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Abstract High toxicity, bioaccumulation factor and wide-
spread dispersal of persistent organic pollutants (POPs) cause
environmental and human health hazards. The combined use
of plants and bacteria is a promising approach for the remedi-
ation of soil and water contaminated with POPs. Plants pro-
vide residency and nutrients to their associated rhizosphere
and endophytic bacteria. In return, the bacteria support plant
growth by the degradation and detoxification of POPs.
Moreover, they improve plant growth and health due to their
innate plant growth-promoting mechanisms. This review pro-
vides a critical view of factors that affect absorption and trans-
location of POPs in plants and the limitations that plant have
to deal with during the remediation of POPs. Moreover, the
synergistic effects of plant–bacteria interactions in the
phytoremediation of organic pollutants with special reference
to POPs are discussed.
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Introduction

After World War II, economic boost due to advances in sci-
ence and technology has resulted in the use of a wide range of
synthetic chemicals and thus, in an exponential increase in
their production. Although these chemicals proved to be ben-
eficial in agricultural and industrial processes, several studies
reported their harmful effects on living organisms and the
environment. Among these chemicals, POPs are of increasing
concern due to their persistent behavior and high toxicity in
natural settings. POPs are defined as Bintentionally or unin-
tentionally produced lipophilic chemicals capable of accumu-
lating in the environment and are resistant to photochemical
degradation with long-range dispersal potential^ (Sharma
et al. 2014a). POPs are categorized into three major groups
on the basis of their origin and use: organochlorine pesticides
(OCPs), industrial chemicals (ICs), and unintended by-
products (UIBPs) (UNEP 2003) (Table 1).

The first report of harmful effects of POPs was the publica-
tion of Carson and Darling BSilent Spring^ (Carson and
Darling 1962). They traces the impact of DDTas it is absorbed
by creature after creature in the food chain, until eventually
birds’ eggs are unable to hatch, because their shells have be-
come so brittle that they break when the birds sit on them. As a
result of this report, DDT was banned in 1973 (Staniforth
2013). In later years, mass-poisoning episodes by diseases,
Yusho and Yu-Cheng, in Japan and Taiwan, respectively,
strengthened the discouragement of the release of POPs in the
environment (Bradberry et al. 2014). Considering the aspects
of human and environmental health deterioration, the
Stockholm Convention of POPs was organized by the United
Nations Environment Program (UNEP) in 2001. The conven-
tion was signed to regulate and ban the use of a preliminary list
of 12 chemicals—collectively referred to as the dirty dozen—
that showed high persistence, bioaccumulation in fatty tissues,
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and toxicity (Johansen 2003; Xu et al. 2013) (Table 1). The
dirty dozen included aldrin, dieldrin, DDT, chlordane, mirex,
endrin, heptachlor, toxaphene, hexachlorobenzene (HCB),
polychlorinated biphenyls (PCBs), dibenzodioxins, and diben-
zofurans. In the following years, 11 more chemicals (Table 1)
were added to the list due to their persistence and toxicity
(Haffner and Schecter 2014). Although many of the developed
countries have banned the production of most of the POPs,
their use is still a common practice in most of the developing
countries (Sharma et al. 2014b).

Phytoremediation is a promising approach for the remedi-
ation of soil and water contaminated with organic and inor-
ganic pollutants (Khan et al. 2014; McCutcheon and Schnoor
2004; Schwitzguébel and Schröder 2009). However, the pres-
ence of organic pollutants including POPs in soil and water
decreases plant growth and phytoremediation efficacy
(Gerhardt et al. 2009; Ibáñez et al. 2012; Mench et al. 2009;
Saleh et al. 2004). Moreover, plants have certain limits with
respect to their capabilities to remove organic pollutants from
the environment (Carvalho et al. 2014; Chaudhry et al. 2005;
Khoudi et al. 2013). The combined use of plants and bacteria
has been recently proposed to enhance the efficiency of reme-
diation of soil contaminated with organic pollutants including
POPs (Becerra-Castro et al. 2013; Glick 2010; Haslmayr et al.

2014; Weyens et al. 2009a). Rhizobacteria colonize the roots,
whereas endophytic bacteria reside inside the plant tissues
(Compant et al. 2010). Plants provide the space and nutrients
to the bacteria. In return, rhizosphere and endophytic bacteria
improve the bioavailability and allow to mineralization of or-
ganic pollutants. The bacteria also improve plant growth due
to their plant growth-promoting activities such as siderophore
and 1-aminocyclopropane-1-carboxylic acid (ACC) deami-
nase production and nitrogen fixation. Moreover, the bacteria
reduce the toxicity and evapotranspiration of the pollutants in
the environment (Afzal et al. 2014a; Khan et al. 2013a;
Shehzadi et al. 2015; Vangronsveld et al. 2009; Weyens
et al. 2009b; Yousaf et al. 2014).

