
ADVANCES IN ENVIRONMENTAL CHEMISTRY OF POLLUTANTS

Maternal–fetal transfer rates of PCBs, OCPs, PBDEs,
and dioxin-like compounds predicted through quantitative
structure–activity relationship modeling

Akifumi Eguchi1 & Masamichi Hanazato2 & Norimichi Suzuki2 & Yoshiharu Matsuno2 &

Emiko Todaka2 & Chisato Mori2,3

# Springer-Verlag Berlin Heidelberg 2015

Abstract The present study aims to predict the maternal–fetal
transfer rates of the polychlorinated biphenyls (PCBs), organ-
ochlorine pesticides (OCPs), and polybrominated diphenyl
ethers (PBDEs), and dioxin-like compounds using a quantita-
tive structure–activity relationship model. The relation be-
tween the maternal–fetal transfer rate and the contaminants’
physicochemical properties was investigated by multiple lin-
ear regression (MLR), partial least square regression (PLS),
and random forest regression (RF). The 10-fold cross-valida-
tion technique estimated low predictive performances for both
MLR and PLS models (R2

CV=0.425±0.0964 for MLR and
R2

CV=0.492±0.115 for PLS) and is in agreement with an
external test (R2

pred=0.129 for MLR and R2
pred=0.123 for

PLS). In contrast, the RF model exhibits good predictive per-
formance, estimated through 10-fold cross-validation (R2CV=
0.566±0.0885) and an external test set (R2

pred=0.519).
Molecular weight and polarity were selected in all models as
important parameters that may predict the ability of a mole-
cule to cross the placenta to the fetus.
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Introduction

In Japan, polychlorinated biphenyls (PCBs), organochlorine
pesticides (OCPs), and polybrominated diphenyl ethers
(PBDEs) have been detected in human fetuses and human
serum, despite the ban or restriction of their use (Fukata
et al. 2005; Kawashiro et al. 2008; Mori et al. 2014). Highly
lipophilic and stable, these compounds have a long residence
time in human tissues; they have been detected in cord blood
(Aylward et al. 2014), indicating that fetuses were exposed to
them through the blood stream. Congeners of dioxin include
polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated
dibenzofurans (PCDFs), and dioxin-like polychlorinated bi-
phenyls (DL-PCBs); they affect human reproduction and de-
velopment because of their endocrine-disrupting effects
(Ankley et al. 2010; Brouwer et al. 1995; Mably et al.
1992). Experimental epidemiological studies also suggest that
PCBs, OCPs, and PBDEs have developmental neurotoxicity
(Grandjean and Landrigan 2006, 2014). Thus, it is important
to determine the mechanisms by which these compounds are
transported from the mother to the fetus.

In the present study, the maternal–fetal transfer rate of
PCBs, OCPs, PBDEs, and dioxin-like compounds is predicted
using multivariate analysis to detect relations between the
compounds’ physicochemical properties and their concentra-
tions in maternal blood (MB) and umbilical cord blood (CB)
(Jotaki et al. 2011; Kawashiro et al. 2008; Mori et al. 2014;
Sakurai et al. 2004). Previous studies have reported ratios of
cord/maternal blood concentrations of PCBs, OCPs, PBDEs,
and dioxin-like compounds between 0.1 and 1 (Aylward et al.
2014). In cases of fetal exposure to higher chlorinated conge-
ners of PCBs or dioxins with larger molecular weights, the
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transfer rate would be lower (Mori et al. 2014; Needham et al.
2011). However, correlations between the maternal–fetal
transfer rate and the compounds’ physicochemical properties
are still not well understood. The quantitative structure–activ-
ity relationship (QSAR) method enables to predict the physi-
cochemical properties or the theoretical molecular descriptors
of chemicals, from their molecular structure. The QSAR
method has been applied before to investigate the placental
barrier for some organic compounds (Hewitt et al. 2007).
However, transfer rates of organohalogen compounds, includ-
ing dioxin-like compounds, could not be estimated.

