RESEARCH ARTICLE

Oxidation of elemental mercury by modified spent TiO_2 -based SCR-DeNO_x catalysts in simulated coal-fired flue gas

Lingkui Zhao $^{1,2} \cdot$ Caiting Li $^{1,2} \cdot$ Xunan Zhang $^{1,2} \cdot$ Guangming Zeng $^{1,2} \cdot$ Jie Zhang $^{1,2} \cdot$ Yin'e Xie 1,2

Received: 10 February 2015 / Accepted: 3 August 2015 / Published online: 15 September 2015 © Springer-Verlag Berlin Heidelberg 2015

Abstract In order to reduce the costs, the recycle of spent TiO₂-based SCR-DeNO_x catalysts were employed as a potential catalytic support material for elemental mercury (Hg^{0}) oxidation in simulated coal-fired flue gas. The catalytic mechanism for simultaneous removal of Hg⁰ and NO was also investigated. The catalysts were characterized by Brunauer-Emmett-Teller (BET), scanning electron microscope (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) method. Results indicated that spent TiO₂-based SCR-DeNOx catalyst supported Ce-Mn mixed oxides catalyst $(CeMn/SCR_1)$ was highly active for Hg⁰ oxidation at low temperatures. The Ce_{1.00}Mn/SCR₁ performed the best catalytic activities, and approximately 92.80 % mercury oxidation efficiency was obtained at 150 °C. The inhibition effect of NH₃ on Hg⁰ oxidation was confirmed in that NH₃ consumed the surface oxygen. Moreover, H₂O inhibited Hg⁰ oxidation while SO₂ had a promotional effect with the aid of O₂. The XPS results illustrated that the surface oxygen was responsible

Responsible editor: Angeles Blanco

- Highlights \cdot The spent commercial SCR catalyst was used as a support for Hg⁰ oxidation.
- \bullet CeMn/SCR1 catalyst was highly active for Hg^{0} oxidation at low temperatures.
- \bullet The surface oxygen was responsible for Hg^{0} oxidation and NO conversion.
- Catalytic activity of Hg⁰ oxidation and NO conversion was measured.
- The catalytic mechanism of catalysts was also investigated.

Caiting Li ctli@hnu.edu.cn; ctli3@yahoo.com

- ¹ College of Environmental Science and Engineering, Hunan University, Changsha 410082, People's Republic of China
- ² Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, People's Republic of China

for Hg⁰ oxidation and NO conversion. Besides, the Hg⁰ oxidation and NO conversion were thought to be aided by synergistic effect between the manganese and cerium oxides.

Keywords Catalytic oxidation · Manganese oxide · Cerium oxide · Elemental mercury · Low temperature

Introduction

Coal-fired utility boilers are major anthropogenic sources of mercury emissions (Pirrone et al. 2010). Many countries and environmental researchers have paid considerable attention to mercury (Hg) because of its high volatility, long persistence, and strong biological accumulative properties (Brown et al. 1999). In 2011, the USA announced the Mercury and Air Toxics Standard (MATS) (He et al. 2014). In January 2013, 140 nations adopted the first legally binding international treaty to set enforceable limits on emissions of mercury and exclude, phase out, or restrict some products that contain mercury (Auzmendi-Murua et al. 2014).

Many technologies have been used for mercury control in coal combustion flue gas, including activated carbon injection (ACI), catalytic oxidation, photochemical oxidation, and existing air pollution control devices (APCDs) (Srivastava et al. 2006). Catalytic oxidation of elemental mercury (Hg^0) could greatly enhance mercury capture efficiency using currently available pollution control devices such as wet scrubbers (Ji et al. 2008). Compared to activated carbon injection, combining Hg^0 oxidation with wet flue gas desulfurization (WFGD) is considered as a promising method for mercury removal due to its lower cost. With extensive application in coal-fired power plants, selective catalytic reduction (SCR) technology could control NO_x emission as well as exhibit the co-benefit of promoting Hg^0 oxidation. Many studies have evaluated the performance of the SCR catalysts on Hg⁰ oxidation (Cao et al. 2008; Kamata et al. 2008; Pudasainee et al. 2010; Yan et al. 2011). However, the commercial V_2O_5 -WO₃(MoO₃)/TiO₂ catalyst has the disadvantages of high reaction temperature (573-673 K) (Zhibo et al. 2013). Moreover, the high concentration of dust in the flue gas reduces its performance and longevity at this temperature (Zhang et al. 2012). Accordingly, in order to avoid the cost for reheating the flue gas and the deactivation by high concentration of dust, it is desirable to develop a novel SCR catalyst with high catalytic activity at low temperatures. MnO_x-based catalysts (He et al. 2013; Li et al. 2012; Ou et al. 2014; Wang et al. 2014; Wiatros-Motyka et al. 2013) have been proposed as economical low temperature SCR catalysts for NO_x removal and Hg⁰ oxidation. It has been widely studied owing to their excellent capture activity, easy manufacturing, and low cost. Ji et al. (Ji et al. 2008) synthesized a novel MnOx/TiO2 catalyst and found NO conversion and Hg⁰ capture could achieve 97 and 90 %, respectively. Moreover, Li et al. (2010) reported that the Hg^0 oxidation efficiency over MnOx/alumina and modified MnOx/alumina catalysts was more than 90 %. Currently, CeO₂ has been widely studied as an oxygen provider for heterogeneous catalytic reactions due to its oxygen storage capability by storing or releasing O via the Ce^{4+}/Ce^{3+} redox couple (Shen et al. 2014a; Shen et al. 2014b; Zhang et al. 2013). Significantly, cerium oxides provide oxygen to manganese oxides at low temperatures, which promoted the oxidation activity of manganese (He et al. 2014; Larachi et al. 2002). In particular, Ce-Mn mixed oxide was found to be an excellent lowtemperature SCR catalyst (Li et al. 2012; Wu et al. 2008). Li et al. (2012) reported that TiO₂ supported Mn-Ce mixed oxides (Mn-Ce/Ti) was highly active for Hg⁰ oxidation at low temperatures (150-250 °C) under both simulated flue gas and SCR flue gas. He et al. (2014) investigated Ti-pillared-clay supported MnOx-CeO₂ mixed oxide as catalysts for Hg⁰ capture. The results found that the catalyst exhibited high Hg⁰ adsorbent and catalytic oxidant in the absence of HCl. Besides, the addition of CeO₂ could significantly enhance the sulfur resistance and water resistance (Wang et al. 2014). Consequently, Mn-Ce mixed oxide has been recently developed as a SCR catalyst with extraordinarily high activity for NO_x removal and Hg^0 oxidation.