This review is structured to discuss the occurrence, fate, and
degradation of POPs by plant and plant–bacteria synergism.
Moreover, the role of rhizosphere and endophytic bacteria to
accelerate the phytoremediation of POPs is emphasized.

POPs in the environment

POPs are carbon-based compounds that show resistance to
degradation under natural conditions and thus stay in the en-
vironment for long periods of time (Weber et al. 2011). The

Table 1 List of POPs,
including dirty dozen
chemicals, their usage,
toxicity, and persistence

Group name Generic name Usage Toxicity (LD50) Persistence
(half-life)

OCPs Aldrina Insecticide 39 mg/kg 5 years

Dieldrina Insecticide 49 mg/kg 5 years

Chlordanea Pesticide 83–590 mg/kg 1–3 years

DDTa Pesticide 113–800 mg/kg 2–15 years

Endrina Pesticide 43.4 mg/kg 12–15 years

Heptachlora Pesticide 40–162 mg/kg Up to 2 years

Mirexa Pesticide 740 mg/kg Up to 10 years

Toxaphenea Pesticide 80–293 mg/kg 1–12 years

Hexachlorobenzenea Fungicide 19–245 mg/kg 2.7–22.9 years

Chlordecone Insecticide 126–132 mg/kg Up to 50 years

Lindane (γ-HCH) Insecticide 88–190 mg/kg Up to 2 weeks

α, β-Hexachlorocyclohexane Insecticide 88 mg/kg –

Endosulfan Pesticide 18–160 mg/kg Up to 50 days

ICs PCBsa Insulating fluid 1010–4250 mg/kg 0.9–7.2 years

Commercial pentaBDE Flame retardant 2640–6200 mg/kg 10–20 days

Commercial octaBDE Flame retardant – 14–70 days

Hexabromocyclododecane Flame retardant 10 gm/kg –

UIBPs Perfluorooctane sulfonic acid Coating – 4 years

Perfluorooctane sulfonyl fluoride Clothing – 4 years

Dioxins–dibenzodioxinsa Byproduct of chlorine 22 μg/kg 20 years

Furans–dibenzofuransa Herbicide 22 μg/kg 20 years

Pentachlorobenzene Pesticide 125–1080 mg/kg –

Sources: Haffner and Schecter (2014), Ritter et al. (1995), WWF (2005)
a Indicates dirty dozen chemicals
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fundamental reason behind their stability is the presence of
carbon–chlorine bond that resist against hydrolysis (El-
Shahawi et al. 2010). The stability is further increased by
increasing the number of chlorine atoms in the compound.
Therefore, the compounds with higher halogenation are more
resistant to degradation as compared to the compounds with
lower halogenation (Wikoff et al. 2012).

In addition to stability, the semivolatile and insoluble na-
ture of POPs allow their long distance dispersal and world-
wide distribution (Wang 2012). They have been found in the
areas where they were never used, e.g., the Arctic of Alaska.
This unexpected occurrence is because of the transportation of
many of the POPs from the USA and Canada to Alaska, where
they sank and settled in the ice sheets without being degraded
(Braune et al. 2005; Newton et al. 2014). In general, POPs
tend to evaporate in hot places and then condense back in
colder regions (Nurzhanova et al. 2013; Qiu 2013).

Due to high stability and long-range transportation charac-
teristics, POPs find their ways from water and air into the soil
ecosystem where they are taken up by plants and living organ-
isms (Hao et al. 2014; McLeod et al. 2014; Morris et al. 2014).
They follow the usual process of bioaccumulation and
biomagnification as they move up in each trophic level of the
food chain. The first report on the bioaccumulation of POPs in
biotic elements was put forward in 1970 when polar bears were
found to have pesticides in their fat tissues (Lie et al. 2003).
Later on, many studies highlighted the trans-boundary nature of
POPs along with their deteriorating effects on wildlife and hu-
man health (Bowes and Jonkel 1975; El-Shahawi et al. 2010;
Li and Macdonald 2005; Muir et al. 1988; Norstrom and Muir
1994; Voldner and Li 1995). Although most of the studies were
related to arctic region, these findings reduced the release of
these chemicals in natural environments.