Materials and methods

Sample acquisition, processing, and analysis

The MB and CB sample sets (n=79) were collected from the
Chiba University Hospital’s Delivery Unit and various other
obstetric units in Japan, after the approval of this study by the
Congress ofMedical Bioethics of Chiba University andwith the
written and informed consent of the patients. The samples were
stored at −20 °C. The concentrations of PCBs (TriCB, TetraCB,
PentaCB, HexaCB,HeptaCB, OctaCB, NonaCB, andDecaCB)
and OCPs (trans-nonachlor, hexachlorocyclohexane,
hexachlorobenzene, and heptachlor epoxide) were analyzed in
29 sample sets using an Agilent 6890 Plus gas chromatography
(Agilent Technologies) and an AutoSpec Ultima NTmass spec-
trometer (Micromass Ltd., Manchester, UK) equipped with a
programmed temperature vaporization (PTV) injection system
(Agilent Technologies, Palo Alto, CA, USA) (Jotaki et al.
2011). The analytical method of Sakurai et al. (2004) was
employed in 41 sample sets for dioxin-like compounds
(polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated
dibenzofuran (PCDFs), and dioxin-like polychlorinated biphe-
nyl (DL-PCBs). These compounds were analyzed by high-
resolution gas chromatography/high-resolution mass spectrom-
etry (HRGC-HRMS). PBDEs’ (BDE47, 100, 153) analysis in
nine samples was also conducted using HRGC-HRMS
(Kawashiro et al. 2008).

Statistical analysis and modeling

A possible association of the maternal transfer rate with the
contaminants’ physicochemical properties was investigated
by multiple linear regression (MLR), partial least square
(PLS) regression, and random forest (RF) regression.

Maternal–fetal transfer rates were assigned by dividing the
concentration of organohalogen compounds in maternal blood
and cord serum (Table 1). In addition, Table 1 presents other
related physicochemical properties: biodegradation half-life,
logarithm bioaccumulation factor (logBAF), logarithm
bioconcentration factor (logBCF), logarithm octanol/water

partition coefficient (logKow), logarithm octanol/air partition
coefficient (logKoA), and water solubility. The following
quantum-chemical descriptors were acquired for the QSAR
model: molecular weight, final formation heat, energy of the
highest occupied molecular orbital (EHOMO), energy of the
lowest unoccupied molecular orbital (ELUMO), HOMO–
LUMO gap, greatest negative partial atomic charge (q−),
greatest positive partial atomic charge (q+), total dipole, total
energy, electronic energy, and core–core repulsion (Table 1).
These quantum-chemical descriptors were obtained by the
PM6 semiempirical method contained in MOPAC 2009 (Ver
9.03CS) (Stewart 2007, 2009), which was implemented in
ChemBioOffice 2013 (Cambridge Soft Corporation, USA).
The biodegradation half-life, logBAF, logBCF, logKow, and
water solubility were drawn from the Estimation Program
Interface (EPI) Suite (United States Environmental
Protection Agency, Washington, DC, USA) (EPA 2012).
The quantum-chemical descriptors and physicochemical
properties of the TetraCB, PentaCB, HexaCB, HeptaCB, and
OctaCB isomers were used as CB74, CB118, CB153, CB180,
and CB194, respectively. Furthermore, the toxic equivalency
factor (TEF) was used as a descriptor for the present analysis
(Van den Berg et al. 2006).

Statistical analysis was performed using R Ver. 3.1.1 (The
R Foundation for Statistical Computing), and SIMCA 13
(Umetrics, Umeå, Sweden). Before statistical analysis, all
values were standardized using the equation:

z ¼ x −μð Þ
.
σ

where μ is the mean and σ is the standard deviation of the
variables.

Principal component analysis (PCA) was employed to or-
der the physicochemical and structure properties and the ma-
ternal–fetal transfer rates (Fig. 1). Spearman’s rank correlation
was performed to identify collinear valuables in physicochem-
ical and structural properties (Table 2); one variable was ex-
empt from the analysis for every given pair of descriptors
exhibiting a correlation coefficient value greater than 0.7.

A dataset of individual maternal–fetal transfer rates, con-
taining 29 pairs of each isomer of PCBs and OCPs, 41 pairs of
each congener of dioxin-like compounds, and 8 pairs of each
congener of PBDEs, was used for developing the prediction
models (Tables S1 and S2). Individual maternal–fetal transfer
rates were calculated by dividing the concentration of each
chemical in CB by its concentration in MB for each pairs of
CB and MB. MLR, PLS regression, and RF regression were
applied. The multicollinearity of the independent variables
was assessed by calculating the variance inflation factor
(VIF) for MLR; the explanatory variables’ VIF values were
<5, indicating a rejection of multicollinearity. The parameters
optimizing likelihood were identified after variable selection
by Spearman’s rank correlation and VIF calculation. The
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optimized likelihoods from different models were then com-
pared using the Akaike information criterion (AIC) (Akaike
1998):

AIC ¼ 2k −2ln L

where k represents the number of parameters and L repre-
sents maximized likelihood. The model with the lowest AIC
was selected to achieve a trade-off between model complexity
(preferring models with fewer parameters) and maximized
likelihood.