It is worth noting that the TiO₂-based SCR-DeNO_x catalysts (V_2O_5 - WO_3 /TiO₂) usually suffer some types of deactivation during the practical application, such as poisoning, fouling, thermal degradation, and vapor compound formation (Shang et al. 2012). As a result, TiO₂-based SCR catalysts are usually in operation for 3 years until the catalytic performance is finally deteriorated. Subsequently, the spent TiO₂-based SCR catalyst is either disposed in landfill or recycle. The recycle of catalyst is considered as the best approach due to its cost-saving and environment-friendly benefit. Some works

have been done to overcome the drawback of SCR-DeNOx catalysts, including washing by water and acid solution, thermal regeneration, and reductive regeneration (Guo et al. 2008; Khodayari and Odenbrand 2001; Shang et al. 2012). Therefore, the novel development of spent TiO₂-based SCR-DeNO_x catalyst as a potential catalytic support material could present a more environmentally and financially sound option for simultaneous removal of Hg⁰ and NO in conventional coal-fired power plants.

This work attempts to reuse the spent TiO₂-based SCR catalyst. The spent TiO₂-based SCR-DeNOx catalyst was used as a support to synthesize CeMn/SCR₁ catalysts. The Hg^0 oxidation activities were tested at 100–300 °C in simulated coal-fired flue gas without HCl. The effects of Ce/Mn mass ratios, flue gas components including NH₃, SO₂, H₂O, and O₂ were evaluated. Besides, in order to further investigate the improvement of physicochemical properties by the modified Ce-Mn mixed oxide, Brunauer-Emmett-Teller (BET), scanning electron microscopy (SEM), X-ray diffractogram (XRD), and X-ray photoelectron spectroscopy (XPS) analyses were carried out and analyzed in detail. The catalytic mechanism for simultaneous removal of Hg^0 and NO was investigated in the end.

Experimental

The preparation of catalysts

The spent TiO₂-based SCR-DeNOx catalysts were obtained from power plant after exposure to exhaust gases in the SCR system for 3 years. Their DeNO_x activity (about 30.00 %) was much less than fresh ones. The spent TiO₂-based SCR catalysts were washed in deionized water to remove poisons such as ash, alkali metals, and salt molecules from the samples. Once washing was completed, the sample was dried in an oven at 105 °C for 12 h. Finally, the samples were crushed and sieved to 100–120 mesh. The samples are denoted as SCR₁ catalysts and stored in desiccator.

The Ce/SCR₁, Mn/SCR₁, and CeMn/SCR₁ samples were prepared using cerium nitrate and/or manganese nitrate aqueous solution and SCR₁ catalysts by an impregnation method enhanced by ultrasound. Specifically as follows: first, a certain amount of cerium nitrate and/or manganese nitrate was dissolved in deionized water to form the solution. Then, the SCR₁ catalyst was added to the solution with stirring in a proportion. Third, the mixture was exposed to an ultrasonic bath for 1 h. Excess water was evaporated while stirring and ultrasonic bath. The obtained solid was dried at 105 °C for 12 h and calcined at 500 °C for 3 h. Finally, the obtained catalysts were ground and sieved to 100–120 mesh. The catalysts were denoted as Mn/SCR₁, Ce/SCR₁, and Ce_xMn/ SCR₁, where x represented the Ce/Mn mass ratio (0.25, 0.67, 1.00, 1.50, and 4.00). The mass loading of $(CeO_2 + MnO_x)/SCR_1$ were 1 %. The mass loading of Ce/SCR_1 or Mn/SCR_1 were 1 % as well.

Catalyst characterization

The analysis of surface area, average pore size, and average pore volume was carried by Micromeritics Tristar II 3020 analyzer (Micromeritics Instrument Crop, USA). All samples were degassed in vacuum at 180 °C for 5 h. The specific surface area was determined using the standard Brunauer-Emmett-Teller (BET) equation. The average pore diameter and average pore volume of the samples were obtained from the desorption branches of N_2 adsorption isotherm and calculated by the Barrett-Joyner-Halenda (BJH) formula.

To further analyze the morphology and surface structure of the samples, SEM analysis was performed using a Hitachi S-4800 (Hitachi Limited, Japan). The separated areas for each sample were magnified to $\times 100,000$.

The samples were characterized by XRD using a Rigaku rotaflex D/Max-C powder diffractometer (Rigaku, Japan) with Cu-Ka radiation ($l=1.5406 \text{ A}^{\circ}$) in the 2θ range from 10° to 80° with 0.2° /min.

XPS experiments were performed on a K-Alpha 1063 Xray photoelectron spectrometer (Thermo Fisher Scientific, UK). XPS spectra were obtained using an Al K_a X-ray source operated at 12 kV and 6 mA. The observed spectra were calibrated with the carbon 1s electron binding energy (BE) value of 284.6 eV.

Catalytic activity measurement

The experiments were performed in a fixed-bed quartz reactor (i.d. 20 mm), which was located inside a temperaturecontrolled tubular furnace, as shown in Fig. 1. An Hg⁰ permeation tube (VICI Metronics, USA) was used to generate a constant quantity of Hg^{0} vapor (70.00 $\mu g/m^{3}),$ which was supplied into the gas steam. Other simulated flue gas (SFG) components including 300 ppm SO₂, 500 ppm NO, 500 ppm NH₃ (when used), 12 % CO₂, 8 % H₂O vapor (when used), 5 % O₂, and balanced gas N₂ were supplied by gas cylinders and were precisely controlled by mass flow controllers (MFC). A total flow rate of 1 L/min were used during the experiments, which corresponded to a gas hourly space velocity (GHSV) of 100,000/h (the catalysts mass was 0.5 g). All the gas components were mixed and preheated to the desired temperature, and then passed through the fixed-bed quartz reactor. The feed water was exactly controlled by peristaltic pump and injected into the Teflon tube that wrapped with a temperature-controlled heating tape. Afterward, the water vapor was generated. One hundred milliliters per minute pure N₂ took along the water vapor to mix with the flue gas. Besides, in order to avoid adsorption of Hg⁰ on the inner surface and

condensation of water vapor, all Teflon tubes that Hg^0 and water vapor passed through were heated up to 120 °C. A RA-915M mercury analyzer (LUMEX Ltd, Russia) was employed to measure the concentration of Hg^0 while NO concentration was monitored by a flue gas analyzer (MGA5, Germany). It was verified that interferences on Hg^0 measurement by flue gas components such as SO₂, NH₃, and water vapor were negligible. Even so, before proceeding to the mercury analyzer, acid gases, NH₃, and water vapor were removed by the conditioning unit and the condenser. The conditioning unit converged to a 10 % NaOH solution in which gases such as NH₃ and SO₂ were captured. The H₂O vapor condensed into liquid water through the condenser.