Humans along with other tertiary carnivores reside at the
top of the food chain and, thereby, are at high risk of exposure
to POPs as compared to the organisms at lower trophic levels
(Lee et al. 2014a;Wang et al. 2014). Human exposure to POPs
begins prenatally as many of them possess ability to cross the
placenta. Soon after birth, exposure occurs through
breastfeeding and later by ingestion, inhalation, and dermal
contact (Man et al. 2014; Vafeiadi et al. 2014). Once they
are within the body, POPs are taken up by adipocytes due to
their lipophilic nature where they finally become a part of the
adipose tissues and liver (Dewailly et al. 1999; Lee et al.
2014b). Their continuous accumulation can lead to metabolic
disorders triggering cardiovascular diseases and physical
health illness including larger body burdens. Usually, the ac-
cumulated POPs are slowly released into the blood stream.
However, during the period of large mobilization of adipose
tissue, such as pregnancy, weight loss, and breastfeeding, they
are released at a faster rate and cause severe damages to fe-
tuses or infants (La Merrill et al. 2012). Therefore, the reme-
diation of POPs-contaminated soil and water is one of the key

topics in the field of environment science and engineering
(Abhilash et al. 2013; Agyekum et al. 2014; Becerra-Castro
et al. 2013; Chhikara et al. 2010; Florence et al. 2015).

Phytoremediation of POPs

Phytoremediation is an eco-friendly technology that utilizes
plants, to transform, translocate, sequester, extract, and/or de-
toxify the pollutants present in sediments, soil, groundwater,
surface water, and even in the atmosphere (Chigbo and Batty
2014; Samardjieva et al. 2015; Susarla et al. 2002) and thus
remediate or restore the contaminated sites. Plants may take
up POPs from the environment and translocate in their differ-
ent tissues (Ahmad et al. 2012; Chhikara et al. 2010;
Germaine et al. 2009). The uptake of POPs in plants depends
on a number of physicochemical characteristics of these com-
pounds (Admire et al. 2014; Campanella et al. 2002; Zhan
et al. 2015). These physicochemical characteristics are
octanol–water partition coefficient (log Kow), acidity constant
(pKa), aqueous solubility (Sw), octanol solubility (So), and the
concentration of the pollutant (Admire et al. 2014; Alkorta
and Garbisu 2001; Zeng et al. 2012). Among all these charac-
teristics, the role of logKow value is of significant concern due
to its direct involvement in determining how hydrophobic or
lipophilic the compound is. Usually, the compounds having
lower logKow values (0.5–3.0) are easily taken up by plants as
compared to those having higher logKow values. In the case of
POPs, logKow value of most of the compounds range between
3.0 and 8.3, making them resilient for phytouptake (Takaki
et al. 2014; White and Zeeb 2007) (Table 2). Consequently,
POPs bind to lipid membranes of plant roots (Chaudhry et al.
2002; White and Zeeb 2007).

In addition to logKow value, the uptake and translocation of
POPs in plants depend upon POP and plant type (Gleba et al.
1999;Mitton et al. 2014; Pilon-Smits 2005). POPs, like aldrin,
dieldrin, heptachlor, chlordane, lindane, DDT, etc., have been
found to be taken up at different rate by different plants irre-
spective of their high log Kow values (Agyekum et al. 2014;
Calabrese and Blain 2009; Mattina et al. 2000). Moreover,
plant physiology and transpiration rate affect the uptake of
POPs in plants. For example, lichens accumulated higher
levels of POPs than pine needles (Ockenden et al. 1998).
Similarly, zucchini and pumpkin accumulated high concentra-
tion of DDT than tall fescue, alfalfa, and rye grass (Lunney
et al. 2004). In conditions where uptake of POPs is not feasi-
ble, the main route of POP uptake could be the direct absorp-
tion by plant roots, volatilization from soil and absorption by
leaves, and particle-facilitated transportation along with depo-
sition on aerial parts (Ficko et al. 2010; Ockenden et al. 1998;
Smith and Jones 2000; Whitfield Åslund et al. 2007).

Although POPs could enter plants through roots and leaves
(Wang and Liu 2007), these are mainly taken up by roots and
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translocated to the aboveground parts (Lunney et al. 2004; Mo
et al. 2008). As POPs are manmade chemicals, specific trans-
porter proteins for their transportation are absent in plants;
hence, their uptake by roots occurs via simple diffusion
through the cell wall from where they enter the xylem stream
(Campos et al. 2008). Different plant species can absorb dif-
ferent POPs at different extents (Burken et al. 2005; Mikes
et al. 2009; Nash and Beall 1970). The detailed description of
different plants and their abilities to absorb and/or translocate
different POPs has been presented in Table 3.

After uptake and translocation, to avoid the toxicity associated
with absorbed pollutants, plants usually follow one of the two
procedures, evapotranspiration and/or phytodegradation. For
most of the pollutants, evapotranspiration is the major mecha-
nism in which plants release the pollutants in the atmosphere
through their leaves. During the course of evolution, plants were
not under selection pressure and hence have not adopted path-
ways for mineralization of organic pollutants (Burken 2003;
Gerhardt et al. 2009). Regarding phytodegradation, partial deg-
radation of pollutants within plants takes place through in planta
detoxification mechanisms, i.e., transformation (phase 1), conju-
gation (phase 2), and compartmentalization (phase 3) (Fig. 1).

