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Abstract Numerical models are important tools that are used
in studies of sediment dynamics in inland and coastal waters,
and these models can now benefit from the use of integrated
remote sensing observations. This study explores a scheme for
assimilating remotely sensed suspended sediment (from
charge-coupled device (CCD) images obtained from the
Huanjing (HJ) satellite) into a two-dimensional sediment
transport model of Poyang Lake, the largest freshwater lake
in China. Optimal interpolation is used as the assimilation
method, and model predictions are obtained by combining
four remote sensing images. The parameters for optimal inter-
polation are determined through a series of assimilation ex-
periments evaluating the sediment predictions based on field
measurements. The model with assimilation of remotely
sensed sediment reduces the root-mean-square error of the
predicted sediment concentrations by 39.4 % relative to the
model without assimilation, demonstrating the effectiveness
of the assimilation scheme. The spatial effect of assimilation is

explored by comparing model predictions with remotely
sensed sediment, revealing that the model with assimilation
generates reasonable spatial distribution patterns of suspended
sediment. The temporal effect of assimilation on the model’s
predictive capabilities varies spatially, with an average tempo-
ral effect of approximately 10.8 days. The current velocities
which dominate the rate and direction of sediment transport
most likely result in spatial differences in the temporal effect
of assimilation on model predictions.

Keywords Sediment transportmodel .Assimilation .Remote
sensingsediment .Optimal interpolation .Spatialandtemporal
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Introduction

Suspended sediments in shallow lakes can impact the physical
and chemical environment of the water column through resus-
pension and transportation and can also alter the light quality,
subsequently affecting the growth of phytoplankton (Jin and Ji
2004). Furthermore, pollutants and heavy metals of terrestrial
origin are accumulated and transported by sediments in aquat-
ic environments, with impacts on the health of both aquatic
wildlife and humans (Feng et al. 2012). Currently, a number of
large lakes around the world are suffering from serious envi-
ronmental problems related to contaminated sediment associ-
ated with climate change and human activities.

The following three methods are primarily used to study
lake sediment dynamics: ship-based surveys, numerical
modeling, and satellite-based remote sensing. Traditional
ship-based surveys collect suspended sediment data directly;
however, the sparse spatial and temporal density of these data
cannot fully represent spatial and temporal information (Puls
et al. 1994). Numerical modeling, which is widely applied to
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study sediment dynamics in inland lake waters (Chao et al.
2008; Lee et al. 2005; Teeter et al. 2001; Wang et al. 2013),
benefits from recent advances in computational fluid dynam-
ics and predicts suspended sediment patterns at detailed spa-
tial and temporal resolution based on formulas that define and
calculate the physical process of sediment transport (Stroud
et al. 2009). Satellite-based remote sensing observations gen-
erate a synoptic picture of sediment concentrations throughout
a region of interest, and this approach is commonly used to
study long-term and short-term sediment processes in lakes
(Feng et al. 2012; Schiebe et al. 1992). Satellite observations
are also a valuable source of data for numerical model evalu-
ations and provide high-resolution data over multiple spatial
and temporal scales. Therefore, a number of studies have com-
bined numerical modeling and remotely sensed data, contrib-
uting to scientific research on suspended sediment dynamics
in ocean and inland water environments (Chen et al. 2010;
Kouts et al. 2007; Miller and McKee 2004; Pleskachevsky
et al. 2005).

However, both numerical modeling and satellite observa-
tions involve uncertainties. In numerical modeling, several
types of errors are inherent in predictions of sediment trans-
port, including errors in the governing equations of the numer-
ical model, which imperfectly describes the complex physical
processes involved in sediment dynamics, and errors when
simplifying equations during numerical calculations (Gregg
2008). In addition, current models are far from perfect and
are subject to uncertainty with regard to model parameters
and model input data, including bathymetry and initial and
boundary conditions (Natvik 2003). Uncertainty in satellite
observations may occur because of onboard errors in satellite
sensors and the effects of atmospheric conditions on signal
transmission. A high level of uncertainty also stems from the
interpretation methods or inversion models by which
suspended sediment concentrations are indirectly retrieved
from remotely sensed signals (Huang et al. 2008).

Fortunately, data assimilation provides a useful tool for
reducing such uncertainties and improving numerical model
results. Through data assimilation, numerical models are inte-
grated with measurements in a manner that respects the sys-
tem’s dynamics and acknowledges measurement errors.
Indeed, this approach prevents a model from deviating too
far from reality, thus achieving more accurate predictions.
Data assimilation techniques were pioneered by meteorolo-
gists in response to their need for accurate weather predictions
(Daley 1991) and are now widely used in complex models of
ocean dynamics and land surface and hydrological processes
(Carton et al. 2000; Clark et al. 2008; Dumedah and Walker
2014; Larsen et al. 2007). Although a number of studies on
suspended sediment assimilation have been reported in recent
years (Margvelashvili et al. 2013; Smith et al. 2011; Zhang
et al. 2014), these studies have focused on sediment dynamics
in oceanic and coastal waters and not in inland lakes.

