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Abstract Barks from Prosopis juliflora (acacia) were col-
lected in 12 sites of different geological contexts over the
volcanic Fogo Island (Cape Verde). Elemental contents of
Ba, Br, Co, Cr, Fe, K, Na, Zn and some rare earth ele-
ments (REE)—La, Ce, Sm, Eu, Tb, Yb, and Lu, were
obtained for biological samples and topsoils by using k0-
standardized and comparative method of instrumental
neutron activation analysis (INAA), aiming the evaluation
of chemical elements uptake by acacia bark. This first
biomonitoring study of Fogo Island showed that, in gen-
eral, significant accumulations of trace elements present
in high amounts in these soils occur. This can be partially
explained by the semi-arid climate with a consequent bio-
availability of chemical elements when rain drops fall in
this non-polluted environment. REE enrichment factors
(EFs) increase with the decrease of ionic radius. Heavy
REE (HREE) are significantly enriched in bark, which
agrees with their release after the primary minerals break-
down and the formation of more soluble compounds than
the other REE, and uptake by plants. Among the potential
harmful chemical elements, Cr appears to be partially
retained in nanoparticles of iron oxides. The high EFs

found in tree barks of Fogo Island are certainly of
geogenic origin rather than anthropogenic input since in-
dustry and the use of fertilizers is scarce.
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Introduction

Among the chemical elements that occur in terrestrial ecosys-
tems, some of them are present as trace elements in soils
(<0.1 wt%), resulting from processes such as chemical
weathering of the parent material, volcanic eruptions, and/or
forest fires. The main active agents in weathering are water,
carbon dioxide, and oxygen. The weathering process is slow
and continuous, producing dilute solutions of trace elements
that are transported into the groundwater and eventually into
the rivers, and then to the ocean, when rainfall and drainage
are adequate. In regions of limited rainfall or poor drainage,
the products of weathering accumulate locally (Bañuelos and
Ajwa 1999). Trace elements occur incorporated in primary
and secondary minerals, and their concentrations in soils re-
flect the nature of the parent material, climate, and drainage
conditions (Förstner 1995). The accumulation of these ele-
ments in surface soils is due to their complexation by organic
material (adsorption), as a result of cycling through vegetation
or atmospheric deposition. The behavior of some trace ele-
ments in soils can be very complex because they can occur
in different oxidation states, being soluble, exchangeable,
adsorbed, or co-precipitated with carbonates, sulfides, phos-
phates, and hydroxides (Bañuelos and Ajwa 1999). The avail-
ability of trace elements in soils may result in bigger uptakes
by plants, which presents a health risk to wildlife, and
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especially to human beings, with the ingestion of those plant
tissues (Kabata-Pendias 2001).

Several studies have been performed in order to assess
the fate and behavior of the trace elements in the environ-
ment all over the world, namely the bioaccumulation of
trace elements. These studies have been carried out in li-
chens and in diverse parts of plants, like tree barks, grown
in different types of soils, including the volcanic soils
(Baxter et al. 2012; Cruz et al. 2013; De Nicola et al.
2003; Freitas et al. 2006; Godinho et al. 2008; Pacheco
et al. 2001, 2002; Pacheco and Freitas 2009; Prudêncio
2007; Shagal et al. 2012; Wilson et al. 2009). Numerous
works have shown that tree bark is an efficient biomarker
to evaluate past organic (Clarkson et al. 2002; Hermanson
and Hites 1990; Hermanson and Johnson 2007; Wen et al.
2009) and inorganic contamination (Lahd Geagea et al.
2007, 2008a, b; Senhou et al. 2002), along with Bnatural
enrichment^ on metals and other trace elements in soils,
and atmosphere. This is the case of soils from recent or
even active volcanic regions, like Cape Verde archipelago,
where some trace elements may occur in very high
amounts that can have an impact on the health of plants
and animals growing in (Marques et al. 2012, 2014a, b).