This mechanism is generally termed as green-liver model
(Sandermann 1992, 1994). Phytodegradation of POPs takes
place by the virtue of oxidation reactions, hydrolysis, and
epoxide formation (Chaudhry et al. 2002). Among these, ox-
idation is more prevalent and takes place by the action of
different plant-derived microsomal enzymes such as

cytochromes P450, peroxidases, and flavin-dependent
monooxygenases (Durst and Benveniste 1993; Khandare
et al. 2012; Naumann et al. 2002). These plant-derived micro-
somal enzymes are capable of degrading numerous POPs due
to their reactive nature. For example, cytochrome P450 can act
on organophosphate (P=S→P=O) insecticides with the re-
lease of atomic sulfur (Neal 1980). This mechanism of
desulfuration has been observed as a cytochrome P450-
catalyzed reaction in maize and sorghum during the degrada-
tion of methidathion, malathion, diazinon, and isozafos
(Moreland et al. 1993, 1995). Furthermore, the cytochrome
P450 system is reported to be involved in the metabolism of
different PCB congeners and carbamate compounds
(Chaudhry et al. 2002; Lee and Fletcher 1992).

To improve the overall potential of plant-based
phytoremediation, the combined use of plants and bacteria
has been recently proposed which can significantly enhance
the degradation of organic pollutants including POPs in planta
as well as ex planta (Afzal et al. 2014b; Glick 2010; Khan
et al. 2013a; Mitter et al. 2013). The following sections eluci-
date the importance of plant-bacteria partnerships for the re-
mediation of POPs-contaminated environment.

Plant–bacteria partnership for the remediation of POPs

In plant–bacteria partnerships, POPs could be degraded by
plant-associated bacteria, mainly rhizobacteria (Afzal et al.
2014a; Glick 2010; Mackova et al. 2009; Weyens et al.

Table 2 The log Kow values for
POPs Generic name Log Kow Reference

Aldrin 5.52 Garten and Trabalka (1983)

Dieldrin 5.48 Mackay (1982)

Chlordane (α, β, γ) 5.66, 5.62, 5.44 Simpson et al. (1995)

DDT 6.2 Weyens et al. (2009b)

Endrin 4.71 Finizio et al. (1997)

Heptachlor 6.10 Simpson et al. (1995)

Mirex 6.89 Mackay (1982)

Toxaphene 4.77 to 6.64 Fisk et al. (1999)

Hexachlorobenzene 5.23 Mackay (1982)

Chlordecone 4.5 Cabidoche et al. (2009)

Gamma-hexachlorocyclohexane 3.85 Mackay (1982)

Hexachlorocyclohexane 3.89 and 3.95 Isnard and Lambert (1988)

Endosulfan 3.5 DeLorenzo et al. (2002)

PCBs 3.76 to 8.26 Wu et al. (2008)

Hexabromobiphenyl 6.39 Mackay (1982)

Commercial pentaBDE 6.64 to 6.97 Rahman et al. (2001)

Commercial octaBDE 5.5 to 8.9 Rahman et al. (2001)

Hexabromocyclododecane 5.62 Hayward et al. (2006)

Dioxins–dibenzodioxins 4.20 Wang and Wong (2002)

Pentachlorobenzene 5.19 Mackay (1982)
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2009a). In this association, bacteria possessing catabolic genes
survive and proliferate in the close vicinity of roots and in some
cases in the internal tissues of host plant without causing path-
ogenicity (Naveed et al. 2014; Sessitsch et al. 2005). Plants
provide optimum conditions to these microorganisms to prolif-
erate by offering nutrients and residency while allowing them
to feed upon pollutants in the rhizosphere as well as in the
endosphere. Therefore, the combined use of plants and the
associated bacteria (pollutant-degrading and/or plant growth-
promoting) strengthens the role of each partner. In this sense,
bacteria help host plant to overcome contaminant-induced
stress responses and develop high shoot and root biomass,
which ultimately enhances microbial population and the deg-
radation of organic pollutants including POPs (Weyens et al.
2009a). Furthermore, it is well established that, in this partner-
ship, the rate of pollutant degradation is higher than the indi-
vidual contribution of each partner in remediation processes
(Khan et al. 2013b; Lunney et al. 2004).