Six sets of experiments were conducted, and the experimental conditions are summarized in Table 1. In set I to set II, experiments aimed at finding the optimal catalyst and operating temperature. The Hg^0 oxidation activities over SCR_1 , Mn/SCR₁, Ce/SCR₁, and Ce_xMn/SCR₁ samples were evaluated under SFG (500 ppm NO, 300 ppm SO₂, 5 % O₂, 12 % CO_2 , and 70.00 μ g/m³ Hg⁰) for 2 h. In set III to set V, the effects of individual gas components on Hg⁰ oxidation and the reaction pathways were explored. The experiments were conducted on the optimal sample in the presence of individual flue gases at optimal operating temperature. In set VI, the optimal sample was tested in SCR atmosphere (500 ppm NO, 500 ppm NH₃, 300 ppm SO₂, 5 % O₂, and 70.00 μ g/ $m^3 Hg^0$) at each selected reaction temperature from 100 to 300 °C for investigating the simultaneous removal of NO_x and Hg^0 .

At the beginning of each test for catalytic activity, the gas stream bypassed the reactor and the inlet gas was sampled to ensure a stable NO (NO_{in}) and Hg⁰ (Hg⁰_{in}) feed concentration. Then, the gas flow was switched to pass through the catalysts, and the analyzer measured the gas compositions in the outlet (noted as NO_{out} and Hg⁰_{out}). Before each test, the catalysts were first saturated with the established Hg⁰_{in} under N₂ atmosphere at room temperature to avoid possible bias because of Hg⁰ physical adsorption (Anchao et al. 2014; Li et al. 2012; Li et al. 2011). The result indicated that Hg⁰ physical adsorption capacity of samples were negligible at room temperature (less than 1.0 µg/g at room temperature). Therefore, the loss of Hg⁰ over the catalysts should be due to the oxidation of Hg⁰. Hg⁰ oxidation efficiency (η_{Hg}) over the catalysts was quantified by Eq. (1):

$$\eta_{Hg}(\%) = \frac{\mathrm{Hg_{in}^{0}-Hg_{out}^{0}}}{\mathrm{Hg_{in}^{0}}} \times 100\%$$
(1)

Meanwhile, the NO conversion efficiency (η_{NO}) can be calculated using Eq. (2):

$$\eta_{NO}(\%) = \frac{\mathrm{NO}_{\mathrm{in}} - \mathrm{NO}_{\mathrm{out}}}{\mathrm{NO}_{\mathrm{in}}} \times 100\%$$
⁽²⁾

experimental setup

Results and discussion

Characterization of the catalyst

BET

The BET specific surface area, pore volumes, and average pore sizes of the samples are listed in Table 2. Compared to the SCR1 catalyst, the addition of Mn reduced the surface areas of catalysts. The reason might be that MnO_x occupied a part of free pores of supports during the impregnation process. Note that the surface areas of the sample were increased after the addition of Ce. This result suggested that Ce could improve the specific surface areas of catalysts. However, the BET surface areas of all samples had no obvious change. Furthermore, pore volumes of Ce1.00Mn/SCR1 catalyst were lower than that of Mn/SCR1 and Ce/SCR1. It has been reported that a prominent synergy effect could be exhibited between CeO₂ and MnO_x (Singh et al. 2013).

Table 1 Experimental conditions

Experiments	Catalysts	Flue gas components(1 L/min)	Temperature (°C)
Set I	SCR_1 , Ce/SCR_1 , Mn/SCR_1 , $Ce_{1.00}Mn/SCR_1$	N ₂ +70.00 μ g/m ³ Hg ⁰ +500 ppm NO+300 ppm SO ₂ + 12 % CO ₂ +5 % O ₂	100–300
Set II	Ce_xMn/SCR_1	N_2 +70.00 $\mu g/m^3 Hg^0$ +500 ppm NO+300 ppm SO ₂ + 12 % CO ₂ +5 % O ₂	100–200
	SCR_1 , Ce/SCR_1	$N_2 + 70.00 \ \mu g/m^3 \ Hg^0$	
Set III	Mn/SCR ₁ , Ce _{1.00} Mn/SCR ₁	N ₂ +70.00 μg/m ³ Hg ⁰ +500 ppm NH ₃ , N ₂ +70.00 μg/m ³ Hg ⁰ + 500 ppm NH ₃ +5 % O ₂ , N ₂ +70.00 μg/m ³ Hg ⁰ +500 ppm NH ₃ + 500 ppm NO+5 % O ₂ , N ₂ +70.00 μg/m ³ Hg ⁰ +400 ppm NH ₃ + 500 ppm NO+5 % O ₂	The optimal reaction temperature
Set IV	Ce _{1.00} Mn/SCR ₁	N ₂ +70.00 μ g/m ³ Hg ⁰ +0–1000 ppm SO ₂ +5 % O ₂ , N ₂ + 70.00 μ g/m ³ Hg ⁰ +0–1000 ppm SO ₂ , N ₂ +70.00 μ g/m ³ Hg ⁰ + 600 ppm SO ₂ +5 % O ₂ , N ₂ +70.00 μ g/m ³ Hg ⁰ +600 ppm SO ₂ , N ₂ + 70.00 μ g/m ³ Hg ⁰ +5 % O ₂ +8 % H ₂ O+300 ppm SO ₂	150
Set V	Ce _{1.00} Mn/SCR ₁	$N_2 + 70.00 \ \mu g/m^3 \ Hg^0 + 0 - 10 \ \% \ O_2 + 100 \ ppm \ NH_3 + 100 \ ppm \ NO$	150
Set VI	Ce _{1.00} Mn/SCR ₁	$N_2 {+}70.00~\mu\text{g/m}^3~\text{Hg}^0 {+}500~\text{ppm}~\text{NO} {+}500~\text{ppm}~\text{NH}_3 {+}300~\text{ppm}~\text{SO}_2 {+}5~\%~\text{O}_2$	100–300

 Table 2
 The surface area, pore volume, and pore diameter of the samples

Catalysts	BET surface area (m ² /g)	Pore volume (cm ³ /g)	Average pore diameter (nm)
SCR1	42.3059	0.1872	17.7077
Ce/SCR ₁	43.1618	0.1860	13.7511
Mn/SCR1	41.7101	0.1816	17.4146
$Ce_{1.00}Mn/SCR_1$	42.0066	0.1355	12.9051

Therefore, it could be inferred that the loss of pore volumes might be caused by deposited Ce-Mn mixedoxide, which penetrated into the pores of carriers.

SEM

The SEM images of the selective samples are shown in Fig. 2. The SEM images showed that crystal morphologies of the SCR₁ catalyst were not significant influenced by the addition of metal oxide. From Fig. 2a, it could be seen that the surface of SCR₁ catalyst was smooth and the size was uniform. For Ce/SCR₁ or Mn/SCR₁ catalyst, a few depositions of CeO₂ or MnO_x formed, while on the Ce_{1.00}Mn/SCR₁ catalyst surface (Fig. 2d), more depositions were observed. Since the BET surface areas had no significant change as demonstrated in Table 2, it can be concluded that the dispersion of CeO₂ or MnO_x on the support surface was excellent. However, a synergy effect between CeO₂ and MnO_x could result in particles interconnection, which promoted the formation of agglomerates.