Due to the volcanic origin of the Cape Verde islands, there
was never a land connection and the islands must have been
colonized from other parts of the world. The natural vegeta-
tion of this archipelago has been destroyed by agriculture
practices, wood cutting, overgrazing, and more recently by
afforestation. Within the different types of vegetation, a forest
of Acacia albida previously covered the dry parts of this en-
vironment. Nowadays, this species disappeared and was re-
placed byProsopis juliflora (Frahm et al. 1996). Acacias grow
and survive in dry environments and have an important func-
tion sustaining the ecological and hydrological stability of arid
and semi-arid ecosystems (Ludwig et al. 1999).

In the present work, barks of acacia (P. juliflora)
were collected in different geological formations of the
Fogo Island (Cape Verde). The corresponding soils were
also studied. Chemical analyses of bark and soils were
performed by instrumental neutron activation analysis
(INAA) allowing to obtain the concentration of Ba,
Br, Co, Cr, Cs, Fe, K, Na, Zn, and rare earth elements
(REE).

The main goals of this study are as follows: (i) the evalua-
tion of the chemical elements uptake, and the establishment of
the chemical patterns/enrichment factors of the tree bark
grown in volcanic soils in the semi-arid conditions of
Cape Verde, and (ii) the bark response to differences in soil
composition, the geographic location, and climate conditions.
Thus, this work is a first approach to evaluate chemical ele-
ments uptake, including metals that can be a threat to health,
by using tree bark as biomarker in the active volcanic island of
Fogo (Cape Verde).

Material and methods

Studied area

The Cape Verde archipelago is located in the Atlantic
Ocean, some 500–800 km westwards of Africa coast,
and comprises nine inhabited islands and several islets
(with a total area of 4033 km2). Fogo is the fourth bigger
island of Cape Verde (area of 476 km2) and is located in
the south-western part of the archipelago (Fig. 1a). This
island is an active stratovolcano rising 2829 m above sea
level. The Fogo Island has a semi-arid climate with an
average temperature of about 25 °C, which can reach
the 0 °C in Chã das Caldeiras (December and January);
the rain occurs between July and October and the precip-
itation is largely influenced by elevation and wind- and
leeward conditions. The north-east part of the island is
considered the humid region, with a precipitation higher
than 600 mm/year, and the arid regions are located in the
south-west, with a precipitation of 160 mm/year. The veg-
etation of this semi-arid island is restricted and occurs
mos t ly in humid va l l eys or windward reg ions
(Olehowski et al. 2008). The volcanic rocks of Fogo are
included in three main stratigraphic units: (a) a carbonatite
unit exposed in fluvial valleys near S. Filipe (the oldest
rocks of the island), (b) a major volcanic sequence related
to the sub-aerial shield-building of the volcano (nephelin-
ites and associated lavas with layers of scoria or tuffs,
previous to the caldera formation), and (c) a post caldera
sequence including several pre-historic and historic erup-
tions (Madeira and Brum da Silveira 2005; Madeira et al.
2005; Torres et al. 1998). Deposits (de/Lahar) also occur
associated with the post-caldera formation, with no pre-
cise age attributed. Soils are in general incipient, and
paleosoils occur mainly in the western part of the island
(Marques et al. 2014a).

Twelve acacia bark samples, as well as the soil underneath
them, were collected in November 2010 in different country
areas of Fogo Island (Cape Verde), corresponding to all the
geological formations of the island: five samples in soils de-
veloped in the pre-caldera formation (carbonatite, nephelinites
and associated lavas (herein referred as nephelinites),
pyroclasts, and tuffs); and seven samples in soils from the
post-caldera formation (lavas, pyroclasts, and deposits)
(Fig. 1b, Table 1).

Sampling, treatment, and analysis

Thin layers of the acacia bark (not exceeding 0.5 cm) were
carefully removed at an average height of 180 cm above the
ground level, and away from the road. At the base of the trees,
topsoil samples (0–20 cm depth) were also collected, using a
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stainless steel shovel to avoid contamination, and stored in
polyethylene bags.

