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Abstract This study proposes a model-based evaluation of the
effect of different operating conditions with and without pre-
denitrification treatment and applying three different solids re-
tention times on the fouling mechanisms involved in membrane
bioreactors (MBRs). A total of 11 fouling models obtained from
literature were used to fit the transmembrane pressure variations
measured in a pilot-scale MBR treating real wastewater for
more than 1 year. The results showed that all the models repre-
sent reasonable descriptions of the fouling processes in the
MBR tested. The model-based analysis confirmed that mem-
brane fouling started by pore blocking (complete blocking mod-
el) and by a reduction of the pore diameter (standard blocking)
while cake filtration became the dominant fouling mechanism
over long-term operation. However, the different fouling mech-
anisms occurred almost simultaneously making it rather difficult
to identify each one. The membrane “history” (i.e. age, lifespan,
etc.) seems the most important factor affecting the fouling
mechanism more than the applied operating conditions. Nonlin-
ear regression of the most complex models (combined models)
evaluated in this study sometimes demonstrated unreliable pa-
rameter estimates suggesting that the four basic fouling models
(complete, standard, intermediate blocking and cake filtration)
contain enough details to represent a reasonable description of
the main fouling processes occurring in MBRs.
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Introduction

Membrane bioreactors (MBRs) represent promising technolo-
gy for municipal and industrial wastewater treatment since they
allow rapid start-up (Ferraris et al. 2009), small footprint, less
sludge production and superior effluent quality if compared
with conventional activated sludge processes (Wang et al.
2014). However, broader application of MBRs is still limited
by membrane fouling which, by decreasing permeability, in-
creases energy consumption due to the high aeration needed to
promote membrane scouring, and also increases cleaning pro-
cedures and reduces the membrane lifespan (Janus et al. 2009;
Meng et al. 2009; Xu et al. 2013; Eui-Jong et al. 2015).

Over the last decade, several studies have attempted to
increase understanding of membrane filtration mechanisms
in MBRs in order to optimise operating parameters for con-
trolling and reducing membrane fouling. Although the effect
of different operating conditions on sludge permeability and
membrane fouling have already been studied (Pollice et al.
2007; Laera et al. 2009; Meng et al. 2009; Sabia et al. 2013,
2014; Eui-Jong et al. 2015; Lousada-Ferreira et al. 2015), no
conclusive results have been achieved yet. With this in mind,
models could represent essential and powerful tools for simu-
lating fouling occurrence and predicting membrane filtration
performance (Bolton et al. 2006; Liu and Kim 2008; Kim et al.
2013). However, owing to the great complexity of MBR sys-
tems due to the strictly linked interaction between filtration
mechanisms, biological processes and hydrodynamic condi-
tions, no general consensus has been achieved on the main
causes triggering membrane fouling (Bolton et al. 2006; Pollice
et al. 2007; Liu and Kim 2008; Laera et al. 2009; Drews 2010;
Kim et al. 2013; Sabia et al. 2013; Eui-Jong et al. 2015) and,
thus, different approaches have been applied for mathematical
modelling of fouling processes (Broeckmann et al. 2006;
Duclos-Orsello et al. 2006; Wu et al. 2011). Moreover, the
models developed, generally classifiable as kinetic biomass
models, membrane fouling models and integrated models, were
based on different details describing all or part of the MBR
complexity by taking into account different MBR system as-
pects (i.e. biology, physics, hydrodynamics) (Broeckmann
et al. 2006; Ng et al. 2007; Zarragoitia-Gonzalez et al. 2008;
Mannina et al. 2011; Lousada-Ferreira et al. 2015).

A widely adopted approach for describing membrane foul-
ing has pinpointed four main mechanistic models known as
complete blocking, standard blocking, intermediate blocking
and cake filtration, which rely on empirically derived infor-
mation (Hermia 1982; Iritani 2013). Briefly (Fig. 1), particles
arriving on the membrane can completely block the pores
(complete blocking), reduce the pore diameter (standard
blocking) or have a specific probability of blocking a pore
(intermediate blocking); in cake filtration, however, resistance
increases due to the formation and growth of a cake layer on
the membrane surface. The equations for the four fouling