The purpose of this study is to report the findings from our
assimilation of remotely sensed sediment data into a sediment
transport model. Sediment transport in China’s largest fresh-
water lake, Poyang Lake, is simulated using the explored as-
similation scheme. Understanding and predicting the move-
ment of suspended sediment in Poyang Lake is important
because many of the contaminants of concern in the lake’s
water are associated with sediment particles, and previous
studies have indicated that sediment input from surrounding
rivers is a major source of pollutants in the lake (Xiang and
Zhou 2011). Pollutants are absorbed into lake water during
sediment transport, deposition, and resuspension, causing
harmful effects on local ecosystems (Luo et al. 2008; Yuan
et al. 2011).

To date, limited research has been devoted to sediment
transport modeling of Poyang Lake. Zhang et al. (2015a) built
and evaluated a sediment transport model of the lake, and
several other studies based on remotely sensed data have con-
tributed to our understanding of the suspended sediment dy-
namics of this lake. However, most of these previous studies
have investigated the development of sediment retrieval algo-
rithms from satellite images (Feng et al. 2012; Wu et al. 2013;
Yu et al. 2012), and none have incorporated historical satellite
data into a numerical model to examine the performance of the
model as the system evolves over time and space. Therefore,
we combine numerical model simulations with remote sens-
ing observations of Poyang Lake using a data assimilation
method in the present study.

The remainder of this paper is organized as follows. The
BStudy area and available data^ section introduces the case
study region and available datasets. The BMethods^ section
describes the satellite data processing method, the sediment
transport model of the lake, and the data assimilation scheme.
The BResults and discussion^ section presents the hydrody-
namic model validation results and discusses the data assim-
ilation results, including the selection of parameters for opti-
mal interpolation (OI), and the spatial and temporal effects of
the assimilation on the model. The final section,
BConclusions,^ presents our conclusions.

Study area and available data

Study area

Poyang Lake (28.37° to 29.75° N, 115.78° to 116.75° E) is
located in northern Jiangxi Province at the junction of the
south bank of the Yangtze River (Fig. 1) and is the largest
freshwater lake in China. The elevation of the lake bed gener-
ally decreases from south to north by a total of approximately
20 m. The lake has an average water depth of 8.4 m and a
storage capacity of 27.6 billion m3 when the water level is
21.7 m. Geographically, the lake is divided into the following
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two parts: the southern lake, which is large and shallow, and
the northern lake, which is narrow and deep. The lake receives
water containing a large amount of suspended matter from
five rivers (Ganjiang, Fuhe, Xinjiang, Raohe, and Xiushui)
and flows into the Yangtze River at Hukou. One of the most
important wetlands in the world, which is recognized by the
International Union for the Conservation of Nature, is located
at Poyang Lake, and the submerged aquatic plants and their
rich diversity provide a habitat for hundreds of thousands of
species. The lake hosts a diverse array of local ecosystems,
wildlife habitats, and human-centered socio-economic activi-
ties. However, reports indicate that the water quality of
Poyang Lake has declined in recent years and that this decline
has led to numerous environmental problems. For example, a
rapid decrease in the fish population has been attributed to
decreased water quality and poor environmental conditions
(Wu et al. 2007).

Available data

Data used in this study include the following: water level,
water discharge, and sediment flux data obtained from hydro-
logical stations; wind field datasets from meteorological sta-
tions; in situ measured water reflectance, sediment concentra-
tion and current velocity data; and charge-coupled device
(CCD) images from the Huanjing (HJ) satellite.

The water level, water discharge, and sediment flux data
were obtained from hydrological stations at Poyang Lake
from January 1 to September 30, 2011. Daily water level data
were collected at three stations: Xingzi, Duchang, and
Kangshan (Fig. 1). Each of the five tributaries in the Poyang
Lake basin has a hydrological station (Fig. 1) that gauges
stream discharges into the lake. Of these hydrological stations,
Wanjiabu measures the discharge of Xiushui, Waizhou mea-
sures the discharge of Ganjiang, Lijiadu measures the dis-
charge of Fuhe, Meigang measures the discharge of
Xinjiang, and Hushan and Dufengkeng measure the discharge
of Raohe. Water discharge and sediment flux data were col-
lected daily from these hydrological stations, and water level
and water flux data were collected from the Hukou station,
which is located at the junction of Poyang Lake and Yangtze
River (Fig. 1).

Daily wind field data from the meteorological station clos-
est to Poyang Lake (Boyang station, see Fig. 1) were collected
from the China Meteorological Data Sharing Service System
(http://cdc.cma.gov.cn/).