Prior to analysis, the bark trees were rinsed with deion-
ized water during 30 s for the complete removal of dust
and epiphytes, freeze-dried, and ground in Teflon™ mill.
Pellets of ≈500 mg were done for k0-standardized INAA.
Long (5 h) irradiations of the bark trees were performed
in the Portuguese Research Reactor (RPI). Details of the
irradiation conditions and measurements were described
elsewhere (De Corte 1987, 2001; Freitas and Martinho
1989a, b; Freitas 1993; Pacheco et al. 2001). In the case
of the soils, the whole sample was obtained by sieving
through a 2-mm nylon mesh sieve, dried, and ground in
agate mortars for chemical analysis. The total contents
were obtained by comparative INAA method. Two refer-
ence materials were used, namely soil GSS-4 and sedi-
ment GSD-9 from the Institute of Geophysical and
Geochemical Prospecting (IGGE). Reference values were
taken from data tabulated by Govindaraju (1994). Two
aliquots of each standard were used for internal calibra-
tion, and standard checks were performed (QA/QC). The
samples and standards were prepared for analysis by
weighing 200–300 mg of powder into cleaned high-
density polyethylene vials. The irradiations (6 h) were
also performed in the RPI (Dung et al. 2010). More de-
tails of the analytical method are given in Dias and
Prudêncio (2007), Gouveia et al. (1992), Gouveia and
Prudêncio (2000), and Prudêncio (2009). The precise
and accurate concentration of 15 chemical elements was
obtained (Ba, Br, Co, Cr, Fe, K, Na, Zn, and REE—La,
Ce, Sm, Eu, Tb, Yb, and Lu).

Enrichment factors

In order to evaluate the enrichment of the chemical elements
in plants with respect to the soil, enrichment factors (EF) were
calculated, using Fe as conservative element according to:

EFX ¼ X=Fe½ �plant= X=Fe½ �soil
where EFx stands for the enrichment factor of the element X in
the tree bark, after having its concentration normalized to Fe
concentrations in the corresponding soil sample. Iron was se-
lected for normalization purpose due to its precise and accu-
rate determination by INAA and its conservative behavior. In
fact, the Fe3+ tends to remain in soils during the weathering
processes in this type of soils/arid climate as shown by
Marques et al. (2014b). Though unit or near unit EFs are
usually considered unexceptional, the EF>10 is accepted as
a substantial enrichment over the natural background
(Chiarenzelli et al. 2001; Galinha et al. 2010).

Results and discussion

The enrichment factors of the chemical elements in acacia
barks and the chemical elements contents obtained by INAA
in the underneath topsoils of Fogo Island are given in Tables 1
and 2, respectively.

In general, the results point to a significant bioaccumula-
tion in bark of most of the chemical elements studied taking
into consideration that EF>10 is a reasonable enrichment fac-
tor by plants. Exceptions were found for Co, La, and Sm,
which are not enriched in any of the acacia barks (Fig. 2).
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K and Na

Potassium and Na, considered as essential or beneficial ele-
ments for the plant growth (Alloway 2009; ITRC 2001; Lucas
2001), occur in high amounts in the soils of the Fogo Island
(Fig. 3a), particularly in those developed in the post-caldera
formation. A high content of K in the soil developed on
carbonatite was also found. Concerning bioaccumulation, all
the acacia barks studied show high accumulation of K regard-
less of the geological context where the tree grows. This be-
havior could be expected since K participates in soil biological
processes, plays an important role in water regulation, and has
a rapid uptake in warm and aerated soils (Maurice 2009).
Nevertheless, some variations in the EFK are observed in aca-
cia bark of the Fogo Island, with a tendency for higher enrich-
ment factors in barks collected in the pre-caldera formation,
particularly in the nephelinites (older soils), and in deposits
(reaching an EFK=3246) (Fig. 3b) despite the lower contents
of K in these soils. This could be expected since K is available
for plants uptake in volcanic soils probably due to its easy
mobilization from the vitreous phase during weathering pro-
cesses (Zharikova and Golodnaya 2009), and to the low
amounts of minerals able to incorporate K namely alkali feld-
spars and secondary clay minerals. Besides, the EFK found in
the Fogo Island are very high when compared with tree barks
grown in other volcanic environments namely in the Atlantic
Pico Island (Azores, Portugal) (Pacheco and Freitas 2009),
which can be partially explained by climate differences, par-
ticularly the lower precipitation in Cape Verde.