mechanisms have been described in several studies where the
membranes were operated under constant pressure or flux, as
well as applying dead-end and cross flow filtration (Bolton et al.
2006; Pollice et al. 2007; Liu and Kim 2008; Laera et al. 2009;
Ng et al. 2007). Moreover, some researchers, considering the
simultaneous and synergic occurrence of the fouling processes
in MBRs, have developed two- to four-stage fouling models by
combining single mechanistic equations (Bolton et al. 2006;
Duclos-Orsello et al. 2006; Liu and Kim 2008; Wu et al. 2011).
Some authors have tried to identify the dominant fouling
mechanisms in MBRs by analysing model performance (Bolton
et al. 2006; Liu and Kim 2008; Drews et al. 2009; Charfi et al.
2012; Kim et al. 2013). However, the various models proposed
have mostly been applied at laboratory scale with brief flux steps
test, using a pilot scale in relatively short experimental time spans,
or with synthetic feed, sometimes composed of just one chemical
compound (e.g. proteins or carbohydrates) and under well-
defined operating conditions (Bolton et al. 2006; Duclos-Orsello
et al. 2006; Li and Wang 2006; Drews et al. 2009; Monclus et al.
2011; Charfi et al. 2012; Maere et al. 2012; Xu et al. 2013).
This study proposes a model-based evaluation of the foul-
ing mechanisms involved in MBRs. The study was applied on
an aerobic submerged pilot plant MBR fed by real municipal
wastewater and operated over a long experimental period
(450 days). In addition, the fouling models were evaluated
under different operating conditions with and without pre-
denitrification treatment, applying three different solids reten-
tion times (SRTs). The main purpose of the study was, thus, to
evaluate the ways in which different operating conditions af-
fect the fouling mechanisms and processes in MBR. More-
over, contrary to previous studies (Drews et al. 2009; Charfi
etal. 2012), which tested only a few models of the main fouling
mechanisms, a total of 11 models (i.e. most of the models that
can be found in literature) were evaluated in the present work.

Experimental
Pilot-scale MBR

The study was carried out using a pilot-scale MBR which was
placed at the wastewater (WW) treatment plant (WWTP) of
Bellavista in the city of Taranto, Southern Italy.

During the first 210 experimental days, the pilot plant
consisted of an aerobic tank with a working volume of
120 L. Thereafter, a pre-denitrification tank of 60 L was
added. The plant was continuously operated for approximate-
ly 450 days and fed by pre-settled municipal wastewater with
a constant flow rate of 360 L day ' resulting in an HRT of 8 h
(when the pilot consisted of the oxic tank only) or 12 h (pilot
with anoxic and aerobic processes).

The pilot-scale MBR was operated applying three different
SRTs of 25 days (from day 0 to day 284), 50 days (284-380)
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Fig. 1 Schematic representation
of the four main fouling
mechanisms: a complete
blocking; b standard blocking; ¢
intermediate blocking; d cake
filtration (Wang et al. 2014)

a)

and 75 days (380-end). The influent wastewater COD con-
centration of 300-520 mg O, L ™" resulted in an applied organ-
ic loading rate in the range of 0.9-1.6 g COD L™ ,eropicreactor
day ™' (Sabia et al. 2013).

Sludge biomass from the full-scale WWTP was used as
inoculum at the initial total suspended solids (TSS) concentra-
tion of about 8 g L™'. Internal recycle (equal to 400 % of the
influent flow) and sludge withdrawal were performed at con-
stant flow using peristaltic pumps (Watson Marlow 620U).

A new hollow fibre microfiltration membrane module
(GE-ZenonZeeWeed™ ZW-10) with 0.2 pm nominal pore
size and filter area of 0.93 m? (data from the supplier) was
directly immersed in the aerobic tank. Membrane filtration
was carried out by using a piston pump (FMI, Fluid
Metering) under intermittent suction and backwash cycle of
6 (flux=20 L m 2 h™") and 0.5 min (flux=30 L m 2 h' "),
respectively; for the piston pump, a 2-s stop between
forward/reverse mode operation was programmed in order
to avoid water hammer phenomenon and to preserve the
pump. The pump flow rate was controlled by an electronic
DC speed device (Penta KB Power, KBIC-120) with adjust-
able acceleration start feature from 0 to full speed over a time
period of 0.5-4 s, which was set at 2 s.

A blower (LA-120 Nitto Kohoki) assured the air flow for
membrane scouring and the aeration of the oxic reactor; the
dissolved oxygen (DO) in the aerobic tank was constantly
maintained above 4 mg O,L™'. An aeration flow rate of
0.057 m® min~' was applied resulting in a mean gas upflow
velocity of approximately 0.8 m min ™.

The pilot was managed by means of a programmable relay
(Omron Zen-10C1DR-D).

When the TMP values approached a value close to 0.2 bar,
the membrane was physically cleaned by jet rinsing using tap
water on days 126 and 312, and by chemical cleaning (as
indicated by the membrane supplier) on days 228 and 380.