A cruise survey was conducted from July 15 to July 24,
2011 using a small fishing boat, and surface water samples
were collected from 47 in situ sites. For each water sample,
500 ml was collected and immediately filtered through a pre-
weighed Whatman Cellulose Acetate Membrane filter with a
diameter of 47 mm and a nominal pore size of 0.45 μm. The
filter was stored in a desiccator and then combusted for 3 h in a

Fig. 1 Study area and
measurement sites
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500 °C oven. Later, the filter was removed from the desiccator
and weighed in the laboratory. An analytical balance with a
precision of 0.01 mg was used to weigh the filter, and the
sediment concentration was determined by normalizing the
weight difference with the filtered water volume. The radi-
ances of water, sky, and a reference plaque were measured at
the sediment measurement sites using an ASD FieldSpec Dual
spectrometer, and the reflectance at the water surface was
calculated using a previously described approach (Mobley
1999). During the survey, the current velocities were mea-
sured using isochronous shipboard acoustic Doppler current
profilers (ADCPs) on two tracks (Fig. 1). The first track was
located near the hydrological station at Duchang, and the cur-
rent velocities at this station were measured on July 19, 2011.
The second track was located in the northern part of the lake
(the waterway), and the current velocities were measured on
July 20, 2011. The ADCPs acquired the vertical distribution of
the current velocity on the two tracks. Six levels of the current
velocities in the vertical distribution at each ADCP sample
points were selected, and depth-averaged velocities were cal-
culated. These in situ depth-averaged current velocities are
used to validate the hydrodynamic model in this study.

Cloud-free HJ-1A/1BCCD images were obtained on July 5,
July 21, July 23, and July 25, 2011. The HJ-1A and HJ-1B
satellites were launched by the China Center for Resources
Satellite Data and Application (CRESDA) on September 6,
2008 (http://www.cresda.com/n16/n92006/index.html), and
they have a sun-synchronous circular orbit with a frequent
revisit time of 2 days. The multispectral CCD sensors on board
the two satellites have three visible bands (430–520, 520–600,
and 630–690 nm) and one near-infrared band (760–900 nm)
with a spatial resolution of 30 m; such parameters are consid-
ered important features for environmental monitoring.

Methods

Remote sensing sediment inversion

Suspended sediments are highly reflective and easily detected
in visible wavelength satellite images. Accordingly, the appli-
cation of satellite data to studies of sediment transport in ma-
rine and aquatic systems is an active area of research. To
utilize satellite image data to derive sea surface sediment con-
centrations, we must determine a relationship between the
suspended sediment concentrations (SSC) and water reflec-
tance. Such relationships have been proposed through semi-
analytical algorithms based on radiative transfer theory
(Dekker et al. 2002; Volpe et al. 2011) and in the context of
empirical regression methods. A number of empirical regres-
sion relationships have been tested to establish the remote
sensing retrieval models for suspended sediments, including
linear, exponential, and logarithmic statistical relationships

(Doxaran et al. 2002; Han et al. 2006; Miller and McKee
2004). In this study, we attempt to establish an empirical re-
gression algorithm to retrieve the sediment concentrations
from HJ-CCD images.

Based on in situ water reflectance and SSCs at all measure-
ment sites, the optimal relationship for representing the model
(with the square correlation coefficient of 0.94) is identified as
follows:

SSC ¼ exp 0:06785þ 89:677� Rss 660ð Þ þ Rss 830ð Þ
Rss 560ð Þ

� �
ð1Þ

where SSC denotes the suspended sediment concentration
(mg/L) and Rss(660),Rss(830), and Rss(560) denote the water
reflectance at 660, 830, and 560 nm, respectively. Figure 2
shows a scatterplot of in situ water reflectance and SSC.

The four available HJ-CCD remote sensing images from
July 2011 are processed using ENVI 4.5 software, and radio-
metric calibrations are performed using coefficients provided
with the image (e.g., gains and offsets). The FLAASHmodule
in ENVI is applied to correct for the atmosphere based on the
location, sensor type, and groundweather conditions observed
on the day the image was acquired (Berk et al. 2002) and to
obtain the remotely sensed water reflectance at the water sur-
face. The surface sediment concentration was then retrieved
from the water reflectance images based on this sediment re-
trieval model (Eq. (1)).

Sediment transport model description

The Delft3D-FLOWnumerical modeling system is used to set
up the hydrodynamic and sediment transport model for
Poyang Lake. This system has been developed for modeling
unsteady water flow, cohesive/non-cohesive sediment trans-
port in shallow seas, estuarine and coastal areas, and rivers and
lakes (Borsje et al. 2008; Lesser et al. 2004). The Delft3D-
FLOW module performs hydrodynamic calculations by solv-
ing continuity and horizontal momentum equations for given
initial and boundary conditions in two or three dimensions

Fig. 2 Paired in situ suspended sediment concentration and water
reflectance
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using an implicit finite difference process (Alternating
Direction Implicit (ADI) method) on a staggered (spherical
or orthogonal curvilinear) grid. Sediment transport is simulta-
neously calculated based on the advection–diffusion equation
(Lesser et al. 2004).

The two-dimensional advection–dispersion equation for
the fine sediment transport model in Delft3D-FLOW is calcu-
lated as follows:

h
∂hC
∂

þ h
∂uC
∂x

þ h
∂vC
∂y

¼ ∂
∂x

hAH
∂C
∂x

� �

þ ∂
∂y

hAH
∂C
∂y

� �
þ
Xn

i¼1

Si ð2Þ

where C denotes the sediment concentration, h denotes the
water depth, u and v denote the two components of the veloc-
ity vector, AH denotes the eddy diffusivity coefficient, and Si
denotes the source/sink term that describes the vertical flux
between the bed and water column. These fluxes are the result
of erosion and deposition, which are calculated in Eqs. (3) and
(4), respectively.