The acacia bark presents a curious behavior in the uptake of
Na. LikeK, a higher bioaccumulation in the soils from the pre-
caldera formation (EFNa>10) and a lower Na uptake in the
soils from the post-caldera formation were found (EFNa<10)
(see Fig. 3b). This may be partially explained by the higher
weathering degree of primary minerals like plagioclase and
nepheline in the older soils with a consequent Na release
and bioavailability. However, acacia barks collected on soils
developed on lava of the post-caldera formation (23-M) and
on deposits (24-M) from the north-east part of the island also
show a high EFNa, due to the rough topography and/or the
higher precipitation in this part of the island, with a partial
elution of this element after breakdown of primary minerals.
The EFNa in acacia bark of Fogo Island may reach high values
when compared with the ones found in Pico Island, Azores
(Pacheco and Freitas 2009).

Cr, Co, and Zn

Concerning the first transition elements (Cr, Co, and Zn), de-
spite the high contents found in soils, the acacia barks present
low contents, particularly of Co (Fig. 4a). In fact, there is no
preferential uptake of Co by acacia in the different geological
formations, being the EFCo<10 for all the trees studied in thisT
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work (see Fig. 2). The results obtained indicate that in Fogo
Island, the uptake of Zn by bark appears not to depend signif-
icantly on the parent rock/soil type. In fact, there is no signif-
icant difference in the EFZn of the tree barks grown in soils of
the post-caldera (more recent soils) and pre-caldera (older
soils) formations, with an EFZn>10 for all the acacia bark
studied, except for the one grown in carbonatites where the
highest amount of Zn in soil was measured (Fig. 4b). Zinc is
an essential nutrient and its soluble forms are the easiest to be
uptake from soils by plants, being this process dependent of
the plant type and the main soil conditions (composition and
pH) (Alloway 2009). According to Loska et al. (2005), Zn is
one of the most mobile elements in soil, and its content is
affected by weathering of the parent material, precipitation,
decomposition of living matter, and the use of soil fertiliza-
tion. The deficiency on this element in the soil hinders plant
growth, causes interveinal chlorosis and yellowing on young
leaves, and reduces leaf size (Kabata-Pendias 2001). The high
EFZn of tree barks found in Fogo, when compared with other
Atlantic islands (Pacheco and Freitas 2009), can be explained
by the higher content and availability of this element in this
island. It should be noted that in a recent study performed by
Marques et al. (2012) high contents of Zn and an aqua regia
extraction of ≈50% of this element were found in the volcanic
topsoils of Santiago Island (Cape Verde). The occurrence of
high contents of this element in soils of Fogo (68.8 to
232 mg/kg) is certainly from the natural background due to
Zn compatibility during fractionation, through magmatic pro-
cesses, and its enrichment in volcanic rocks. Also, the Zn
adsorption in secondary Fe or Mn oxides has been suggested
(Zampella and Adamo 2010), and the presence of Fe oxides
including as nanoparticles was recently described byMarques

et al. (2014b) in this island. A considerable translocation of Zn
from soils to leaves was observed in other volcanic soils by De
Nicola et al. (2003) in Vesuvius National Park.

Chromium occurs in higher amounts in soils developed in
the pre-caldera formation, with exception of carbonatite (see
Table 2 and Fig. 4a). In a previous study of topsoils of Fogo
Island (Marques et al. 2014b), this was already mentioned and
explained based on the higher concentration of Fe oxide nano-
particles in the older soils, where Cr appears to be concentrat-
ed. Thus, despite the high EFCr found in most of the trees
studied (see Table 1), the acacia barks from pre-caldera for-
mation do not show the same trend, pointing the results to
non-availability of the Cr portion incorporated in Fe oxides
nanoparticles. In this way, Fe oxides appear to play an impor-
tant role in the retention of Cr, which is considered of risk to
environment (Marques et al. 2014b; Shanker et al. 2005).