The interactions between plants and bacteria having cata-
bolic genes have led to the evolution of a diverse variety of
catabolic enzymes that can metabolize and detoxify the xeno-
biotics (Hong et al. 2015; Singer et al. 2003; Xun et al. 2015).
These synergistic relationships between plants and plant-
associated bacterial communities in rhizosphere and/or
endosphere have been widely investigated (Compant et al.
2010; Fahad et al. 2015; Khan et al. 2013a). Recently, the
combined use of plants and bacteria has been exploited to
enhance the phytoremediation of soil and water contaminated
with different organic pollutants (Afzal et al. 2014b; Arslan
et al. 2014; Khan et al. 2013b; Shehzadi et al. 2014). Similarly,
several studies were performed to explore the potential of
plant–bacteria partnership for the remediation of POPs-
contaminated soil and water (Aken et al. 2009; Becerra-
Castro et al. 2013; Jha and Jha 2015; Jha et al. 2014). Both
rhizosphere and endophytic bacteria can enhance plant growth
and POP degradation.

Table 3 Absorption/translocation of different POPs in different plants along with the target organ

POPs Plant Plant uptake Target Reference

Lindane Brassica napus Absorbed and translocated Shoot Westcott (1985)

Zea mays Heinrich and Schulz (1996)

Coffea liberica Absorbed Root Ruegg et al. (1977)

Hexachlorobenzene Picea abies Translocated Needles Weiss et al. (1998)

Oryza sativa All parts Liu et al. (2013)

Dieldrin Glycine soja Translocated Shoot Nash and Beall (1970)

Rhizophora mangle Walsh et al. (1974)

Lolium perenne Absorbed Root Voerman and Besemer (1975)

Endrin, heptachlor Glycine max Translocated Shoot Nash and Beall (1970)

DDT Vigna unguiculata Absorbed and translocated Shoot Kiflom et al. (1999)

Phragmites australis, Oryza sativa Chu et al. (2006)

Lolium perenne Absorbed Root Voerman and Besemer (1975)

Lpomoea batatas Talekar et al. (1985)

Heptachlor epoxide Forage crops Translocated Shoot Singh et al. (1992)

T-chlordane Forage crops Translocated Shoot Singh et al. (1992)

DDE Lolium perenne Absorbed Root White (2000), Voerman and
Besemer (1975)

Phaseolus coccineus White (2000)

Cucurbita pepo Translocated Shoot White et al. (2003)

Chlordane Daucus carota, Beta vulgaris, Solanum
tuberosum

Absorbed Root Mattina et al. (2000)

Spinacia oleracea, Lactuca sativa,
Cucurbita andreana, Taraxacum

Translocated Shoot Mattina et al. (2000)

2,2-Bis(p-chlorophenyl)-1,
1-dichloroethylene

Cucurbita andreana, Cucurbita
pepo

Translocated Shoot White et al. (2005)

PCBs Phragmites australis, Oryza sativa, Absorbed and translocated Shoot Chu et al. (2006)

Polybrominated diphenyl ethers Nicotiana tabacum, Solanaceae Translocated Shoot Vrkoslavová et al. (2010)

Aldrin Ipomoea batatas Absorbed Root Talekar et al. (1985)

Organochlorine Ipomoea batatas, Colocasia
esculenta, Ipomoea batatas

Accumulation Root Florence et al. (2015)
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Plant–rhizobacteria partnerships

Although rhizobacteria have previously been studied for their
plant growth-promoting mechanisms, they have recently
gained attention for improving the efficiency of
phytoremediation of contaminated soil and water (Glick
2010; Gurska et al. 2009; Khan et al. 2013a). Rhizobacteria
capable of degrading different POPs have been isolated from
rhizospheric soil of different plants and well-studied for POP
degradation pathways and genes involved in POP degradation
have been identified (Brazil et al. 2005; Fatima et al. 2015;
Nicoară et al. 2014). Although these bacteria showed high
potential to degrade different POPs, these are unable to sur-
vive and proliferate in the contaminated soils (Pandey et al.
2009). Therefore, effective mineralization and degradation of
the pollutants can be achieved by employing rhizobacteria in
association with plants. In such a relationship, rhizobacteria
having catabolic genes feed upon the organic pollutants as a
sole carbon source for their cell functioning and metabolism,
whereas plants facilitate the survival of rhizobacteria by
adjusting the rhizosphere environment through production of
root exudates, rhizosphere oxidation, co-metabolite induction,
H+/OH− ion excretion, organic acid production, and release of
biogenic surfactants (Fig. 2) (Afzal et al. 2013a; Hinsinger
et al. 2003; Khan et al. 2013a).