The cohesive sediment deposition rate is calculated using
Krone’s worldwide deposition formula (Krone 1962). The bed
erosion rate of cohesive sediment is determined by the classic
formula given by Partheniades (Partheniades 1965). The for-
mulas are as follows:

RD ¼ WsCb 1−τb
.
τ cd

� �
f or τb < τcd

0 f or τb≥τ cd
;

(
ð3Þ

RE ¼ Eb τb
.
τce−1

� �
f or τb > τ ce

0 f or τb≤τce
;

(
ð4Þ

where Cb denotes the near-bottom layer concentration, Eb de-
notes the erosion constant,Ws denotes the settling velocity, τcd
denotes the critical shear stress of deposition, τce denotes the
critical shear stress of erosion, and τb denotes the bed shear
stress. The x and y components of the bed shear stresses are
calculated as follows:

τbx; τby
� 	 ¼ Cd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2b þ v2b

q
ub; vbð Þ ð5Þ

where ub and vb denote the x and y components of the near-
bottom velocity and Cd denotes the drag coefficient, which is
determined by matching a logarithmic bottom layer to the
model at height z above the bottom.

Model development

To simulate the long-term current velocity and inundation area
dynamics, a hydrodynamic model was established by Zhang
et al. (2015b) based on the Delft3D-FLOW model system.

The median size distribution of suspended sediments from
field survey data for Poyang Lake during the wet season has
been reported as fine (mostly less than 74.48 μm) (Zhang
2012). Therefore, a fine sediment transport model was
coupled with the established hydrodynamic model and cali-
brated and validated with in situ sediment (Zhang et al.
2015a). Orthogonal curvilinear model grids were used in the
hydrodynamic and sediment transport models, with the grid
size varying from 200 to 300 m. The bathymetry at each
computational node of the model grids was interpolated from
the bathymetry data measured by the Changjiang Water
Resources Commission of China (http://eng.cjw.gov.cn/).

In this study, the model run time is extended based on the
model by Zhang et al. (2015a), and hydrodynamic and sedi-
ment transport from January 1, 2011 to September 30, 2011 is
simulated. To meet the Courant–Friedrich–Levy (CFL)
criteria for a stable solution (Hydraulics 2006), the model time
step is set as 30 s. Daily wind data from Boyang meteorolog-
ical station are used for the spatial-uniform water surface driv-
ing force. The river flow rates and sediment concentrations
measured from the hydrological stations of the five tributaries
are prescribed in the river inlets as the upper inflow boundary
condition (Fig. 1). The lower open boundary is set at the
junction between the lake and Yangtze River at Hukou, and
the daily water levels measured at Hukou station are pre-
scribed at the grid points along the open boundary. The
Neumann boundary condition is used for the sediment con-
centration at the open boundary. The model is initialized to a
current velocity of zero, and the water level is initialized to the
mean water level of the four hydrological stations (Xingzi,
Duchang, Tangying, and Longkou) in Poyang Lake on
January 1, 2011. The sediment concentration is initialized to
the mean field measured sediment data in July 2011. The
model is run with the calibrated parameters in Zhang et al.
(2015a) until the desired month is reached, at which point
the remotely sensed sediment data are assimilated into the
model.

Assimilation scheme

A widely used OI algorithm for assimilating ocean data is
employed in this study (Carton et al. 2000; Fox et al. 2002).
The OI method relies on model forecasting and observations
using a least squares estimator to determine the statistically
optimal state of the ocean. This method is simple to implement
and has a relatively small computational cost, especially for
extremely non-linear high-dimensional ocean model systems.
Sediment observations from remote sensing images are initial-
ly interpolated into a model grid using OI and a model-
forecast field. The number of model grids is assumed to be
n, and the number of pixels representing the remotely sensed
sediment data is assumed to bem. OI is a simplified version of
the Kalman Filter, and the scheme of assimilating remote
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sensing observations using OI can be represented by the fol-
lowing equation:

Ca
k ¼ C f

k þWk Crs
k −HC f

k

� �
ð6Þ

where C denotes the n-dimensional vector of sediment con-
centration, with superscripts a, f, and rs denoting the analysis,
model forecast, and remote sensing observations, respective-
ly; subscript k denotes the assimilation time when remotely
sensed sediment data are available; the observation operatorH
is an n×mmatrix that maps the data from the model grids into
remote sensingmeasurement space; andW is an n×nmatrix of
weights which is generally called Kalman gain. To minimize
the error variance of Ck

a, which is generally called Banalysis^
or Banalyzed state^ in data assimilation,Wkmay be calculated
as follows (Daley 1991):

Wk ¼ P f HT HPf
k H

T þ R
� �−1

ð7Þ

where Pf is the n×n error covariance matrix of the sediment
concentration field from the model forecast and R is the n×n
error covariance matrix of the sediment concentration field
from remote sensing images. After determining Wk, which
indicates the influence of each observation on the analysis,
the analyzed state is then obtained by Eq. (6). The model is
then integrated to the next forecast time, and the analyzed state
becomes the initial condition until the next assimilation time.