Fig. 2 Nanoscale of SEM analysis of **a** SCR₁, **b** Ce/SCR₁, **c** Mn/SCR₁, **d** Ce_{1.00}Mn/SCR₁ (100,000 multiplier)

XRD

The XRD patterns of spent SCR₁, Ce/SCR₁, Mn/SCR₁, and Ce_{1.00}Mn/SCR₁ catalysts are shown in Fig. 3. It was found that the major reflections of XRD patterns belonged to anatase phase TiO₂. The addition of CeO₂ or/and MnO_x did not result in significant change in the positions or the shapes of typical TiO₂ diffractions. Besides, for all the samples, no obvious traces of CeO₂ or/and MnO_x were found in any of the catalysts during XRD analysis, which indicated that CeO₂ or/and MnO_x species were well dispersed throughout the support structure or their crystalline structures were too small to detect.

XPS

To gain more insight into the reaction pathways, an XPS analysis was performed to determine the chemical state and the relative proportion of the elements on the surface of the fresh and spent $Ce_{1.00}Mn/SCR_1$ catalyst. The spent $Ce_{1.00}Mn/SCR_1$ catalysts were carried out on the fix bed reaction system under

Fig. 3 XRD patterns of SCR₁, Ce/SCR₁, Mn/SCR₁, and Ce_{1.00}Mn/SCR₁

SCR atmosphere at 150 °C. The XPS results are shown in Fig. 4. The O1s peaks could be fitted into two peaks referred to the lattice oxygen (O_{β}) at 529.3–530.0 eV and the chemisorbed oxygen (O_{α}) at 531.3–531.9 eV (Wu et al. 2008). As shown in Fig. 4a, the O_{β} ratio for the peak at 530.0 eV (calculated by $O_{\beta}/(O_{\alpha}+O_{\beta})$) increased from 61.45 to 62.61 % compared to that of the fresh catalyst, whereas the ratio of O_{α} (calculated by $O_{\alpha}/(O_{\alpha}+O_{\beta})$) decreased from 38.54 to 37.38 %. These observations suggested that both

Fig. 4 XPS spectra of $Ce_{1.00}$ Mn/ SCR₁ over the spectral regions of **a** O 1s, **b** Ce 3d, and **c** Mn 2p (reaction condition: 70.00 µg/m³ Hg⁰, 500 ppm NO, NH₃/NO: 1, 5 % O₂, 300 ppm SO₂, 500 mg of sample, 1000 mL/min total flow rate, and GHSV 100,000/h)

chemisorbed oxygen and lattice oxygen participated in Hg^0 oxidation and NO conversion. The increase of the O_β ratio can be explained by two factors. First, O_2 in flue gas could regenerate the lattice oxygen which consumed in the reaction. Second, the consumption of chemisorbed oxygen increased the percentage of lattice oxygen.

The XPS spectra for Ce 3d are shown in Fig. 4b. XPS peaks denoted as u/v, u_2/v_2 , and u_3/v_3 can be assigned to Ce⁴⁺ while u_1/v_1 correspond to Ce³⁺ (Wang et al. 2014). Both Ce³⁺ and Ce⁴⁺ existed in the fresh Ce_{1.00}Mn/SCR₁ catalyst. Based on the peak areas, the peaks corresponding to Ce⁴⁺ appeared to be dominant. After the reaction, the ratio of Ce⁴⁺/Ce³⁺ decreased from 2.70 to 1.54 compared to the fresh catalyst, implying a reduction of Ce⁴⁺ during the reaction. Furthermore, the presence of Ce³⁺ may result in a charge imbalance, which would lead to oxygen vacancies and unsaturated chemical bonds (Liu et al. 2012). This situation could generate additional chemisorbed oxygen or weakly adsorbed oxygen species on the surface of the catalyst, which is beneficial for Hg⁰ oxidation and the SCR reaction.

The XPS results of Mn 2p for the fresh and spent $Ce_{1.00}$ Mn/ SCR₁ catalyst are shown in Fig. 4c. For the fresh $Ce_{1.00}$ Mn/ SCR₁ catalyst, the peaks observed at 643.1 and 641.5 eV correspond to Mn⁴⁺ and Mn³⁺, respectively (Xu et al. 2012). The co-existence state of MnO₂–Mn₂O₃ can promote the catalytic oxidation activity of catalyst (Xu et al. 2012). For the catalyst

used at 150 °C, the ratio of Mn^{4+}/Mn^{3+} decreased from 2.38 to 0.72. The result confirmed that reactions took place between the adsorbed active species and lattice oxygen (Wang et al. 2014). The lattice oxygen came from the valence state changes of MnO_x . O_2 in the flue gas would supply the metal oxide with oxygen to ensure that reaction can be continued. Therefore, it can be concluded that the lattice and chemisorbed oxygen on the catalyst surface are responsible for their superior performance. The reduction of Mn^{4+} to Mn^{3+} on the surface of the catalyst contributed to the Hg⁰ oxidation.

Performance of catalysts

Catalytic activity tests

The activity curves of the different catalysts under simulated flue gas are shown in Fig. 5. Apparently, with the addition of CeO_2 or/and MnO_x into SCR_1 , the catalytic activity was obviously enhanced, especially at low temperature. Notably, E_{oxi} over $Ce_{1.00}Mn/SCR_1$ catalyst was higher than that over Mn/ SCR_1 and Ce/SCR_1 catalysts. This result demonstrated that there were intense interactions between manganese oxides and cerium oxides (Li et al. 2012). The interactions resulted in more surface oxygen, which is responsible for Hg^0 oxidation.

The Hg⁰ oxidation of the Ce_{1.00}Mn/SCR₁ catalysts with different Ce/Mn mass ratios is shown in Fig. 6. According to the results of Ce_{1.00}Mn/SCR₁ catalysts, it can be seen that the η_{Hg} first increased with the increasing of Ce/Mn mass ratios, then the η_{Hg} decreased when the Ce/Mn mass ratios was 1.50. Remarkably, Ce_{1.00}Mn/SCR₁ catalyst showed the best activity, and its Hg⁰ oxidation efficiency was 92.80 % at 150 °C. These results indicated that Ce/Mn mass ratios influenced the

Fig. 5 Hg^0 oxidation efficiency over different catalysts under simulated flue gas as a function of temperature (reaction condition: 70.00 µg/m³ Hg⁰, 500 ppm NO, 5 % O₂, 300 ppm SO₂, 12 % CO₂, 500 mg of sample, 100-300 °C, 1000 mL/min total flow rate, and GHSV 100,000/h)

Fig. 6 Effects of different of Ce/Mn mass ratio on $Ce_{1.00}Mn/SCR_1$ catalysts on Hg^0 oxidation efficiency (reaction condition: 70.00 $\mu g/m^3$ Hg⁰, 500 ppm NO, 5 % O₂, 300 ppm SO₂, 12 % CO₂, 500 mg of sample, 100–200 °C, 1000 mL/min total flow rate, and GHSV 100,000/h)

activity of Ce_xMn/SCR_1 catalysts, which is related to the synergy between CeO_2 and MnO_x .