The plant–rhizobacteria interactions enhance the abun-
dance and expression of catabolic genes in the rhizosphere,
leading to an increase in mineralization, degradation, stabili-
zation, and/or sequestration of variety of organic compounds
including POPs (Jha and Jha 2015; Passatore et al. 2014;
Sprocati et al. 2014; Yateem 2013). In addition to this,
rhizobacteria possessing plant growth-promoting activities

improve plant health and biomass production. Improved plant
growth facilitates the colonization of rhizobacteria in rhizo-
plane leading an increase of the organic pollutants degradation
(Afzal et al. 2013b; Compant et al. 2010; Khan et al. 2013a;
Yousaf et al. 2010). Importantly, during degradation of recal-
citrant compounds, most of the pollutants cannot be used as
carbon and energy sources for rhizobacteria; therefore, their
degradation is often facilitated by co-metabolism of a similar
but harmless structural analog that is a secondary metabolite
of the host plant. The structural analogs act as inducers and
enhance the bacterial population which then could degrade the
organic pollutant (Singer et al. 2003; Bedard et al. 1986). Plant
terpenes, flavonoids, and salicylic acid have also been found
to act as inducer and enhance the degradation of different
POPs (Gilbert and Crowley 1997, 1998; Hernandez et al.
1997; Koh et al. 2000; Master and Mohn 2001; Singer et al.
2000; Tandlich et al. 2001).

Recently, several studies have been conducted to explore
the potential of plant–rhizobacteria partnerships for the reme-
diation of POPs-contaminated soil and water (Abhilash et al.
2013; Gerhardt et al. 2009; Jha and Jha 2015; Qin et al. 2014).
Among POPs, PCBs that released into the environment as a
consequence of their use as hydraulic fluids, plasticizers, ad-
hesives, flame retardants, etc. are well-studied pollutants.
They have been reported to be successfully degraded by the
combined use of plants and rhizobacteria (Leigh et al. 2002).
The partnerships of alfalfa with Pseudomonas fluorescens sp.
strain F113 and Arabidopsis with Pseudomonas putida strain
Flav1-1 enhanced the degradation of a variety of PCBs
(Villacieros et al. 2005; Narasimhan et al. 2003). Similarly,
enhanced biotransformation of a number of aroclor com-
pounds (e.g., 1242, 1248, 1254, and 1260) by alfalfa

Fig. 1 Up take and degradation
of organic pollutants within the
plant tissues
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inoculated with a symbiotic N2-fixing rhizobacterium,
Sinorhizobium meliloti strain A-025, has been reported
(Mehmannavaz et al. 2002). Many other studies also reported
the enhanced degradation of POPs by plant–rhizobacteria
partnerships as shown in Table 4.

Many chemicals in the root exudates of plants stimulate
rhizospheric microbes to perform degradation of xenobiotic
pollutants including POPs (Donnelly et al. 1994; Isidorov
and Jdanova 2002). Degradation of POPs is attributable to
the chemical composition of root exudates as well as the rate
of exudation, which facilitates pollutant-degrading
rhizobacteria enormously in the rhizosphere (Rao 1990; Salt
et al. 1998). More importantly, these factors tend to vary from
one plant to another as most of the plant species contain phe-
nols in their exudates, which support the proliferation of
POPs-degrading rhizobacteria (Fletcher and Hegde 1995;
Salt et al. 1998). Similarly as in the case of PCBs, a common
component of root exudates, salicylate, is reported to elevate
the expression of bphA gene encoding biphenyl dioxygenase
in Pseudomonas sp. Cam-1, while inhibition of the same gene
occurs by the presence of terpenes in root exudates (Master
and Mohn 2001).

Another factor that governs the removal of POPs from the
contaminated environment is the bioavailability of the pollut-
ant (Federici et al. 2012). A number of mobilizing agents such
as plant oils, synthetic surfactants and biogenic surfactants
have been applied to enhance the bioavailability of POPs in
the soil (Berselli et al. 2004; Fava and Ciccotosto 2002; Fava
and Gioia 1998, 2001; Federici et al. 2012). A rhizobacteria
having potential to produce biosurfactants can enhance the
bioavaiability of POPs and ultimately their degradation
(Aslund and Zeeb 2010). Biosurfactants make POP-H2O sol-
uble aggregates which ultimately release the pollutant from
soil particles. However, the release of surfactants in the root
exudates seems more promising as it may provide easy solu-
bilization of POPs in plant rhizosphere (Passatore et al. 2014).
These studies reveal that the combined use plants and

biosurfactant-producing bacteria can improve the bioavail-
ability of organic pollutants through biosurfactant exudation
and/or production and consequently the remediation of POPs-
contaminated environment. Recently, rhizoengineering has
gained attention to enhance the removal of POPs from the
environment (Thi js and Vangronsveld 2015) . In
rhizoengineering, the aim is to favor the population of
rhizobacteria by adopting many possible strategies including
nutrient adjustments, flavonoid regulations, and facilitating
degradation by the inoculation of transgenic strains (Fu et al.
2012).Many POPs, especially PCBs, have been reported to be
successfully remediated by the adjustment of flavonoids,
apigenin, and naringenin (Narasimhan et al. 2003).