Further details on the wastewater characteristics, MBR setup
and performances are reported elsewhere (Sabia et al. 2013).

Data measurement and acquisition
The pilot plant MBR was equipped with measuring instru-
ments and probes for on-line monitoring of permeate flow,

transmembrane pressure and water temperature. Permeate
flow and TMP were measured by instruments typically

@ Springer

100 000

b) c) d)

employed in industrial applications. A differential pressure
transmitter (Deltabar-S PMD70, Endress+Hauser) and a
magnetic flow transmitter (Promag 23H DN 02 PFA,
Endress+Hauser) were implemented on the permeate line
and connected to a datalogger (CR1000, Campbell Scientific)
for continuous data acquisition. The differential pressure
transmitter was set with a span ranging from —500 to
500 mbar permitting measurements with a total error range
of £0.75 mbar and a reference accuracy of +£0.075 % of the
span setting. The 63 % time response of the instrument was of
210 ms (data from the supplier).

The magnetic flow transmitter allowed for measurements
with a total error percentage of under 2 % in the range 4.8—
24 L h™" with an adjustable response time of 1 to 100 s, set at
2 s in this study.

Temperature was monitored by using a multi-parameter
probe (HydrolabDataSonde 5) which was directly immersed
in the aerobic tank. The temperature probe had an accuracy of
+0.10 °C.

Data processing

The experimental set up allowed for the recording of TMP and
flux values every 2 s for an overall data amount of 185 points
for filtration and 15 for backwash periods.

A total amount of almost 100,000 cycles (filtration/back-
wash) were acquired over the entire experimental study, last-
ing approximately 450 days.

In structuring the dataset to be processed, raw data related
to cycles when plant operational breaks occurred as well as
when analytical procedures (e.g. evaluation of the critical flux
(Sabia et al. 2013) or membrane cleanings implied that plant
stoppages were discarded.

Moreover, taking into account the different response times
of the instruments and their relative accuracy as well as the
response delay of the equipment (e.g. pumps), the dataset was
shortened in order to remove transient periods (i.e. backwash/
filtration switch). Therefore, the first 20 s of each filtration and
backwash phases were arbitrarily removed for further elabo-
ration. As a result, the first 10 data (accounting for 20 s) of
both filtration and backwash were discarded and the final
dataset accounted for 61,401 cycles of 175 (350 s) and 5
(10 s) data during filtration and backwash, respectively.
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TMP data acquired from the above dataset obtained were
then normalised to the reference temperature of 20 °C in order
to take into account the influence of permeate viscosity on the
processes (Trussell et al. 2005) by applying the following
equations:

TMP,y = TMP; x 27720 (1)

where TMP,, and TMP7 are the transmembrane pressure at
20 °C and at the experimental temperature (7).

The value of 0.025 for the temperature coefficient (©) was
calculated taking into account water viscosity (assumed equal
to permeate viscosity) in the 7 range (7 to 34 °C) measured
during the study.

The mean value of TMP,, was, then, calculated for each
filtration phase.

Dataset processing was performed by using the software
Matlab 6.5 (Mathworks) and Excel 2010 (Microsoft). More
details on the description of the instrumentation and data pro-
cessing are reported in Sabia et al. (2013).

The values reported for the TMP in this work in the fol-
lowing sections always refer to the standardised value as de-
scribed above (i.e. after correction for the temperature and as
an average value of a filtration phase).

Fouling models

The models of fouling processes have been chosen according
to their scientific basis theory (i.e. Darcy’s law), their com-
mon application in several studies on fouling phenomenon
(Hlavacek and Bouchet 1993; Ognier et al. 2004; Bolton
et al. 2006; Duclos-Orsello et al. 2006; Liu and Kim 2008;
Drews et al. 2009; Charfi et al. 2012), the relative low num-
ber of parameters to be calibrated and their adaptability to
different MBR configurations. As a result, a total of 11
models were evaluated.

The list (Table 1) includes models which consider single or
combinations of single fouling mechanisms. The first four
models consider the four basic fouling mechanisms (Fig. 1)
while the following five models (N. 5 to 9 in Table 1) are
combinations of them as described in Bolton et al. (2006).
The subsequent equation (N. 10 in Table 1) describes a com-
bined model which integrates all four single fouling processes
of Fig. 1 (Kim et al. 2013).

The last model (here called local flux model) evaluated in
the present study uses a different approach if compared with
the previous ones. The model (Monclus et al. 2011) is, in fact,
based on the notions of the “local flux” (Cho and Fane 2002)
and the “critical flux” (Field et al. 1995). The model assumes
that, during filtration below the critical flux, solute particles
interact with the membrane reducing the number of pores
involved in the filtration process; as the membrane flux is
maintained constant, the local flux increases in the some

regions of the membrane where the pores remained open.
Thus, when the local flux exceeds the critical flux, a sudden
rise in the TMP is observed (Ognier et al. 2004).