Effect of NH₃ on Hg⁰ oxidation

Since NH₃ is the reactant gas for selective catalytic reduction of NO_x, it is necessary to study the effect of NH₃ on Hg⁰ oxidation. Figure 7 shows the influence of NH₃ on mercury oxidation over Ce_{1.00}Mn/SCR₁ catalysts. In this work, a significant inhibitive effect of NH₃ on Hg⁰ oxidation over the catalysts was observed both in pure N₂ atmosphere and in the presence of O₂. NH₃ (500 ppm) was added to pure N₂ atmosphere and gas flow containing 5 % O₂ balanced in N₂, respectively. It was observed that the Hg⁰ oxidation efficiency

Effects of NH, on Hg⁰ oxidation of different catalyst at optimal temperature

Fig. 7 Effect of NH₃ on Hg⁰ oxidation over different catalysts (reaction condition: 70.00 μ g/m³ Hg⁰, 500 ppm NH₃, NH₃/NO: 0–1, 5 % O₂, the optimal reaction temperature, 500 mg of sample, 1000 mL/min total flow rate, and GHSV 100,000/h)

decreased. In the presence of O_2 , Hg^0 oxidation dropped to only 19.73 % over $Ce_{1.00}Mn/SCR_1$ catalyst, which, however, was still higher than that without O_2 . Some researchers believe that NH_3 adsorption on catalyst most probably takes place according to the following steps (Qi et al. 2004; Zhou et al. 2013):

$$NH_3(g) \rightarrow NH_3(ad)$$
 (3)

$$NH_3(ad) + O^*(ad) \rightarrow NH_2(ad) + OH(ad)$$
 (4)

where O* are active surface oxygen of the catalyst. In this process, NH₃ consumed the surface oxygen (including lattice oxygen and chemisorbed oxygen) that is responsible for Hg⁰ oxidation and NO conversation. Gas-phase O₂ regenerated the lattice oxygen, and replenished the consumed chemisorbed oxygen. Thus, the presence of gas-phase O₂ offsets part of the inhibitive effect of NH₃. Interestingly, the coexistence of NO with NH₃ can also mitigate such inhibition. η_{Hg} was 34.79 % in N₂+500 ppm NO+500 ppm NH₃+5 %O₂, which was higher than that in N₂+500 ppm NH₃. In addition, the η_{Hg} over Ce_{1.00}Mn/SCR catalyst was also higher than that of SCR₁ catalyst. It indicated the participation of CeO₂ and MnO_x had certain effects on reducing the inhibitive effect of NH₃.

Effect of SO_2 and H_2O on Hg^0 oxidation

It is very important to evaluate the effect of SO₂ and H₂O on Hg⁰ oxidation because SO₂ and H₂O unavoidably exist in flue gas and have significant impacts on the activities of catalysts. Figure 8 presents the effects of SO₂ and H₂O on Hg⁰ oxidation over Ce_{1.00}Mn/SCR₁ catalysts at 150 °C. It can be seen that Hg^0 oxidation was not promoted by SO_2 itself. Otherwise, Hg⁰ oxidation efficiency should not rely on the existence of O₂ and should rise with the increase of SO₂ concentration (Li et al. 2013). As shown in Fig. 8a, introducing 200 ppm SO₂ into gas flow containing 5 % O_2 increased Hg⁰ oxidation efficiency from 60.15 to 63.10 %, which indicated that low SO_2 concentration promoted Hg⁰ oxidation with the aid of O_2 . However, Hg⁰ oxidation efficiency gradually decreased as SO₂ concentration increased from 200 to 1000 ppm. As can be seen in Fig. 8a (inset), $\eta_{\rm Hg}$ maintained at almost the same level throughout the entire experimental period with the aid of O_2 . However, without the aid of O_2 , the Hg⁰ oxidation efficiency was influenced with a drop of 34.56 %, and a continuous declining trend was observed as time went by. It demonstrated that part of adsorbed SO2 reacted with catalyst to form some new species that were responsible for the enhanced Hg^0 oxidation. For metal-oxide-based SCR catalysts, the new species was generally believed to be SO_3 (Casapu et al. 2009; Dunn et al. 1998; Fan et al. 2010; Svachula et al. 1993). Therefore, it was inferred that SO2 would be oxidized by the lattice oxygen, reducing the active oxidant sites. The reduced

Fig. 8 Effect of SO₂ and H₂O on Hg⁰ oxidation over Ce_{1.00}Mn/SCR₁ catalysts. **a** Effect of SO₂ concentration on Hg⁰ oxidation (reaction condition: 70.00 μ g/m³ Hg⁰, 0–1000 ppm SO₂, 5 % O₂, 500 mg of sample, 150 °C, 1000 mL/min total flow rate, and GHSV 100,000/h). **b** Effect of SO₂ and H₂O on Hg⁰ oxidation (reaction condition: 70.00 μ g/m³ Hg⁰, 300 ppm SO₂, 8 % H₂O, 5 % O₂, 500 mg of sample, 150 °C, 1000 mL/min total flow rate, and GHSV 100,000/h)

active sites could not be reactivated without O_2 , which resulted in the decrease of Hg⁰ oxidation efficiency as time went by. On the other hand, with the aid of O_2 , the reduced oxidant sites were reoxidized by O_2 . Both the reactivated sites and SO₃ promoted Hg⁰ oxidation efficiency. A promotional effect of SO₂ on Hg⁰ oxidation can be proposed as follows (Li et al. 2008a):

$$SO_2 + \frac{1}{2}O_2 \rightarrow SO_3 \tag{5}$$

$$Hg^{0} + \frac{1}{2}O_{2} + SO_{3} \rightarrow HgSO_{4}$$
(6)

Figure 8b illustrates the activity performance of $Ce_{1.00}$ Mn/ SCR₁ catalysts in the system with SO₂ and water vapor simultaneously. As is shown, when adding 8 % H₂O into the stream, the Hg⁰ oxidation efficiency dropped sharply. Obviously, H₂O had a significant inhibitive effect on Hg⁰ oxidation (Li et al. 2008b). The inhibitive effect of H₂O possibly came from its competitive occupancy of the available active sites and displacement of adsorbed Hg⁰ (Tan et al. 2012). When both H₂O and SO₂ were added, the inhibition was less severe than that when H₂O were added individually. This indicates that H₂SO₄ can form when SO₂, O₂, and H₂O co-exist, which will likely affect the behavior of Hg⁰ on the surface of catalyst. After the H₂O and SO₂ were cut off, it was found that the catalytic activity gradually recovered but not returned to the original level yet. It implies that the addition of SO₂ can reduce the H₂O poison. However, the catalysts were deactivated by H₂SO₄ somehow.