To perform OI, the model forecast error covariance matrix
Pf and observation error covariance of remotely sensed data R
in Eq. (7) must be determined. In the present study, it is as-
sumed that remote sensing observation errors follow a
Gaussian distribution and the correlations do not occur be-
tween observation errors. Therefore, the error covariance ma-
trix R is a diagonal matrix, where the error variances of remote
sensing observations are located on the main diagonal of the
matrix and all other matrix elements are 0. The error variance
of the remotely sensed sediment concentrations is obtained
through a comparison of in situ measured sediment concen-
trations at all in situ sites, and it is computed using the follow-
ing formula:

σ2
rs ¼

1

N

X N

i¼1
Crs

i −C
in stu
i

� 	2 ð8Þ

where σrs
2 denote the error variance of the remotely sensed

sediment concentrations; Ci
in stu and Ci

rs denote the in situ
measured and remotely sensed sediment concentration at the
ith in situ site, respectively; and N denotes the number of in
situ measurement sites.

The model forecast error covariance Pf is usually specified
as an error correlation models. A number of schemes to cal-
culate forecast error correlations have been proposed and ap-
plied in oceanic data assimilation (Høyer and She 2007;

Larsen et al. 2007). In the present study, a widely used expo-
nential correlation model is chosen to define the error correla-
tion. The model is based on the assumption that the forecast
errors follow a Gaussian distribution and that the error corre-
lation decreases exponentially with the square of the distance
(Mangiarotti et al. 2013). The formula for the correlation mod-
el is written as follows:

ρ ¼ exp −
Δxð Þ2 þ Δyð Þ2

L2

" #
ð9Þ

where ρ is the forecast error correlation, Δx and Δy are the
distances between two forecast grid points in the x and y di-
rections, respectively, and L is the error correlation length,
which limits the influence of interpolated data within a fixed
region of the OI (Xie and Zhu 2010). To formulate the error
covariance matrix Pf, the standard error variances should be
determined. The standard error variances are obtained by a
classic method by which model outputs from a period of sim-
ulation time are taken and the mean value and error variance
for each model grid are calculated (Oke et al. 2002; Xie and
Zhu 2010). In the present study, 61-day model outputs from
June to July are selected to calculate the forecast error vari-
ances. The model outputs from June to July are selected be-
cause sediment transport during this period can represent the
typical sediment dynamics during the wet season, and because
this period covers the full assimilation period.

Two schemes are explored for determining the observation
operator H. The first scheme utilizes the remotely sensed data
at the pixel nearest to a model grid as the data for the model
grid. Therefore, the operatorH1 is an n×mmatrix with the jth
row given by H1,j=(0,…,0,1,0,…,0), where the position of 1
matches the jth observation to a component of the forecast
vector. Because the spatial resolution of remotely sensed data
is finer than the resolution ofmodel grids andmultiple remote-
ly sensed pixels fall within one model grid, a classic super-
observations method (Oke et al. 2009; Pan et al. 2014; Sakov
et al. 2012) is used as a second scheme to determine the op-
eratorH2. This method finds the mean of remotely sensed data
within one model grid, and it is then used as the data for that
model grid. Assuming that there are k remotely sensed pixel
data in the sth model grid, the sth row in the inverse matrix
(with a dimension of m×n) of H2 is composed of k elements
with a value of 1/k and n-k elements with a value of 0.

In the present study, the hydrodynamic and sediment trans-
port model is first run with the provided input data and param-
eters and then validated by in situ measurements. The model
runs are then conducted by sequentially assimilating the four
sediment concentration images obtained in the BRemote sens-
ing sediment inversion^ section into the model using OI
schemes. To effectively assimilate the data, the optimal forecast
error correlation length L and observation operator H are de-
termined. By repeatedly assimilating remotely sensed sediment
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data using different correlation lengths and two different ob-
servation operators,H1 andH2, the set of parameters producing
the best model prediction of sediment concentrations is select-
ed. In this study, the root-mean-square error (RMSE) is calcu-
lated to evaluate the model’s performance as follows:

RMSE m; oð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX N

i¼1
Cm

i −C
o
i

� 	2
N

vuut ð10Þ

where C denotes the N-dimensional vector of sediment con-
centration, superscript m denotes the model-predicted results,
superscript o denotes the measurements, and N denotes the
number of measurements. The measurements are derived from
remote sensing observation and in situ measurements, allowing
us to evaluate the model from different perspectives.