PLS regression is widely used in chemometrics for model
development because PLS can analyze data with strong collinear
and multiple predictor variables (Wold et al. 2001). RF is a gen-
eralized regression method, which is effective in various QSAR
tasks; every forest represents a consensus, nonlinear model de-
rived from a large number of single models (Breiman 2001).

PLS and RF were obtained using the R package.
Hyperparameters, mtry for RF (number of variables randomly
sampled as candidates in each split) and the number of compo-
nents for PLS, were optimized by the R package caret (Kuhn
2008). The R package caret was also used to calculate the vari-
able importance for each model. In all cases, the training set
contained 80 % of compounds (24 compounds [HCB, HCH,
heptachlor epoxide, 1.2.3.7.8.PeCDD, 1.2.3.6.7.8.HxCDD,
1.2 .3 .4 .6 .7 .8 .HpCDD, OCDD, 2.3 .4 .7 .8 .PeCDF,
1.2.3.4.6.7.8.HpCDF, CB77, CB126, CB169, CB114, CB118,
CB123, CB156, CB157, CB167, TetraCB, PentaCB, HexaCB,

OctaCB, BDE47, and BDE153]), and the external test sets com-
prised 20 % of compounds (7 compounds [trans-nonachlor,
1.2.3.4.7.8.HxCDF, 1.2.3.6.7.8.HxCDF, CB105, CB189,
HeptaCB, and BDE100]) (Tables S1 and S2). The external val-
idation test set was randomly selected from each type of
organohalogen compound (PCDD/Fs, coplanar PCBs, PCBs,
organohalogen pesticide, and PBDEs). Models were optimized
by 10-fold cross-validation using a training set for internal vali-
dation. Optimized mtry=1 and the number of components=9,
for RF and PLS, respectively. Optimized models were validated
by external test sets. The root mean square error (RMSE), the
correlation coefficient (R2), and the correlation coefficient’s stan-
dard deviation (SD) were reported for cross-validation testing set
(RMSECV, R

2
CV, and SDCV) and between predicted and actual

values of the response variable of the test data (RMSEpred and
R2pred). Tropsha’s validation factor BR2ext,^ Bk,^ and B(R2ext−
R20)/R

2
ext̂ were also calculated, and the applicability domain

and y-randomization were entered for the RF model (Tropsha
2010). The RMSE, k, and R20 were calculated by the following
equations:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

X N

i¼1
yexp−ypred

� �2
r

R2
EXT ¼ 1−

X N

I¼1
ypred−yexp

� �2

X N

I¼1
ypred−ycv

� �2
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Fig. 1 The physicochemical properties of PCBs, OCPs, PBDEs, and dioxin-like compounds. a PCA loading plot and b score plot
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where

ycv

is the mean overall predictive values by R2CV

k ¼
X N

i¼1
yexp*ypredX N

i¼1
ypred

2

R2
0 ¼ 1−

X N

I¼1
ypred−K*yexp

� �2

X N

I¼1
ypred−yexp

� �2

, where

yexp

is the mean overall predictive values by R2predTropsha consid-
ered a QSAR model predictive if the following conditions are
satisfied (Tropsha 2010):

R2
pred > 0:6

R2
EXT > 0:5

R2
ext− R2

0

� �.
R2

ext < 0:1

0:85 ≤k ≤ 1:15

The averaged y-randomized R2 (R2random) was calculated
after 100 randomized iterations to check the reliability of the
proposed model (Rucker et al. 2007). The dependent variable
vector is randomly shuffled, and a new QSAR model is de-
veloped using the original independent variable matrix. If the
new QSAR models are expected to have lower R2 values than
the proposed mode, the proposed model might be acceptable
(Rucker et al. 2007; Tropsha 2010).

Finally, the distance of a test set was calculated to its
nearest neighbor in the training set and compared to the
APD threshold, calculated as follows:

APD=<d>+Zσ [Z: empirical cutoff value 0.5 (Zhang et al.
2006)]

The prediction was considered unreliable when the dis-
tance was higher than the APD. Calculation of <d> and σ
was performed as follows: First, the average of the
Euclidean distances between all pairs of the training set was
calculated. Next, the set of distances that were lower than the
average was formulated. <d> and σ were finally calculated as
the average and standard deviation of all the distances includ-
ed in this set (Zhang et al. 2006).