Effect of O_2

To obtain higher catalytic oxidation, the presence of O_2 is normally necessary, especially for metal oxide catalysts (Anchao et al. 2014). Figure 9 shows the effect of O_2 on catalytic activity of $Ce_{1.00}Mn/SCR_1$ catalysts. The results showed that the NO conversion and Hg^0 oxidation efficiency in N_2+2 % O_2 was greater than that in pure N_2 atmosphere. This observation indicated that O_2 is beneficial to the catalytic activity of catalyst. Meanwhile, Hg^0 oxidation might comprise some chemical reactions with the presence of O_2 (Fan et al. 2012; Tao et al. 2012; Yang et al. 2011a; Yang et al. 2011b). Combined with the XPS results, it was possible that gas-phase O_2 achieved the supplement of the lost lattice oxygen, which facilitated Hg^0 oxidation and NO conversion.

Fig. 9 Effect of O_2 concentration on simultaneous removal of Hg^0 and NO over $Ce_{1.00}Mn/SCR_1$ catalysts at 150 °C (reaction condition: 70.00 μ g/m³ Hg⁰, 100 ppm NO, NH₃/NO: 1, 0–10 % O₂, 500 mg of sample, 150 °C, 1000 mL/min total flow rate, and GHSV 100,000/h)

Simultaneous removal of Hg⁰ and NO

The simultaneous removal of Hg^0 and NO by $Ce_{1.00}Mn/SCR_1$ catalysts was also investigated and the results are illustrated in Fig. 10. As shown in the figure, 82.20 % NO conversion was obtained at 200 °C with a GHSV of 100,000/h. An obvious decrease of the Hg^0 oxidation efficiency was found in the experiment compared with the NH₃-free condition. Although simultaneously removal of Hg^0 and NO was unsatisfactory, it is still encouraging because lower space velocity would result in higher Hg^0 oxidation efficiency and NO conversion. Combined with the result of upper experiment, the problem that how to design and choose the best optimized experimental conditions for simultaneous removal of Hg^0 and NO still needs further study.

The cooperation of Mn and Ce in the SCR catalysts

It was worthy noted that the reaction on the surface of $Ce_{1.00}Mn/SCR_1$ catalysts included both NO conversion and Hg^0 oxidation. NO was reduced by NH₃ through the catalysis of NH₃-SCR while Hg^0 was oxidized to Hg^{2+} . The reaction observed in this work like previous literature (He et al. 2014; Singh et al. 2013; Xu et al. 2012) which is thought to be aided by the synergistic mechanism between the manganese and cerium oxides. They explained the synergistic mechanism as follows:

$$2MnO_2 \rightarrow Mn_2O_3 + O_\beta \tag{7}$$

$$Mn_2O_3 + 2CeO_2 \rightarrow 2MnO_2 + Ce_2O_3$$
(8)

$$\operatorname{Ce}_2 \operatorname{O}_3 + \frac{1}{2} \operatorname{O}_2 \to 2 \operatorname{CeO}_2 \tag{9}$$

(

Fig. 10 Hg^0 oxidation and NO conversion with respect to reaction temperatures (reaction condition: $70.00 \ \mu\text{g/m}^3 \text{Hg}^0$, 500 ppm NO, NH_3 / NO: 1, 300 ppm SO₂, 5 % O₂, 500 mg of sample, 100–300 °C, 1000 mL/ min total flow rate, and GHSV 100,000/h)

The co-existence of $MnO_2-Mn_2O_3$ can improve the NO conversion and Hg^0 oxidation. The lattice oxygen generated from manganese oxides are beneficial in promoting the oxygen cycle. Moreover, the additional oxygen generated is thought to be aided by the oxygen transfer between Mn_2O_3 and CeO_2 (Eq. 8). Ce provided oxygen to Mn, in which why the valence and oxidation ability of Mn increased. Finally, the consumed lattice oxygen would be replenished by oxygen from the flue gas (Eq. 9).

Combining with our results, the lattice oxygen participated in the NO conversion and Hg^0 oxidation. On one hand, the lattice oxygen generated via Eq. 10 is invariably responsible for the oxidation of NO to the intermediate NO₂-containing species on the catalyst surface. They can further react with NH₃ to form ammonium nitrite (NH₂NO), which subsequently decomposes into N₂ and H₂O. The reaction pathway can be described by Eqs. 10–12 according to the previous study (Jin et al. 2010). On the other hand, $Hg^0_{(ad)}$ would react with lattice oxygen that replenished by oxygen from the flue gas to form HgO. The pathway could be explained by Eqs. 13 and 14 according to the previous research (Ji et al. 2008; Kong et al. 2011; Zhao et al. 2014).

$$NO + O_{\beta} \rightarrow \cdots - O - N - O \tag{10}$$

$$\cdots - O - N - O + NH_3 + H^+ \rightarrow NH_4NO_2$$
(11)

$$NH_4NO_2 \rightarrow NH_2NO \rightarrow N_2 + H_2O$$
(12)

$$Hg^{0}_{(g)} \rightarrow Hg^{0}_{(ad)}$$
(13)

$$Hg^{0}_{(ad)} + O_{\beta} \rightarrow HgO$$
(14)

where represent the catalyst surface.

Conclusions

The spent TiO₂-based SCR-DeNOx catalyst was used as a support for Hg⁰ oxidation, which presents a more environmentally and financially sound option for simultaneous removal of Hg⁰ and NO in industrial application. Ce-Mn mixed oxide modified catalyst was highly active for Hg⁰ oxidation reaction at low temperature. The Ce_{1.00}Mn/SCR₁ catalyst exhibited high Hg⁰ oxidation efficiency (92.80 %) at 150 °C. The flue gas components were found to have significant effects on Hg oxidation efficiency. NH₃ consumed the oxygen on the catalyst surface, hence inhibiting Hg⁰ oxidation. Promotional effects of SO₂ on the Hg⁰ oxidation were observed, while the presence of H₂O inhibited the Hg⁰ oxidation. Results also indicated that the combination of CeO₂ and MnO_x resulted in significant synergy for Hg⁰ oxidation and NO conversion.

Acknowledgments This project was financially supported by the National Natural Science Foundation of China (51278177, 51478173).