Plant–endophyte partnership

Plant–endophyte partnership is a promising approach for the
remediation of a wide range of xenobiotics (Afzal et al. 2014a;
Glick 2010; Weyens et al. 2009b). In plant–endophyte part-
nership, plants provide nutrients and residency to endophytic
bacteria whereas endophytic bacteria protect plants from the
toxic effects of the pollutants taken up by the plants (Afzal
et al. 2014a; Rylott 2014). Endophytic bacteria degrade the
pollutants in the rhizosphere as well as in the endosphere and
contribute significantly in pollutant degradation (Afzal et al.
2011; Compant et al. 2010; Yousaf et al. 2011). Furthermore,
endophytic bacteria were found to have significant effects on
plant growth and development in the contaminated soil and
water, especially due to their plant growth-promoting activi-
ties (Afzal et al. 2012; Ryan et al. 2008; Shehzadi et al. 2014).
Usually, endophytic bacteria can be found in plant
endosphere, mainly root cortex and/or xylem, and are in-
volved in the mineralization of pollutants as shown in Fig. 3
(Schulz and Boyle 2006; Sessitsch et al. 2005; Weyens et al.
2009b). Due to beneficial effects of endophytic bacteria, their
innate immune system facilitates the colonization of the bac-
teria in root and shoot (Moore et al. 2006).

Fig. 2 Plant–rhizobacteria
partnership and mineralization of
POPs
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Recently, plant–endophyte partnership has gained popular-
ity compared to other mechanisms of remediation (Afzal et al.
2014a; Weyens et al. 2009b; Zhu et al. 2014). Plant–endo-
phyte partnership has advantages over plant–rhizobacteria
partnership during the remediation of organic pollutants
which are easily taken up by plants (Weyens et al. 2009c;
Afzal et al. 2014a). In such circumstances, although
rhizoremediation seems possible, the pollutant is not available

to the rhizospheric microfloradue to its lower residency time
in rhizosphere and optimum lipophilicity. Consequently, en-
dophytic communities get the opportunity to degrade the con-
taminants by the action of intracellular dioxygenases before
the contaminants are evapotranspired (Trapp et al. 2000;
Weyens et al. 2009b). Furthermore, a major advantage of en-
dophytic bacteria over free-living rhizobacteria is that they
reside in internal tissues of the host plant and hence have less

Table 4 Examples of successful POPs degradation using plant–rhizobacteria partnerships

Rhizospheric bacteria Host plant Target pollutant Reference

Rhodococcus sp. Arthrobacter, Oxydans,
Rhodococcus erythreus type strain

Robinia pseudoacacia, Betula
pendula, Fraxinus excelsior

PCBs Schell (1985)

Pseudomonas fluorescens Medicago sativa Brazil et al. (1995)

Burkholderia cepacia Hordeum aestivum 2,4-D Jacobsen (1997)

Sphingomonas herbicidovorans, AB042233,
Sphingomonas sp. DS3-1, Sphingomonas
taejonensis, Sphingomonas, Herbicidovorans,
Sphingomonas sp. D12

Zea mays α, β, γ, δ-hexachlorocyclohexane Abhilash et al. (2013),
Böltner et al. (2008)

Indigenous degraders Panicum virogatum L. PCBs Chekol et al. (2004)

Pseudomonas fluorescens Medicago sativa Villacieros et al. (2005)

Achromobacter sp. Salix caprea Leigh et al. (2006)

Microbacterium oxydans type strain Pinus nigra Siciliano and Germida (1998)

Microbacterium oxydans type strain Pinus nigra Siciliano and Germida (1998)

Pseudomonas mendocina, Pseudomonas
fluorescens

Solanum nigrum Ionescu et al. (2009)

Bacillus pumilus Armoracia rusticana Ionescu et al. (2009)

Sphingobacterium mizutae, Burkholderia
cepacia

Salix caprea Ionescu et al. (2009)

Achromobacter sp. Nicotiana tabacum Ionescu et al. (2009)

Pseudomonas, Rhodococcus, Rhizobium Medicago sativa Ionescu et al. (2009)

Pseudomonas putida Flav1-1, Pseudomonas
putida PML2

Arabidopsis Narasimhan et al. (2003)

Sphingobium chlorophenolicum ATCC 39723 Triticum aestivum Pentachlorophenol Dams et al. (2007)

Microbacterium foliorum,Gordonia, alkanivorans,
and Mesorhizobium

Sesbania cannabina TPH Maqbool et al. (2012)

Fig. 3 Plant–endophyte
partnerships for the remediation
of POPs
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competition for nutrients and space, whereas rhizobacterial
population have more competition by a large numbers of soil
microorganisms which often results in reduction of the desired
species (Doty 2008).