Results and discussion

Hydrodynamic model validation

Figure 3 shows a comparison of the water levels from the
model and hydrological stations (Xingzi, Duchang, and

Kangshan) from June 1 to September 30, 2011, revealing that
the model results generally match the measured water levels
and could reproduce dynamic changes in the water level. The
R2 values are all greater than 0.99 for the simulated water
levels at the three stations, with RMSE values of 0.17, 0.25,
and 0.21 m. Figure 4 demonstrates that the simulated veloci-
ties are reasonably consistent with the measurements along the
two ADCP tracks. For the simulated velocities along the two
ADCP tracks, the RMSEs are 0.028 and 0.031 m/s, and the R2

values are 0.91 and 0.89; these results indicate that themodel’s
performance is satisfactory. In general terms, the hydrody-
namics of Poyang Lake can be accurately predicted by the
investigated model.

Assimilation results

The assimilation experiments are conducted by sequentially
updating the simulated sediment concentrations with data
from four remote sensing sediment images through OI
schemes. A series of assimilations are repeatedly performed
by changing the error correlation length and using the obser-
vation operators H1 and H2. Because the model grid sizes
varied from 200 to 300 m, trials of the error correlation lengths

Fig. 3 Model validation of the
water level
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with 250, 500, 750,…, 1750, and 3500 m are performed. The
RMSE values of the predicted sediment concentration at the in
situ measurement sites are calculated for each assimilation
experiment, and Table 1 provides a summary of the RMSE
values. The RMSE decreases when the error correlation length
increases from 250 m to approximately 1000, indicating that
an improvement in assimilation ability occurs along with this
increase. The error correlation length largely controls the
impact area of the observations. When an error correlation
length is undersized, the observations will have little effect
on the model results at the observation sites. This explains
why the RMSE is large when using 250 m as the correlation
length. However, the RMSE starts to increase as the error
correlation length surpasses 1250 m. These results are in
accordance with those of an assimilation experiment
conducted by Pan et al. (2014) and confirm the theory of
Hamill et al. (2001), which states that as the error correlation
length increases, the error typically grows and eventually in-
terferes with the correct covariance. This interference causes a
loss of the assimilation ability when the correlation length is
too large. Table 1 shows that when the error correlation length
is constant, lower RMSE values are observed with H2 com-
pared withH1. The minimum value of the calculated RMSE is
13.1 mg/L. Therefore, an error correlation length of 1250 m
and observation operator H2 are selected as the optimal pa-
rameters for assimilating remotely sensed sediment data into
the sediment transport model.

Figure 5 shows a comparison between in situ measured
sediment concentrations and predicted sediment concentra-
tions from the model with and without the assimilation of
remotely sensed sediment concentrations. This figure demon-
strates that the model with assimilation generates results that
are better correlated with in situ measurements, and more ac-
curately reproduces the sediment dynamic at the in situ sites.
The RMSE of the predicted sediment concentrations from the

model with assimilation is reduced by 39.4 %. Thus, the as-
similation scheme satisfactorily improves the performance of
the model’s sediment transport prediction capabilities.

Spatial effect of assimilation

One of the advantages of satellite remote sensing is that it can
effectively acquire large-scale environmental information
from the Earth’s surface. Satellite remote sensing is believed
to capture a relatively accurate record of the spatial distribu-
tion patterns of the state of the Earth’s surface environment.
Therefore, in the present study, remote sensing observations
are compared with the model-predicted results to evaluate the
spatial effect of the assimilation.

Inconsistencies in the spatial distribution of sediment con-
centrations are detected by calculating the difference between
the remotely sensed sediment concentrations and the sediment
concentrations predicted with the model (without assimila-
tion). Figure 6 shows the spatial distribution of the average
difference between the remotely sensed and model-predicted
sediment concentrations (RS-Model) for the four assimilation
days (July 5, July 21, July 23, and July 25), revealing that the
differences in sediment concentrations range from −20 to
20 mg/L in most areas. The differences are largest in the deep-
water area from Duchang to Xingzi and reaches 100 mg/L,
which indicates that the sediment data values captured by
remote sensing satellites are much greater than the predicted
results from the model. The high concentrations captured by
the satellite are most likely the result of resuspension of a large
amount of sediment by sand dredging activities; these activi-
ties occur frequently during the wet season in this region, as
noted by multiple studies (Feng et al. 2012; Liu 2012). Thus,
the sediment transport model underestimates the sediment
concentrations in this area because it does not consider the
effect of dredging activities on sediment advection, resuspen-
sion, and deposition. Therefore, the model’s ability to predict
the spatial distribution of sediment concentrations is expected
to improve by capturing this error information and correcting
the model results through the assimilation of remotely sensed
sediment.