This analysis included only the contaminants that were
detected in at least 80 % of the samples. All values were
standardized and scaled to zero mean and unit variance before
all statistical analysis. Results below limit of quantification
(LOQ) were assigned a value of 0.5 LOQ.

Results

Ordination of the compounds’ physicochemical properties

PCA was applied to summarize profiles of physicochemical
properties of PCBs, OCPs, PBDEs, and dioxin-like com-
pounds as well as to examine the relation with transfer rate;
the results are presented in Figs. 1, S1, and S2. The normalized
parameters were indicated by four principal components (PC),
i.e., PC1 (33.8 %), PC2 (17.2 %), PC3 (12.2 %), and PC4
(11.5 %), with a total variance of 74.6 %. In the score plot,
OCPs is positively aligned with PC1, whereas PCDDs and
PCDFs are negatively correlated with PC1. PCBs and
PBDEs positively respond to PC2 and OCPs; PCDDs and
PCDFs negatively correlate with PC2. These results divide
the organohalogen compounds in three clusters (OCPs,
PCDD/Fs, and PCBs and PBDEs) (Fig. 1a).

In the loading plot, logKow, HOMO–LUMO gap, molec-
ular weight, and TEF are negatively aligned with PC1. Total
energy, q−, and ELUMO are positively aligned with PC1.
LogBAF, final heat of formation, half-life, and total dipole
are positively aligned with PC2. Finally, electronic energy
and water solubility respond negatively to PC2 (Fig. 1b).
Based on these results, the organohalogen compounds are
divided into two categories: (a) PCBs and PBDEs and (b)
OCPs and PCDD/Fs. PCBs and PBDEs are aligned with fac-
tors of bioconcentration (logBAF, logBCF, and half-life) and
polarity (total dipole). PCDD/Fs are aligned with core–core
repulsion, molecular weight, TEF, and OCPs aligned with
water solubility (Fig. 1). The number of halogenated atom in
PCBs, PBDEs, and PCDD/Fs aligns with factors of molecular
weight (molecular weight, logKow, and logKoA). The mater-
nal–fetal transfer rate is correlated positively with PC1, PC3,
and PC4 and negatively with PC2 (Figs. 1b, S3, and S2),
indicating that the maternal–fetal transfer rate of OCPs and
lower chlorinated PCBs might be higher than that of PCDD/
Fs and higher chlorinated PCBs.

Results of the MLR, PLS, and RF models

In accordance with Spearman-ranked correlation coefficient
values (Table 2), one value is removed from each pair of eight
redundant variables (logKow, logKoA, water solubility, half-
life, total energy, electronic energy, core–core repulsion, and
ELUMO) presenting correlation coefficients greater than 0.7.
The remaining 10 variables (molecular weight, TEF,
logBCF, logBAF, final heat of formation, EHOMO, q

−, q+,
HOMO–LUMO gap, and total dipole) were selected for mod-
el development.

MLR and PLS models provide rather low predictive per-
formance (Table 3), evaluated through the 10-fold cross-vali-
dation (R2

CV=0.425±0.0964 and RMSECV=0.0740±
0.00962 for MLR and R2

CV=0.492±0.115 and RMSECV=
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0.0699±0.0109 for PLS) and the external test set (R2
pred=

0.129 and RMSEred=00897 for MLR and R2
pred=0.123 and

RMSEpred=0.112 for PLS). In these models, the q−, EHOMO,
and HOMO–LUMO gap are significant variables for the PLS;
EHOMO, TEF, molecular weight, and logBAF are selected for
the MLR (Table 4).

The RF model provides better predictive performance,
evaluated through the 10-fold cross-validation (R2

CV=0.566
±0.0885, RMSECV=0.0648±0.00848), the external test set
(R2

pred=0.519 and RMSEpred=0.0514) (Table 3), and values
of Tropsha’s validation factor fit into the standard (R2EXT=
0.508, k=1.033, and (R2

pred−R20)/R2
pred=0.0062). The value

of the average of 100 random shuffles of R2 (R2
random=0.532)

was lower than R2
CV=0.566, indicating that the results from

the proposed model were not due to chance correlation. The
applicability was defined for the compounds that constituted
the test compounds as described. Since half of the validation
compounds fell inside the domain of applicability (Table 5),
the reliability of this model from the APD was slightly low,
meaning the RF model almost passed the tests for predictive
ability, except for R2pred and domain of applicability. In RF
model, total dipole, molecular weight, HOMO–LUMO gap,
and EHOMO are accepted as significant variables (Table 4).