The 11 models were fitted on subsets of the experimental
data selected according to experimental periods, which were
identified on the basis of the applied operating conditions (i.e.
SRT) and cleaning procedures as indicated in Fig. 2. Accord-
ingly, a total of seven experimental periods, corresponding to
the application of three SRTs (25, 50, 75 days) and, then,
separated by cleaning procedures (indicated as 25a, 25bl,
25b2, 25¢, 50a, 50b and 75a) were identified (Fig. 2).

The equations of Table 1 were implemented in Matlab 6.5
(Mathworks) and fitted to the experimental TMP values. The
constant flux applied during the study was assumed as Jj,.

The model parameters were estimated by least squares
fitting to the experimental data of TMP and using literature
data (Bolton et al. 2006; Brookes et al. 2006; Liu and Kim
2008; Kim et al. 2013) as initial parameter values. The sum of
squares (SSQ) of the residuals of the predicted values from
the TMP data measured were minimised by nonlinear regres-
sion by using the nlinfit.m function included in MATLAB. In
addition, nlinfit.m function returns the residuals, the Jacobian
of model functions, the estimated variance-covariance matrix
for the estimated coefficients, an estimate of the variance of
the error term (i.e. the mean square error, MSE) and a struc-
ture containing details about the error model. Confidence
intervals (95 %) for the parameters were calculated using
the nlparci.m function, and the 95 % asymptotic prediction
interval was calculated for the predicted experimental data
(i.e. predicted TMP) using the nlpredci.m function (both
functions included in Matlab 6.5).

Since the tested models contain different numbers of pa-
rameters, the goodness of the fits was finally evaluated by
the root mean square error (RMSE) estimated using the
following equation:

n

1 2
RMSE = H Z (TMPi‘measured_TMPi,estimated) (2)
i=1

RMSE was preferred over MSE since the former returns
results in the same unit (pressure, Pa) of the model (Bennett
et al. 2013).

In order to compare the different parameters describing the
different models, the values of the constants obtained for each
separate model were normalised according to the min-max
method as shown by the following equation:

kmikmin

oy — S hmin_ 3
kmax_kmin ( )

where is the normalised value of the m-esim parameter

(k) kmax and ki, are the maximum and minimum value
of k,, respectively.
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Table 1  Equations of the 11 fouling models evaluated (symbols as reported in the Nomenclature section)
N Model Equation Reference
1 Complete blocking T™P . Hlavacek and Bouchet 1993; Suarez and
TMP, — Tkyt Veza 2000; Liu and Kim 2008
2 Standard blocking i 2 Hlavacek and Bouchet 1993; Suarez and
e = (1=55) Veza 2000; Liu and Kim 2008
3 Intermediate blocking T™MP Hlavacek and Bouchet 1993; Suarez and
T™P, — exp(kiJot) Veza 2000; Liu and Kim 2008
4 Cake filtration Hlavacek and Bouchet 1993; Suarez and
IMP | 4 k. J2t : :
TMP, ¢/ 0 Veza 2000; Liu and Kim 2008
5 Cake-complete . o Bolton et al. 2006; Liu and Kim 2008
TMP _ ke _
T™Py — 1=ky o (1 kb“ln(l kbt))
6 Cake-intermediate Bolton et al. 2006; Liu and Kim 2008
TTTM;, = exp(kiJot) <1 + k”k'I/” (exp(kiJot)—l)>
7 Complete-standard T™P . Bolton et al. 2006; Liu and Kim 2008
T™P, p
(1~kot) (1#;{;’ 1n(1—kbz)>
8 Intermediate-standard Bolton et al. 2006; Liu and Kim 2008
TMP __ exp(kiJot)
T™P, 7
<I+zl‘7§‘(exp(k,Jot)fl)>
9 Cake-standard N2 2 Bolton et al. 2006; Liu and Kim 2008
TMP _ _ksJot
T™P, — ((1 TO) +kcJ0[>
10 Four-stage Kim et al. 2013
kiJot)-1 J
{1 +keJo (Mf—oln(lfkbt))} +
T™P _ a explkifor) ki ko ;
TPy = Tkt k kiJot)=1 J -
s (explbdo) Tl Joy gy
2 ki kb
11 Local flux T™P _ . Ognier et al. 2004
TMP, - (Ab, T.’t;[’otz)
No denitrification | Denitrification
SRT 25 SRT 50 SRT 75
0.03 SRT25a SRT25b1 |_| SRT25¢ | SRT50b SRT75a
| - -
SRT25b2 SRT50a
0.02
5
S
Ay
=
&
0.01 J
tw I ch I th ch I
0
0 50 100 150 200 250 300 350 400
Time (d)