Figure 7 shows the spatial distribution of predicted sedi-
ment concentrations from the model with and without assim-
ilation and remote sensing observations on July 23 and
July 25. A significant difference in the spatial distribution

Fig. 4 Comparison of the
simulated and ADCP-measured
velocity

Table 1 RMSEs (mg/L) for predicted sediment concentrations from
the assimilation model using different error correlation radii (L) and two
types of observation operators (H1, H2)

L (m) 250 500 750 1000 1250 1500 1750 3500

H1 23.6 19.8 16.1 14.5 17.4 19.5 21.4 34.3

H2 21.3 18.7 15.8 14.3 13.1 15.1 17.8 27.6
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pattern between the predicted sediment from the model with-
out assimilation and the remotely sensed sediment is ob-
served. The predicted sediment distributions from the model
with assimilation are generally spatially consistent with re-
motely sensed sediment distributions over the entire area on
July 23 and July 25 because accurate spatial distribution in-
formation is integrated into the model by updating the sedi-
ment concentration fields on July 21 and July 23. The predict-
ed sediment concentrations from the model with assimilation
increase, and the spatial distribution pattern is more closely
aligned with the remote sensing observations in the deep area
from Duchang to Xingzi. In this area, the sediment concentra-
tions from the model without assimilation are under-predicted
because sand dredging effects are not considered. Therefore,
the sediment dynamics induced by dredging activities are in-
tegrated into the model through assimilation, generally reduc-
ing the model’s sediment transport prediction errors.
Moreover, the spatial distribution patterns for the river mouth
areas, especially near the Xinjiang River mouth on July 23, are

reasonably improved. As demonstrated in Fig. 7, the predicted
sediment concentrations from the model with assimilation are
generally greater than those from the remote sensing data.
Because the remote sensing data can only represent the sur-
face concentrations while the model gives the depth-averaged
concentrations, the greater concentrations of the latter can be
considered as reasonable and an improvement of the model
resulting from the assimilation. In general terms, the accuracy
of sediment spatial distribution predictions can be improved
through the assimilation of remote sensing images into the
sediment transport model.

The RMSE of model-predicted sediment is calculated to
assess the capability of assimilation on prediction of spatial
distribution based on the remote sensing observations. The
RMSE values of the predicted sediment from themodels with-
out and with assimilation on July 23 and July 25 are displayed
in Table 2. The RMSE values of the predicted sediment from
the model with assimilation are markedly reduced compared
with those from the model without assimilation. The relative
reductions of RMSE are 19.7 and 34.6 % for July 23 and
July 25, respectively, indicating that the predicted results with
assimilation are muchmore consistent with the remote sensing
observations in space. Generally, assimilating remotely sensed
sediment can have positive spatial effects on sediment trans-
port modeling.

Temporal effect of assimilation

However, the sediment transport model cannot always be im-
proved without sequentially assimilating remote sensing im-
ages because of errors in the parameters and boundary condi-
tions of the model, and the effect of assimilation on the model
would vanish over a long modeling period. To analyze the
temporal effect of assimilation, model results from three
points of interest in different areas of the lake are selected
(see Fig. 8). The background of Fig. 8 shows the average
velocity vectors of the four assimilation times. Point A is in
the narrow northern lake, point B is in the junction between
the northern lake and the southern lake, and point C is in the
southern lake (the main part of the lake).

Here, we define the Bmodel with a single update^ as assim-
ilating only one of the four remote sensing images into the

Fig. 5 Comparison of the
measured sediment
concentrations and simulated
results from the model with and
without assimilated remote
sensing sediment data

Fig. 6 Spatial distribution of the average difference between remotely
sensed and model-predicted sediment concentrations (RS-Model) on
July 5, July 21, July 23, and July 25
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model; therefore, four single-update experiments are conduct-
ed for four remote sensing images. Figure 9 shows the pre-
dicted sediment concentrations from the model without assim-
ilation and from that with a single update at the three points of
interest from July 1 to Aug 15. The results from the model
with a single update on July 5 and July 21 are presented in the
Fig. 9. The comparisons show that the predicted sediment
dynamics at the three points changes after integrating the
model results with the remotely sensed sediment data.
Nevertheless, the predicted results from the models with and
without assimilation generally show similar trends. As the

model continued to forecast, the predicted results from the
model with assimilation (single update) gradually align with
those from the model without assimilation, indicating that the
effects of assimilation on the model predictions are temporally
restricted. Figure 9 also reveals that the length of the temporal
effect varies for the different points of interest.

In the present study, the length of the temporal effect of
assimilation is defined as the time span when the absolute
relative difference (ARD) between the predicted results from
the model with and without assimilation is greater than 5 %.
The ARD is calculated as follows:

ARD ¼ abs
C2−C1

C1

� �
� 100%

where C1 is the predicted sediment concentration from the
model without assimilation and C2 is the predicted sediment
concentration from the model with assimilation. Table 3 dis-
plays the length of the temporal effect of the assimilation at the
four assimilation times for the three points of interest and
shows that the temporal effect varies with assimilation time
and differs among the three points of interest. The longest
effect time is 560 h (23.3 days), identified at point C on
July 25, and the shortest effect time is 65 h (2.7 days). In

Fig. 7 Comparison between the
spatial distributions of remotely
sensed sediment and predicted
results from the model with and
without assimilation

Table 2 RMSE values (mg/L) between remote sensing observations
and predicted sediments from the model with and without assimilation,
and the relative improvement of RMSE

Day RMSE (m, rs) RMSE (a, rs) Relative reduction of RMSE

July23 26.4 21.2 19.7 %

July25 46.2 30.2 34.6 %

Relative reduction of RMSE=(RMSE (m, rs) − RMSE (a, rs)) / RMSE
(a, rs). rs denotes the remotely sensed sediment, m denotes the predicted
sediment without assimilation, and a denotes the predicted sediment with
assimilation. The RMSE values were calculated using Eq. (11)
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general, the temporal effect occurs for an average of 259 h
(10.8 days). The average length of this effect across the three
points for each assimilation time is approximately 200 h, al-
though the average length of the temporal effect over the four
assimilation times for different points varies dramatically, in-
dicating a spatial difference in the temporal effect of the as-
similation on the model predictions. Among the three points
of interest, the length of the temporal effect at the three points
is longest at point C in the southern lake, and shortest at point
B at the junction of the southern lake and northern lake, and
that of point A in the northern lake is between these values.