Discussion

Prediction of the maternal–fetal transfer rates

Transfer rates of PCBs, OCPs, PBDEs, and dioxin-like com-
pounds in this study were 0.124 to 0.235, 0.161 to 0.255,
0.125 to 0.238, and 0.109 to 0.326 on a wet wt basis, respec-
tively. Previous study reported that transfer rates of PCBs,
OCPs, PBDEs, and dioxin-like compounds were 0.1 to 0.4,
0.1 to 3, 0.05 to 5, and 0.1 to 0.4 on a wet wt basis, respec-
tively (Aylward et al. 2014), indicating that cord/maternal
blood concentrations in this study were the same level as pre-
vious report.

In this study, three prediction models are developed and
compared, although their prediction accuracy is not expected
to differ significantly (Kovdienko et al. 2010). Indeed, RF
regression clearly offers greater prediction accuracy than the
MLR and PLS models in this study. A previous study indicat-
ed that RF would be suitable for the analysis of small sample
size, high-dimensional feature space, and complex data struc-
tures (Qi 2012). Sample size and the number of target com-
pounds in the current study are smaller than in a previous
research (Lancz et al. 2015). Indeed, RF proves a sufficient

Table 3 Prediction performance
of the investigated maternal
transfer rate for MLR, PLS, and
RF models

Internal validationa (24 compoundsb) External validation (7 compoundsc)

RMSE RMSE SD R2 R2 SD RMSE R2

MLR 0.0740 0.00962 0.425 0.0964 0.0897 0.129

PLS 0.0699 0.0109 0.492 0.115 0.112 0.123

RF 0.0648 0.00848 0.566 0.0885 0.0514 0.519

a 10-fold cross-validation
b 24 compounds: HCB, HCH, heptachlor epoxide, 1.2.3.7.8.PeCDD, 1.2.3.6.7.8.HxCDD, 1.2.3.4.6.7.8.HpCDD,
OCDD, 2.3.4.7.8.PeCDF, 1.2.3.4.6.7.8.HpCDF, CB77, CB126, CB169, CB114, CB118, CB123, CB156,
CB157, CB167, TetraCB, PentaCB, HexaCB, OctaCB, BDE47, and BDE153
c 7 compounds: trans-nonachlor, 1.2.3.4.7.8.HxCDF, 1.2.3.6.7.8.HxCDF, CB105, CB189, HeptaCB, and
BDE100

Table 4 Important variables of MLR, PLS, and RF for prediction of maternal transfer rate

RF PLS MLR

Variable importance Variable importance t Value

Total dipole 100 LogBAF 100 Final heat of formation −21.655
LogBCF 99.81 LogBCF 35.26 LogBAF 15.664

Molecular weight 71.141 EHOMO-ELUMO 28.657 Molecular weight 7.728

EHOMO-ELUMO 48.452 Total dipole 23.331 TEF −7.028
EHOMO 40.37 EHOMO 17.026

q+ 34.537 TEF 8.518

Final heat of formation 13.598 Final heat of formation 3.854

TEF 12.797 q− 2.621

q− 7.289 q+ 2.058

LogBAF 0 Molecular weight 0
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robust prediction model. However, because the kinds of data
about OCP were limited, the transfer rate of OCPs was diffi-
cult to predict in our model. In the future, more data about
OCPs are needed to develop a more accurate model. The total
dipole parameters, signified in RF (Table 4), relate highly to
the compounds’ polarity. Previous reports supported that large
polar molecules cross the placenta slowly, whereas lipophilic
drugs pass more rapidly (Reynolds 1998) and the number of
ionizable groups contributed negatively to the maternal–fetal
transfer rate (Giaginis et al. 2009). It was also suggested that
the topological polar surface area, q+, and the dipole moment
influence the maternal–fetal transfer rate (Hewitt et al. 2007),
indicating that it is difficult for high-polarity compounds to be
transported to the fetus. Moreover, multidrug resistance pro-
teins (MRPs) are known to mediate the transport of various
glucuronides, xenobiotics, and their metabolites, including
polar conjugates (Deeley et al. 2006), indicating that polarity
of compounds might be crucial for the maternal–fetal transfer
rate.