References

- Anchao Z, Wenwen Z, Jun S, Song H, Zhichao L, Jun X (2014) Cobalt manganese oxides modified titania catalysts for oxidation of elemental mercury at low flue gas temperature. Chem Eng J 236:29– 38. doi:10.1016/j.cej.2013.09.060
- Auzmendi-Murua I, Castillo Á, Bozzelli JW (2014) Mercury oxidation via chlorine, bromine, and iodine under atmospheric conditions: thermochemistry and kinetics. J Phy Chem A 118:2959–2975. doi: 10.1021/jp412654s
- Brown TD, Smith DN, Hargis RA, O'Dowd WJ (1999) Mercury measurement and its control: what we know, have learned, and need to further investigate. J Air Waste Manage Assoc 49:1–97. doi:10. 1080/10473289.1999.10463906
- Cao Y, Gao Z, Zhu J, Wang Q, Huang Y, Chiu C, Parker B, Chu P, Pan WP (2008) Impacts of halogen additions on mercury oxidation, in a slipstream selective catalyst reduction (SCR), reactor when burning sub-bituminous coal. Environ Sci Technol 42:256–261. doi:10. 1021/es071281e
- Casapu M, Kröcher O, Elsener M (2009) Screening of doped MnO_x -CeO₂ catalysts for low-temperature NO-SCR. Appl Catal B-Environ 88:413–419. doi:10.1016/j.apcatb.2008.10.014
- Dunn JP, Koppula PR, Stenger HG, Wachs IE (1998) Oxidation of sulfur dioxide to sulfur trioxide over supported vanadia catalysts. Appl Catal B-Environ 19:103–117. doi:10.1016/S0926-3373(98)00060-5
- Fan X, Li C, Zeng G, Gao Z, Chen L, Zhang W, Gao H (2010) Removal of gas-phase element mercury by activated carbon fiber impregnated with CeO₂. Energ Fuel 24:4250–4254. doi:10.1021/ef100377f
- Fan X, Li C, Zeng G, Zhang X, Tao S, Lu P, Li S, Zhao Y (2012) The effects of Cu/HZSM-5 on combined removal of Hg⁰ and NO from flue gas. Fuel Process Technol 104:325–331. doi:10.1016/j.fuproc. 2012.06.003
- Guo Y, Liu Z, Liu Q, Huang Z (2008) Regeneration of a vanadium pentoxide supported activated coke catalyst-sorbent used in simultaneous sulfur dioxide and nitric oxide removal from flue gas: effect of ammonia. Catal Today 131:322–329. doi:10.1016/j.cattod.2007. 10.032
- He J, Reddy GK, Thiel SW, Smirniotis PG, Pinto NG (2013) Simultaneous removal of elemental mercury and NO from flue gas using CeO2 modified MnOx/TiO2 materials. Energ Fuel 27:4832– 4839. doi:10.1021/ef400718n
- He C, Shen B, Chen J, Cai J (2014) Adsorption and oxidation of elemental mercury over Ce-MnOx/Ti-PILCs. Environ Sci Technol 48: 7891–7898. doi:10.1021/es5007719
- Ji L, Sreekanth PM, Smirniotis PG, Thiel SW, Pinto NG (2008) Manganese oxide/titania materials for removal of NOx and elemental mercury from flue gas. Energ Fuel 22:2299–2306. doi:10.1021/ ef700533q
- Jin R, Liu Y, Wu Z, Wang H, Gu T (2010) Low-temperature selective catalytic reduction of NO with NH₃ over MnCe oxides supported on TiO₂ and Al₂O₃: a comparative study. Chemosphere 78:1160–1166. doi:10.1016/j.chemosphere.2009.11.049
- Kamata H, Ueno S, Naito T, Yukimura A (2008) Mercury oxidation over the V₂O₅(WO₃)/TiO₂ commercial SCR catalyst. Ind Eng Chem Res 47:8136–8141. doi:10.1021/ie800363g
- Khodayari R, Odenbrand CUI (2001) Regeneration of commercial TiO₂-V₂O₅-WO₃ SCR catalysts used in bio fuel plants. Appl Catal B-Environ 30:87–99. doi:10.1016/S0926-3373(00)00227-7
- Kong F, Qiu J, Liu H, Zhao R, Ai Z (2011) Catalytic oxidation of gasphase elemental mercury by nano-Fe₂O₃. J Environ Sci 23:699–704. doi:10.1016/S1001-0742(10)60438-X
- Larachi F, Pierre J, Adnot A, Bernis A (2002) Ce 3d XPS study of composite Ce_xMn_{1-x}O_{2-y} wet oxidation catalysts. Appl Surf Sci 195:236–250. doi:10.1016/S0169-4332(02)00559-7

- Li Y, Murphy P, Wua CY (2008a) Removal of elemental mercury from simulated coal-combustion flue gas using a SiO₂-TiO₂ nanocomposite. Fuel Process Technol 89:567–573. doi:10.1016/j.fuproc.2007. 10.009
- Li Y, Murphy PD, Wu CY, Powers KW, Bonzongo JCJ (2008b) Development of silica/vanadia/titania catalysts for removal of elemental mercury from coal-combustion flue gas. Environ Sci Technol 42:5304–5309. doi:10.1021/es8000272
- Li JF, Yan NQ, Qu Z, Qiao SH, Yang SJ, Guo YF, Liu P, Jia JP (2010) Catalytic oxidation of elemental mercury over the modified catalyst Mn/alpha-Al₂O₃ at lower temperatures. Environ Sci Technol 44: 426–431. doi:10.1021/es9021206
- Li HL, Wu CY, Li Y, Zhang JY (2011) CeO2-TiO2 catalysts for catalytic oxidation of elemental mercury in low-rank coal combustion flue Gas. Environ Sci Technol 45:7394–7400. doi:10.1021/es2007808
- Li H, Wu CY, Li Y, Zhang J (2012) Superior activity of MnO_x-CeO₂/TiO₂ catalyst for catalytic oxidation of elemental mercury at low flue gas temperatures. Appl Catal B-Environ 111–112:381–388. doi:10. 1016/j.apcatb.2011.10.021
- Li H, Wu CY, Li Y, Li L, Zhao Y, Zhang J (2013) Impact of SO₂ on elemental mercury oxidation over CeO₂–TiO₂ catalyst. Chem Eng J 219:319–326. doi:10.1016/j.cej.2012.12.100
- Liu CX, Chen L, Li JH, Ma L, Arandiyan H, Du Y, Xu JY, Hao JM (2012) Enhancement of activity and sulfur resistance of CeO₂ supported on TiO₂-SiO₂ for the selective catalytic reduction of NO by NH₃. Environ Sci Technol 46:6182–6189. doi:10.1021/es3001773
- Pirrone N, Cinnirella S, Feng X, Finkelman RB, Friedli HR, Leaner J, Mason R, Mukherjee AB, Stracher GB, Streets DG, Telmer K (2010) Global mercury emissions to the atmosphere from anthropogenic and natural sources. Atmos Chem Phys 10:5951–5964. doi: 10.5194/acp-10-5951-2010
- Pudasainee D, Lee SJ, Lee SH, Kim JH, Jang HN, Cho SJ, Seo YC (2010) Effect of selective catalytic reactor on oxidation and enhanced removal of mercury in coal-fired power plants. Fuel 89: 804–809. doi:10.1016/j.fuel.2009.06.022
- Qi G, Yang RT, Chang R (2004) MnO_x-CeO₂ mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with NH3 at low temperatures. Appl Catal B-Environ 51:93–106. doi:10.1016/j. apcatb.2004.01.023
- Qu L, Li C, Zeng G, Zhang M, Fu M, Ma J, Zhan F, Luo D (2014) Support modification for improving the performance of MnO_x - CeO_y/γ -Al2O₃ in selective catalytic reduction of NO by NH3. Chem Eng J 242:76–85. doi:10.1016/j.cej.2013.12.076
- Shang X, Hu G, He C, Zhao J, Zhang F, Xu Y, Zhang Y, Li J, Chen J (2012) Regeneration of full-scale commercial honeycomb monolith catalyst (V₂O₅–WO₃/TiO₂) used in coal-fired power plant. J Ind Eng Chem 18:513–519. doi:10.1016/j.jiec.2011.11.070
- Shen B, Wang F, Liu T (2014a) Homogeneous MnO_x-CeO₂ pellets prepared by a one-step hydrolysis process for low-temperature NH₃-SCR. Powder Technol 253:152–157. doi:10.1016/j.powtec.2013. 11.015
- Shen B, Wang Y, Wang F, Liu T (2014b) The effect of Ce-Zr on NH₃-SCR activity over $MnO_{x(0.6)}/Ce_{0.5}Zr_{0.5}O_2$ at low temperature. Chem Eng J 236:171–180. doi:10.1016/j.cej.2013.09.085
- Singh S, Nahil MA, Sun X, Wu C, Chen J, Shen B, Williams PT (2013) Novel application of cotton stalk as a waste derived catalyst in the low temperature SCR-deNOx process. Fuel 105:585–594. doi:10. 1016/j.fuel.2012.09.010