Fig.2 Trend of the TMP over the entire experimental campaign. Vertical
arrows indicate when cleaning procedures with tap water (tw) and
chemicals (ch) were carried out. The graph also reports the applied
operating conditions including the addition of the denitrification process
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and the SRT. The seven experimental periods (indicated as 25a, 25b1,
25b2, 25¢, 50a, 50b and 75a) corresponding to the subsets of data used
for the evaluation of the 11 fouling models (Table 1) are also reported
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In addition, the Pearson Product Moment Correlation Dis-
tribution was used to test the correlation of the constant that
describes the models by using Origin 6.5. In particular, corre-
lations were considered statistically significant at 95 (p<0.05),
99 (p<0.01) and 99.9 % (p<0.001) level.

Results and discussion
TMP monitoring

A slow but almost immediate and continuous TMP increase
(TMP values reported are referred to the standardised value
as described in “Data processing” section) was observed
(Fig. 2) from plant start-up, although the membrane was op-
erated at a flux of 20 L m > h™" as indicated by the membrane
supplier (Sabia et al. 2014). Therefore, despite the relatively
low flux, significant fouling phenomena on the new mem-
brane module still took place (Brookes et al. 2006; Guglielmi
et al. 2007; Iritani 2013).

During the study, in spite of continuous maintenance oper-
ations (i.e. air scouring and backwash), the TMP trend showed
the typical two-stage behaviour with a first part of slow pres-
sure increase followed by a rapid rise with an exponential
trend, according to the well-documented theory of the local
critical flux concept (Cho and Fane 2002). Membrane
cleaning by tap water rinsing helped to achieve significant
improvement of the TMP measured but only chemical
cleaning was able to restore the pressure close to the initial
values (Fig. 2).

Performance evaluation of the fouling models

The seven experimental periods identified according to the
operating conditions applied presented important differences
in duration (from 6 to 128 days). Although the two shortest
experimental periods fitted in this study (i.e. SRT25b2 and
SRT50a) only lasted 6 days, other studies (Bolton et al.
2006; Charfi et al. 2012) stated that different fouling mech-
anisms can even be identified in membrane filtration of a
few hours.

The findings achieved in this study demonstrated that all
the models tested (and, thus, the proposed mechanisms) were
capable of reasonably fitting the experimental data (see
Supplementary Materials). Table 2 reports the RMSE obtain-
ed by the curve fitting (the graphs are reported in the
Supplementary Material). These outcomes confirm the find-
ing of Agustin Suarez and Veza (2000) who also found that all
models (complete, standard and intermediate) they tested were
able to reasonably describe the experimental data obtained
filtering effluents of wastewater treatment plants using
microfiltration hollow fibre membranes.

However, the models showed different effectiveness in de-
scribing the experimental data of various operating conditions
(Table 2 and Supplementary Materials) suggesting that differ-
ent fouling mechanisms prevailed during the applied operat-
ing conditions. However, while evident differences can clearly
be observed among the models during the application of some
operating conditions (e.g. during SRT25a and SRT25b1 oper-
ating conditions), over other conditions the models seemed to
be equally capable of describing the TMP trend (e.g. SRT25b2
and SRT50a).

It should be pointed out that major differences in the effec-
tiveness of the model in fitting the data were observed when a
longer experimental phase was tested (e.g. 25a). Since the
amount of data as well as the number of estimated parameters
for each model do not affect the RMSE value, the largest
RMSE observed over longer experimental phases suggest that
several fouling mechanisms can occur simultaneously and,
therefore, a single fouling model alone is not capable of de-
scribing the TMP trend.

In addition, the model proposed by Ognier et al. (2004) usu-
ally presented the highest RMSE, demonstrating that the mech-
anism proposed is the least effective in describing the fouling
process in the treatment system studied. The graphs (see
Supplementary Material) confirm its rather poor fitting ability,
at least in some of the operating conditions tested. Poor fit of the
model defined by Ognier et al. (2004) was also observed by
Brookes et al. (2006) with TMP data obtained using a pilot-
scale MBR equipped with a tubular membrane. Therefore, the
results suggest that the models based on the main fouling mech-
anisms reported in Fig. 1 (Hermia 1982) usually better describe
TMP behaviour in MBRs under operating conditions applied in
this study than the model proposed by Ognier et al. (2004).