The logBCF and the molecular weight related to transfer
rate in RF (Table 4). Compounds with higher molecular
weight (approximately more than 500 Da) are expected to
have transferred incompletely as they cannot penetrate the
pores of the placental membrane (Audus 1999; Bourget
et al. 1995; Hewitt et al. 2007; Koppe et al. 1992), indicating
that molecular weight negatively correlates with maternal–fe-
tal transfer rate. Previous studies also reported that logKow is
significantly related to the maternal–fetal transfer rate and
several physicochemical properties, such as molecular weight,
water solubility, and the number and type of halogen group
(Meylan and Howard 2000; Monteiro et al. 2008). In addition,
fatty acids are suggested as a transporter for dioxin-like com-
pounds (Koppe et al. 1992). In the present study, molecular
weight is significantly correlated with logKow, logKoA, water
solubility, total energy, core–core repulsion, ELUMO, and
HOMO–LUMO gap (Table 2). This suggests that molecular
weight and/or lipophilicity are important parameters for the
maternal–fetal transport of organohalogen compounds.

EHOMO and HOMO–LUMO gap also related to transfer
rate in the RF model (Table 4). It was reported that cyto-
chrome P450 (CYPs) have been found in the human placenta
(Pasanen 1999). CYPs are well-known xenobiotic enzymes
and are responsible for the detoxification of drugs and xeno-
biotics. Lewis et al. have shown that binding to CYP3A4 is
negatively dependent on the EHOMO, indicating that com-
pounds with a large HOMO energy tended to be difficult to
metabolize by CYP3A (Lewis et al. 2002). In RF, TEF was
selected as the predictive variable in this study and TEF neg-
atively correlates with the maternal–fetal transfer rate; this is
also confirmed by PCA in PC1 (Fig. 1b). The aryl hydrocar-
bon receptor (AhR) protein (Jiang et al. 2010) has been re-
corded in the human placenta, indicating that dioxin-like com-
poundsmay be binding AhR proteins (Manchester et al. 1987)
and thus having difficulty transferring across the human pla-
centa. Moreover, CYP1A1 is the major CYP isoform present
in human placenta (Pasanen 1999). Placental CYP1A1 is in-
duced by lifestyle factors such as smoking, environmental
factors (including PCBs, dioxin-like compounds), and medi-
cations (e.g., azidothymidine and glucocorticoids) (Myllynen
et al. 2005). Based on these results, it is hypothesized that
organohalogen compounds might be a reduction by CYP me-
tabolism and/or binding AhR proteins.

Further studies on organohalogen compound transporters
are required to develop a prediction model for the maternal–
fetal transfer rate. Several transporters are expressed in the
human placenta such as ATP-binding cassette transporters,
ATP-binding cassette sub-family G member 2 (ABCG2)/
breast cancer resistance protein, ATP-binding cassette sub-
family B member 1 (ABCB1)/P-glycoprotein, and ATP-
binding cassette sub-family C member 2 (ABCC2)/multidrug
resistance protein 2 (MRP2) (Myllynen et al. 2009;
Vahakangas and Myllynen 2009); however, relations with
organohalogen compounds and these transporters are still
not completely understood. Thyroid hormone (TH) can cross
the placenta to the fetus, and maternal thyroxin is crucial for
the development of fetal brain; however, due to structural
similarity of thyroxin, a possible mechanism involved in the
disruption of TH homeostasis is the competitive binding of
organohalogen compounds to the TH transport protein
transthyretin (Marchesini et al. 2008), thyroid bindng globu-
lin, and albumin in blood (Ucan-Marin et al. 2010), indicating
that organohalogen compounds may cross the placenta by TH
transporters.

Conclusion

In this paper, we predict the maternal–fetal transfer rate of
PCBs, OCPs, PBDEs, and dioxin-like compounds using mul-
tivariate analysis to detect relations between the physicochem-
ical properties of these compounds and their maternal–fetal

Table 5 Applicability domain for the test compounds

Distancea (APD=0.109)

1.2.3.4.7.8.HxCDF 0.139

1.2.3.6.7.8.HxCDF 0.120

CB105 0.106

CB189 0.0819

HeptaCB 0.102

BDE100 0.183

Trans-nonachlor 0.143

aDistance was calculated from the average predicted transfer rate for each
compound of each maternal–fetal pairs
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transfer rate. RF regression clearly offers greater prediction
accuracy than the MLR and PLS models to predict for mater-
nal transfer rate and molecular weight, and/or lipophilicity
might be important parameters for the maternal–fetal transport
of organohalogen compounds. Further studies on
organohalogen compound transporters are required to develop
a prediction model for the maternal–fetal transfer rate includ-
ing protein binding actively and metabolic rate of these com-
pounds in placenta.
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