The differences among the different points of interest in the
lengths of the temporal effect may be due to spatial differences
in the current velocities. Figure 10 compares the time series of

Fig. 8 Location of the three points of interest. The background is the
average velocity vectors of the four assimilation times

Fig. 9 Comparison of the
simulated results from the model
with and without assimilating the
remotely sensed sediment data on
July 5 and July 21 at three points
of interest

Table 3 Length of the temporal effect for the points of interest at four
assimilation times

Points of
interest

Assimilation time (at 11:00 in each day) Average
over points

July 5 July 21 July 23 July 25

A 290 188 225 386 272

B 163 149 136 65 128

C 320 217 403 560 375

Average
over time

258 185 255 337 259
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current velocities from July 1 to August 15 and shows that the
current velocities at point C are generally less than those at
points A and B. Because current velocity dominates the trans-
port, deposition, and erosion of suspended sediment, the var-
iation rate of the sediment concentrations would be much
lower at point C; therefore, the information obtained from
the remote sensing data at that point would remain longer in
the numerical model, thereby increasing the impact of the
assimilation on the model. However, despite a greater current
velocity recorded at point A than that at point B, the temporal
effect is not longer at point B. This result may be related to
point A’s location in the lower reach of the northern lake.
Because waters flow from point B to point A (see Fig. 8),
point A is not only affected by the new information from
remote sensing observations at the assimilation time but is also
influenced by information from the sediment transported from
point B, which also contains information from the model with
assimilation. Therefore, more accurate information is retained
at point A, resulting in a longer temporal effect of assimilation
on the model’s predictive capabilities. Thus, the length of the
temporal effect of assimilation varies spatially and depends on
the magnitude and direction of the current velocity.

Conclusions

Our study predicts sediment transport in China’s largest
freshwater lake, Poyang Lake, by assimilating remotely
sensed suspended sediment based on CCD images record-
ed by the HJ satellite into a two-dimensional sediment
transport model. OI is used as the assimilation method,
and the error correlation length and observation operator
for OI are determined through a series of assimilation ex-
periments that evaluate sediment predictions based on field
measurements. The model with assimilation produces sed-
iment predictions with RMSE values that are 39.4 % lower
than the model without assimilation, indicating the effec-
tiveness of the explored assimilation scheme. The spatial
effect of assimilation is evaluated based on remotely
sensed sediment, revealing that the model with assimila-
tion produced more accurate spatial distribution patterns of

suspended sediment than the model without assimilation.
The temporal effect of assimilation on the model predic-
tions is explored, revealing that the average length of the
temporal effect, which varies spatially, is approximately
10.8 days. The current velocity, which dominates the rate
and direction of sediment transport, is most likely the rea-
son for the spatial variation in the length of the temporal
assimilation effect on the model predictions.

This study demonstrates that remote sensing images incor-
porated into a sediment transport model through assimilation
can substantially improve predictions of sediment concentra-
tions in Poyang Lake in space and time. This method can be
applied to other inland lakes and coastal regions where model-
ing and prediction of sediment transport and ocean color pa-
rameters, such as chlorophyll, are of interest. To achieve a
long-term effect on the model’s predictive capacity, future
studies could employ multi-platform remote sensing data to
narrow the gap in the assimilation time.

In this model of Poyang Lake, the sand dredging effects
on sediment transport modeling are not included in the
model. However, such effects are eliminated to some extent
by assimilating remotely sensed sediment, representing one
improvement yielded from the assimilation. In future stud-
ies, the physical processes of sand dredging activities can
be considered in the sediment transport modeling, and
some assimilation schemes, such as the ensemble Kalman
filter, and adjoint and variational assimilation schemes, can
be used to estimate the model parameters in relation to sand
dredging activities.

Further work can also explore assimilation schemes to im-
prove sediment predictions for the entire vertical water col-
umn by assimilating surface sediment concentrations into a
three-dimensional sediment transport model. Error correla-
tions of the predicted sediment concentrations between the
surface layer and lower column can also be considered in
the improved schemes. Moreover, assimilating current veloc-
ities into a three-dimensional model could provide valuable
data. Because current dynamics largely govern sediment
movement in water bodies, it is likely that improving current
circulation modeling will result in more accurate predictions
of suspended sediment concentrations.

Fig. 10 Comparison of the mean
sediment concentrations and
current velocity magnitude over
the acquisition times of the four
assimilated remote sensing
images
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