Br and Ba

Bromine occurs in higher amounts in the older soils, except
the one developed on carbonatite (Fig. 5), and is generally
enriched in the acacia barks (all samples have EFBr>10) (see
Table 1). The high EFBr in tree bark grown in carbonatite soil
may be partially due to the breakdown of fluorapatite and
release of Br, where this element may be replacing F in the
mineral structure (Marques et al. 2014b). Despite the low con-
tents of Br in the younger soils of the post-caldera formation,
this element is in general more accumulated in bark; this can
be in part explained by the geographic position of the sam-
pling sites—higher windward north and east areas, and more
precipitation. In this part of the island, the parent rock/age
factor appears to have no significance in soils as referred by
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Fig. 2 Minimum, maximum, and
median values of the enrichment
factor (EF, no units) of the
chemical elements in acacia bark
relative to soil in Fogo Island
(Cape Verde), using Fe as
conservative element



Olehowski et al. (2008). However, the glassy component of
the soil may also contribute for a higher availability of Br; also
volcanic ash soils tend to accumulate Br in its humic acid
(Yamada 1968). Acacia barks from the eastern and northeast-
ern part of the island present the highest Br accumulation
(EFBr>2000), indicating that the contribution from the marine
aerosol has to be taken in account since dominant winds blow
from NE (60–80 %) (INMG 2010; Olehowski et al. 2008). In
fact, tree barks collected in sites of high altitude and wind
exposure have high EFBr, which can be explained by the
higher Br content in marine submicrometer aerosol (that can
reach higher altitudes) and precipitation (Sander et al. 2003).

Barium was found in high amounts in the topsoils of Fogo
Island (from 370 to 1050 mg/kg) and a high bioaccumulation
of this element seems to occur (EFBa>10) regardless of the
geological context (Fig. 6 and Table 1) (Pearson correlation
coefficient ρ=0.045). Nevertheless, in the soils from the post-
caldera formation, there is a tendency to higher Ba accumula-
tion in the acacia bark. The different bioavailability of this
element in soils may be due to its presence in different mineral
phases, such as feldspars or barite. The occurrence of signifi-
cant concentrations of Ba in volcanic soils of Cape Verde
(Santiago Island) has already been mentioned by Marques
et al. (2012). It should be noted that Ba is a toxic element to
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Fig. 3 a Total K and Na contents
(mg/kg) in soils and in acacia
barks for each sampling site in
Fogo Island (Cape Verde); b
enrichment factor of Na vs.
enrichment factor of K in acacia
barks



most plants, and its uptake may increase human and animals
exposure through vegetable consumption (Monteiro et al.
2011).

Rare earth elements

The REE patterns relative to chondrites (values of Anders and
Grevesse (1989) multiplied by 1.36, obtained by Korotev
(1996a, b)) of soils are shown in Fig. 7. The higher contents
of REE are found in two soils from the pre-caldera formation:
soil 11-SF (collected in nephelinites) and soil 6-SF (collected
in carbonatites). The other studied soils show similar REE

patterns, with lower REE contents. A slight negative Ce
anomaly occurs in soils 11-SF and 67-CF (Ce/Ce*=0.80
and 0.79, respectively).

The enrichment factor of REE vs. atomic number for acacia
barks is shown in Fig. 8 (the acacia bark collected in site 11-SF
was ignored since only a few REE contents in the bark were
obtained). The REE patterns are in general similar for acacia
grown in different geological formations with an increase
from light REE (LREE)—those from La to Sm (i.e., lower
atomic numbers and masses), to heavy REE (HREE)—those
from Gd to Lu (higher atomic number and masses). A signif-
icant EF for the HREE was found, reaching EFLu=4439.
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Fig. 4 a Total Cr, Co, and Zn
contents (mg/kg) in soils and in
acacia barks for each sampling
site in Fogo Island (Cape Verde);
b enrichment factor of Zn vs.
enrichment factor of Co in acacia
barks



Concerning LREE andmiddle REE (MREE)—those from Pm
to Ho, particularly from La to Eu, the acacia barks present in
general low EF (EF<10), with exception of Ce in acacia col-
lected in nephelinite (site 89-SF) where a significant positive
anomaly occurs (see Fig. 8).