Basic fouling models

Considering the four basic fouling models (i.e. model 1 to 4 in
Table 1), some general trends in their ability to fit the exper-
imental data (according to the RMSE) can be observed. In
fact, in the first experimental phase (SRT25a), the standard
blocking model (RMSE of about 440 Pa) was the most effec-
tive in describing the experimental data, while, on the con-
trary, the cake filtration model (RMSE of about 1790 Pa) was
the worst (among the four basic fouling models). This sug-
gests that the mechanisms involving the reduction of pore
volume during filtration (Zarragoitia-Gonzalez et al. 2008)
dominated the fouling processes in the initial phase or when
using a new membrane. It should be noted that the second
most effective fouling mechanism was complete blocking in-
dicating that pore blocking is the second most important
mechanism when using a new membrane. On the contrary,
after membrane cleaning by jet rinsing with tap water, the cake
filtration model was the most effective in describing TMP
behaviour (see phase SRT25b1 and SRT50b). This is in
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Table 2 Root square mean error (RMSE) obtained by the TMP fit of
the evaluated fouling models. Unit in Pascal. In the first row, the seven
experimental periods (indicated as 25a, 25b1, 25b2, 25¢, 50a, 50b and
75a) corresponding to the subsets of data used for the evaluation of the

fouling models are reported. The experimental phases were defined on the
change of the applied operating conditions including cleaning procedures
with tap water (tw) and chemicals (ch), the addition of the denitrification
process (Dn A) and the SRT changes

SRT25a 25b1 25b2 25¢ SRT50a 50b SRT75a
tw Dn A ch tw ch
1 Complete blocking 789.31 1529.52 229.44 464.17 103.25 1373.01 531.40
2 Standard blocking 439.78 1448.80 228.62 380.75 106.17 1218.84 534.54
3 Intermediate blocking 897.79 1368.39 228.00 314.28 109.08 1082.51 537.60
4 Cake filtration 1789.54 1210.75 227.38 330.04 114.84 883.73 543.45
5 Cake-complete 519.06 668.13 227.46 290.81 103.29 883.77 532.04
6 Cake-intermediate 768.69 1210.82 227.46 291.00 108.39 883.77 536.89
7 Complete-standard 418.49 1448.89 228.70 380.77 103.29 1218.88 531.44
8 Intermediate-standard 897.81 692.65 228.08 301.68 84.05 996.45 316.41
9 Cake-standard 1789.58 1210.82 227.46 290.26 51.58 883.77 534.59
10 Four-stage 420.68 1927.32 227.56 286.28 47.08 883.84 123.74
11 Local flux 2670.44 2382.28 398.22 1013.94 106.35 2481.45 365.85

agreement with the hypothesis previously defined (Sabia et al.
2013, 2014), where membrane cleaning procedures with tap
water were supposed to be only capable of removing the cake
layer that had developed, while leaving almost intact the clog-
ging materials deposited inside the pores or firmly attached to
the membrane; therefore, after water cleaning, since the mem-
brane was already partially clogged, TMP behaviour seems to
be better described by the change in permeability due to the
deposition of material that forms a cake layer on the
membrane.

We should note that after the chemical cleaning procedures
(see phases SRT25¢ and SRT75a) the four basic models had
approximately the same capacity in describing TMP trends,
since they showed comparable RMSE values suggesting that,
in those cases, the four mechanisms occurred simultaneously
and concurrently affected the fouling processes (at least at
applied operating conditions). On the contrary, the models
were not able to identify any effect of the applied condition
(i.e. SRT and aerobic vs. anoxic/aerobic conditions) indicating
that the membrane history is more important in affecting foul-
ing mechanisms than applied operating conditions.

Single versus combined models

The use of the combined fouling mechanisms usually improved
the curve fitting (Table 2) indicating that more than one mech-
anism is usually involved in the fouling process. Therefore, it is
not surprising that the four stage model (i.e. the model which
includes all four fouling mechanisms; Kim et al. 2013) usually
produced the best fit to the experimental data. However, in
some cases, the improvements when using models, including
combined fouling mechanisms, was quite low suggesting that a
single model can be used to describe the TMP trend.

@ Springer

In addition, the combined models usually confirmed the
single fouling mechanisms identified as dominant by using
single basic models. For instance, over the first experimental
phase (i.e. SRT25a), RMSE values showed that the models
combining standard blocking and complete blocking mecha-
nisms (i.e. Complete Standard model) appeared to be the most
effective in fitting the data pattern (among the models com-
bining two basic mechanisms). It is worth highlighting that the
predominance of these processes represent, during overall ex-
perimental time, a unique example since, within the following
filtration periods, their actual relevance was overcome by oth-
er fouling mechanisms. These findings support the hypothesis
described in “Basic fouling models™ section that mechanisms
involving pore volume reduction and pore blocking are the
main fouling processes when using a new membrane module
(Xiao et al. 2011; Kim et al. 2013; Wang et al. 2014).