- Srivastava RK, Hutson N, Martin B, Princiotta F, Staudt J (2006) Control of mercury emissions from coal-fired in electric utility boilers. Environ Sci Technol 40:1385–1393. doi:10.1021/es062639u
- Svachula J, Alemany LJ, Ferlazzo N, Forzatti P, Tronconi E, Bregani F (1993) Oxidation of sulfur dioxide to sulfur trioxide over honeycomb DeNoxing catalysts. Ind Eng Chem Res 32:826–834. doi: 10.1021/ie00017a009
- Tan Z, Su S, Qiu J, Kong F, Wang Z, Hao F, Xiang J (2012) Preparation and characterization of Fe₂O₃–SiO₂ composite and its effect on elemental mercury removal. Chem Eng J 195–196:218–225. doi:10. 1016/j.cej.2012.04.083
- Tao S, Li C, Fan X, Zeng G, Lu P, Zhang X, Wen Q, Zhao W, Luo D, Fan C (2012) Activated coke impregnated with cerium chloride used for elemental mercury removal from simulated flue gas. Chem Eng J 210:547–556. doi:10.1016/j.cej.2012.09.028
- Wang P, Su S, Xiang J, You H, Cao F, Sun L, Hu S, Zhang Y (2014) Catalytic oxidation of Hg⁰ by MnO_x–CeO₂/γ-Al₂O₃ catalyst at low temperatures. Chemosphere 101:49–54. doi:10.1016/j. chemosphere.2013.11.034
- Wiatros-Motyka MM, C-g S, Stevens LA, Snape CE (2013) High capacity co-precipitated manganese oxides sorbents for oxidative mercury capture. Fuel 109:559–562. doi:10.1016/j.fuel.2013.03.019
- Wu Z, Jin R, Liu Y, Wang H (2008) Ceria modified MnO_x/TiO₂ as a superior catalyst for NO reduction with NH₃ at low-temperature. Catal Commun 9:2217–2220. doi:10.1016/j.catcom.2008.05.001
- Xu H, Zhang Q, Qiu C, Lin T, Gong M, Chen Y (2012) Tungsten modified MnOx–CeO2/ZrO2 monolith catalysts for selective catalytic reduction of NOx with ammonia. Chem Eng Sci 76:120–128. doi: 10.1016/j.ces.2012.04.012
- Yan NQ, Chen WM, Chen J, Qu Z, Guo YF, Yang SJ, Jia JP (2011) Significance of RuO₂ modified SCR catalyst for elemental mercury oxidation in coal-fired flue gas. Environ Sci Technol 45:5725–5730. doi:10.1021/es200223x
- Yang S, Guo Y, Yan N, Wu D, He H, Xie J, Qu Z, Jia J (2011a) Remarkable effect of the incorporation of titanium on the catalytic activity and SO₂ poisoning resistance of magnetic Mn–Fe spinel for elemental mercury capture. Appl Catal B-Environ 101:698–708. doi:10.1016/j.apcatb.2010.11.012
- Yang SJ, Guo YF, Yan NQ, Wu DQ, He HP, Qu Z, Jia JP (2011b) Elemental mercury capture from flue gas by magnetic Mn-Fe spinel: effect of chemical heterogeneity. Ind Eng Chem Res 50:9650–9656. doi:10.1021/ie2009873
- Zhang S, Li H, Zhong Q (2012) Promotional effect of F-doped V₂O₅-WO₃/TiO₂ catalyst for NH₃-SCR of NO at low-temperature. Appl Catal a-Gen 435:156–162. doi:10.1016/j.apcata.2012.05.049
- Zhang X, Shen B, Wang K, Chen J (2013) A contrastive study of the introduction of cobalt as a modifier for active components and supports of catalysts for NH₃-SCR. J Ind Eng Chem 19:1272–1279. doi:10.1016/j.jiec.2012.12.028
- Zhao B, Liu X, Zhou Z, Shao H, Wang C, Si J, Xu M (2014) Effect of molybdenum on mercury oxidized by V₂O₅–MoO₃/TiO₂ catalysts. Chem Eng J 253:508–517. doi:10.1016/j.cej.2014.05.071
- Zhibo X, Chunmei L, Dongxu G, Xinli Z, Kuihua H (2013) Selective catalytic reduction of NO_x with NH₃ over iron–cerium mixed oxide catalyst: catalytic performance and characterization. J Chem Technol Biot 88:1258–1265. doi:10.1002/jctb.3966
- Zhou J, Hou W, Qi P, Gao X, Luo Z, Cen K (2013) CeO₂–TiO₂ sorbents for the removal of elemental mercury from syngas. Environ Sci Technol 47:10056–10062. doi:10.1021/es401681y