent inhibitors of
in vitro R. bataticola growth (Sharma et al. 2012; Beg
and Ahmad 2002; Kundu et al. 2013). However, bio-
control using microbial-derived compounds remains the
best alternative. Regarding previous studies, in vitro
growth of R. bataticola was inhibited by antifungal me-
tabolite secreted by the endophytic bacterium belonging
to Bacillus and Paenibacillus strains (Senthilkumar
et al. 2009) and Pseudomonas fluorescens (Sujatha and
Ammani 2013).

Conclusion

The production of lipopeptides by B. subtilis SPB1 was
confirmed by spectrometric analysis. Results demonstrated
the ability of the strain to produce a mixture of lipopeptide
isoforms. After extraction and purification, SPB1
biosurfactant was shown to be composed of different
lipopeptide isoforms belonging to surfactin, iturin, and
fengycin families in addition to two new un-identified
lipopeptide clusters. The lipopeptide mixture exhibited
strong ant i fungal act ivi ty against R. solani and
R. bataticola. In vitro antifungal assay determined a mini-
mal inhibitory concentration of 0.04 mg/ml with a fungi-
static mode of action towards R. bataticola and 4 mg/ml

with a fungicidal mode of action for R. solani. In conclu-
sion, the present work shows that the SPB1 strain consti-
tutes a promising biocontrol agent against plant diseases
induced by phytopathogenic fungi. Its mode of action
seems to involve synergism between various secreted
lipopeptide antibiotics, some of which remain to be
characterized.
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