In the second filtration period (SRTbl1), the Cake-
Complete and Intermediate-Standard models showed the low-
est RMSE, whereas the other models were characterised by a
fairly similar ability to fit the experimental data, with the
exception of the local-flux model which, once again, showed
the highest RMSE.

In the following filtration period SRTb2, after denitrifi-
cation process activation, all the models showed similar
RMSE values, confirming that operating conditions seem
to be less important than membrane history in defining the
fouling mechanisms.

After the first chemical cleaning (i.e. phase SRT25¢), the
models showed similar RMSE with the combined models in
general and the four-stage one in particular, showing the low-
est values. Although clear identification of the main fouling
mechanisms after the first chemical cleaning cannot be ob-
served, as the experiment proceeds (and moving on to the
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following phases, SRT50a and SRT50b), the fouling models,
including cake filtration, became more relevant, showing low
RMSE values. On the contrary, the last evaluation phase (i.c.
SRT75a) showed that after further chemical cleaning the
Intermediate-Standard model showed the lowest RMSE
values (just after the four-stage model). These results confirm
that chemical cleaning was, in this case, really effective in
removing the fouling substances and, thus, after its execution
pore blocking and the reduction of pore diameter were identi-
fiable as the dominant fouling mechanisms (Xiao et al. 2011;
Kim et al. 2013; Wang et al. 2014).

It is of note that combined models sometimes do not
improve (on the basis of RMSE) the fit compared to the
related single models, suggesting how one of the basic foul-
ing processes included in the definition of the combined
model seems to be able to completely describe the fouling
mechanisms (Table 2).

Bolton et al. (2006) found that combined models greatly
improved the effectiveness in simulating the fouling process
filtering plasma IgG and protein (bovine serum albumin) so-
lutions. In particular, among the models (Table 1) those au-
thors tested, they found that the combined Cake-Complete and
the Cake-Intermediate models were the most effective in de-
scribing the fouling processes. However, in this study, the
most effective combined models were usually those which
already included the most effective single fouling models
confirming, once more, that single models are usually appro-
priate to reasonably describe the fouling process, at least in the
operating conditions applied in this work.

Parameter estimation of single and coupled models

Experimental data fitting provided estimates of the model pa-
rameters including their 95 % confidence intervals (Fig. 3).
While in some experimental periods the different models
showed similar values for the same model parameters (e.g.
ky, in the experimental phase SRT50a or &, in SRT25b2 and
SRT50b), conversely, in some other experimental periods, the
values obtained were very variable (Fig. 3). It should be point-
ed out that while the fit of the four basic fouling models and
the local flux model (i.e. models 1 to 4 and 11 of Table 1)
always demonstrated parameter values with small confidence
intervals, the fit of the combined models sometimes provided
parameter estimations with extremely large confidence inter-
vals or, even, with negative values. For instance, k, estimation
from the Cake-Complete model in SRT25b1 and %, of the
Cake-Standard model in SRT50a demonstrated negative
values suggesting a lack of meaning of the model in the spe-
cific operating conditions applied (since negative values
should indicate that fouling decreases during filtration).
Moreover, in the case of combined models, the model fit
resulting in parameter values close to zero indicates that the
combined model reduces to the one of the four basic fouling

models (and in fact constants close to zero are only present
with combined models).

Combined models also sometimes showed large confi-
dence intervals suggesting, once more, low reliability of com-
plex models in describing fouling mechanisms (at least with
the operating conditions applied).

The fit of the four-stage fouling model showed several
cases of values with scarce physical meaning (i.e. negative,
close to zero or with very large confidence intervals) demon-
strating the very low reliability of the model in spite of the fact
that it usually showed the lowest RMSE (Table 2). Therefore,
although combined models usually showed improved fits of
the TMP trends (in terms of RMSE), the parameter estima-
tions achieved might have low reliability in the understanding
of the occurring fouling processes. It should be highlighted
that in this study the pilot MBR was managed under low flow
rates such as those commonly applied in full-scale plants (i.e.
those from the membrane supplier) in order to reduce mem-
brane fouling and, therefore, the prevailing fouling process
could hardly be identified (Sabia et al. 2014).