The significant enrichment in HREE may be explained by
the preferential uptake of these elements by bark after the
pyroxenes breakdown, where smaller ions of the HREE sub-
stitute more readily than the LREE during magma processes.
Also, HREE form soluble complexes more stable than the
other REE partially explaining their presence in higher
amounts in soil solutions (Henderson 1996). The LREE may

be partially incorporated in iron oxides and clay minerals,
being less bioavailable (Compton et al. 2003; Prudêncio
et al. 2011).Moreover, the positive Ce anomaly found in some
of the acacia barks may be related with a partial Ce oxidation
after the REE release from primary mineral phases and a fa-
vored uptake of Ce4+ by this type of plants. Previous studies
have reported the uptake of cerium oxide nanoparticles
(nCeO2) by plants and their physiological impacts
(Hernandez-Viezcas et al. 2013; Lopez-Moreno et al. 2010a,
b; Rico et al. 2013; Zhang et al. 2012). A similar trend for a
higher retention of Ce relative to La in plants, compared to
groundwater, was previously observed in the arid
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Fig. 6 Total Ba contents (mg/kg)
in soils and in acacia barks for
each sampling site in Fogo Island
(Cape Verde)

Fig. 5 Total Br contents (mg/kg)
in soils and in acacia barks for
each sampling site in Fogo Island
(Cape Verde)



environment of AlKhod area, Oman (Sehmi et al. 2009), and
in some tropical trees of Brazil (Nakanishi et al. 1997).

Despite the low solubility of the REE, their compounds are
mobile under specific geochemical conditions, depending on
pH, temperature, redox potential and the availability of poten-
tial ligands (Henderson 1996). The results obtained in this
work show that REE may be significantly fractionated during
biological processes in the volcanic soils of Fogo Island.

A previous work performed by Pacheco and Freitas (2009)
in the Atlantic Pico volcanic island (Azores, Portugal) showed
that, in general, the EFs of the chemical elements studied are

lower than the ones found in Fogo Island of Cape Verde. This
can be explained mainly by differences in the climate, partic-
ularly the higher precipitation in Azores compared to the
semi-arid environment of Cape Verde archipelago. Despite
the high EFs in Fogo tree barks, the origin of the chemical
elements (some that can be a threat to health) is certainly from
the natural background rather than anthropogenic inputs since
industry and the use of fertilizers is scarce.

Thus, the chemical elements may be significantly accumu-
lated by plants grown in volcanic soils of Fogo Island, which
can be explained mainly by the soil composition together with
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Fig. 8 Enrichment factors of
REE in acacia tree barks vs atomic
number from Fogo Island (Cape
Verde)

Fig. 7 Rare earth elements
patterns (normalized to
chondrites) of topsoils from Fogo
Island (Cape Verde)



the semi-arid climate and a consequent bioavailability of
chemical elements when rain drops fall in this environment
with unimportant anthropogenic contamination input.

The results obtained in this work indicate that acacia
bark can be used as effective biomonitor reflecting cumu-
lative effects in environmental control, detecting anoma-
lous concentrations of metal(loids) both from soil and
atmosphere.

Conclusions

The acacia barks grown in diverse volcanic soils in the
semi-arid environment of the Fogo Island (Cape Verde
archipelago, Atlantic ocean) present high enrichment fac-
tors of the majority of the chemical elements studied (es-
sential or not to plants), regardless of the geological for-
mation where they grow. A significant bioaccumulation of
essential elements to the plant growth, particularly K and
Zn, occur as could be expected. A high uptake of Br was
also observed for the majority of the trees, partially ex-
plained by marine/atmospheric contribution. In a lower
scale, Ba and Cr also show a high bioavailability in the
different types of soils where plants were collected. The
HREE are preferentially uptake by tree barks relative to
the other REE. A positive Ce anomaly was found in some
tree barks indicating the uptake of nanoparticles of CeO2

which can be expected since oxidation is the main chem-
ical weathering process in the semi-arid climate of Fogo
Island.

The high availability of chemical elements in the volcanic
soils of Fogo Island is certainly due to long periods with no
precipitation, leading to their accumulation and uptake by
plants when water interferes. This bioaccumulation is surely
from the natural background since no significant anthropogen-
ic inputs occur in the island. Among the mineral phases pres-
ent in soils, iron oxides nanoparticles can play an important
role in the retention of potentially harmful elements like Cr.

As long-lived organisms, acacia barks of Fogo Island can
be used as biomonitors to detect concentration of trace ele-
ments both from soils and/or atmospheric origin, and the re-
sults obtained in this work can be used as a benchmark if
anthropogenic activities increase in the future to evaluate
eventual pollution.
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