Drews et al. (2009) have already observed that several
models can yield good fits in simulating TMP trends. There-
fore, they concluded that bounds for (the input) the parame-
ters should be added in order to maintain their physical mean-
ing. However, they used different models than those used in
this study.

Preliminary results obtained in this study by the introduc-
tion of parameter bounds in the model fits (using the
nlpredci.m function of Matlab) showed much worse fittings
of the experimental data than the results obtained without
bounds. Moreover, the application of the nlpredci.m function
often resulted in estimations of parameter values that matched
the upper or lower bounds confirming the limited suitability of
using this optimisation function (data not shown). Liu and
Kim (2008) found that the optimisation method they applied
always returned one negative value for all models they evalu-
ated (which were included in this study, Table 1) confirming
that the fit of combined models can return parameters without
physical meaning.

Parameter correlation

Table 3 reports the Pearson correlation coefficients evaluated
on the basis of the estimated parameters included in the foul-
ing models of Table 1. While the correlations of the same
parameter in models which include the same fouling mecha-
nisms were expected, the correlations matrix showed several
further (highly) significant correlations. In particular, the pa-
rameters describing the four basic models were often (highly)
significantly correlated confirming that the four basic fouling
mechanisms give similar results and, thus, have similar capac-
ity in identifying periods or operating conditions with variable
fouling potential.
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Moreover, parameters involved in the same model describ-
ing the combination of two fouling mechanisms were also
sometimes correlated (i.e. k. and k;, in the Cake-Complete
and k. and kg in the Cake-Standard models): since these pa-
rameters were negative correlates, it suggests that one fouling
mechanism tends to prevail over the other. However, the cor-
relation could also suggest low parameter identifiability
(Vanrolleghem et al. 1995) and, thus, low reliability of the
values obtained.

The normalised values (according to Eq. 2) of the parame-
ter estimates for the models characterised by a single param-
eter (i.e. models 1-4 and 11) during the different experimental
periods show almost the same general behaviour (Fig. 4). It is
of note that, with the exception of the first phase, all single
models and, thus, their parameter values were able to identify
the experimental phases with the highest fouling potential. In
fact, all models showed the highest values of the fouling pa-
rameters during the experimental phases SRT25b2 and
SRT50a. The trend of the fouling parameters identified can
justify the several significant correlations of Table 3.

Figure 4 shows that low parameter values were usually
observed just after the chemical cleaning procedures (i.e.
phases SRT25¢ and SRT75a) confirming once more that the
membrane history greatly affects the fouling propensity of the
membrane. On the contrary, the parameters showed the
highest values in the experimental phases when operating
conditions were changed. In fact, the highest values were
observed in the experimental phase when the denitrification
process was added in the treatment line (i.e. phase SRT25b2)
and when SRT was increased from 25 to 50 days (phase
SRT50a). On the contrary, the further increase of SRT to
75 days (phase SRT75a) presented very low values for the
fouling constants. These results suggest that changes in oper-
ating conditions (more than the specific operating condition
itself) may be the second most important factor affecting
fouling behaviour in MBR.

—&— Complete blocking kb —#— Standard blocking ks

Intermediate blocking ki —>— Cake filtration kc
~® Local flux kbr
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SRT25a SRT25b1 SRT25b2 SRT25¢ SRT50a SRT50b SRT75a

Experimental phase

Fig. 4 Normalised values of the parameters for the fouling models
defined by one single parameter
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Conclusions

The results of this study demonstrated that in MBR systems
implemented at pilot plant-scale treating real wastewater and
operated under “sub-critical” flux (as those suggested by the
membrane suppliers) as usually applied in order to maintain
long-time membrane operation, many mechanisms concurred
almost simultaneously to induce membrane fouling. There-
fore, all the fouling models tested in this study were reason-
ably capable of describing the fouling processes. However, the
local-flux model (model 11 in Table 1) was usually the lowest
effective in fitting the experimental data.

The values of RMSE confirmed that membrane fouling
started by pore blocking (complete blocking model) and pore
diameter (standard blocking) reduction. Subsequently, cake
filtration became the dominant fouling mechanism after
long-time operation. However, since the fouling mechanisms
occurred almost simultaneously, their specific identification
can be rather difficult to obtain. The membrane “history”
(i.e. age, lifespan, etc.) seems the most important factor affect-
ing fouling occurrence. Moreover, changes in operating con-
ditions may also affect the fouling processes more than the
specific operating conditions. Among the 11 models evaluated
in this study, although the combined models (models 5-10 in
Table 1) usually achieved better fits of the experimental data
than the basic fouling models (models 14 in Table 1), the
estimates of the model parameters of the former were some-
times unreliable.
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