The first laboratory study on the degradation of POPs using
plant–endophyte partnership was conducted by Germaine and
coworkers (2006), who applied endophytic bacterium,
Pseudomonas putida VM1450, to pea plant for the degrada-
tion of 2,4-dichlorophenoxyacetic acid (2,4-D). The strain
was able to colonize plant endosphere resulting in significant
degradation of 2,4-D in plant tissues. Furthermore, a
naphthalene-degrading endophytic bacterial strain,
Pseudomonas putidaVM1441, has been reported to efficient-
ly colonized root and shoot interior of the host plant and en-
hanced plant growth and naphthalene degradation (Germaine
et al. 2009). In later years, several endophytic bacteria having
POPs-degrading catabolic genes and having potential to de-
grade POPs were isolated and characterized (Andria et al.
2009; Wang et al. 2014; Weyens et al. 2010a; Yousaf et al.
2011). Recently, the combined use of plants and endophytic
bacteria has been found to remediate hexachlorocyclohexane
(HCH) (Becerra-Castro et al. 2013). Two endophytic bacteria,
Rhodococcus erythropolis ET54b and Sphingomonas sp. D4,
were inoculated to Cytisuss triatus vegetated in HCH-
contaminated soil. Bacterial inoculation improved plant

growth and HCH degradation both in the rhizosphere and
endosphere. Examples of successful degradation of a number
of POPs by the application of endophytic bacteria in associa-
tion with different plants are listed in Table 5.

Abovementioned studies reveal that both rhizospheric and
endophytic bacteria have potential to facilitate and enhance
the degradation of POPs. Until now, relatively less number
of endophytes with POP degradation abilities have been iso-
lated as compared to rhizobacteria. Therefore, further studies
are needed to explore the ecology of POPs degrading endo-
phytic bacteria.

Conclusions

The combined use of plants and POPs-degrading rhizosphere
and/or endophytic bacteria provides an effective approach for
the remediation of POPs-contaminated sites. In bacterial-
assisted phytoremediation of POPs, rhizobacteria and endo-
phytic bacteria that possess appropriate genes for the degrada-
tion, transformation, and mineralization of pollutants allow to
alleviate toxicity to the plant or their direct phytovolatilization.
Although many POPs, especially PCBs, have been
remediated from a wide range of ecosystems through
bacterial-assisted phytoremediation, this endeavor still faces

Table 5 Examples of successful POP degradation using plant–endophyte partnerships

Endophytic bacteria Host plant Target pollutant Reference

Pseudomonas aeruginosa R75
Pseudomonas savastanoi CB35

Lolium perenne Chlorobenzoic acids Siciliano et al. (1998)

Methylobacterium populi BJ001 Populus alba 2,4,6-Trinitrotoluene, hexahydro-1,3,
5-trinitro-1,3,5-triazine, octahydro-
1,3,5,7-tetranitro-1,3,5-tetrazocine

Van Aken et al. (2004)

Pseudomonas putida VM1450 Populus alba and Salix babylonica 2,4-Dichlorophenoxyacetate Germaine et al. (2006)

Pseudomonas spp., Brevundimonas,
Pseudomonas rhodesiae

Medicago sativa, Puccinellia nuttaalliana,
Festuca altaica, Lolium perenne,
Thinopyrum ponticum

n-Hexadecane Phillips et al. (2008)

Enterobacter sp. 12J1 Triticum and Zea mays Pyrene Sheng et al. (2008)

Pseudomonas putida Pisum sativum Naphthalene Germaine et al. (2009)

Pseudomonas sp. strain ITRI53,
Rhodococcus sp. strain ITRH43

Lolium perenne Hydrocarbons Andria et al. (2009)

Enterobacter ludwigii Lolium multiflorum, Lotus corniculatus,
and Medicago sativa

Yousaf et al. (2011)

Achromobacter xylosoxidans Ipomoea aquatica, Chrysopogon
zizanioides, Phragmites australis

Catechol and phenol Ho et al. (2009)

Pseudomonas putidaW619-TCE Populus alba Trichloroethylene Weyens et al. (2009a)

Burkholderia cepacia VM1468 Lupinus luteus Weyens et al. (2010a)

Pseudomonas putidaW619-TCE Populus alba Weyens et al. (2010b)

Enterobacter sp. strain PDN3 Populus alba Kang et al. (2012)

Burkholderia cepacia strain FX2 Zea mays and Triticum Toluene Wang et al. (2010)

Rhodococcus erythropolis ET54b,
Sphingomonas sp. D4

Cytisusstriatus Hexachlorocyclohexane Becerra-Castro et al.
(2013)

Consortium CAP9 Agrostis 2,4,6-Trinitrotoluene Thijs et al. (2014)

4330 Environ Sci Pollut Res (2017) 24:4322–4336



numerous challenges. A better understanding of improving
bioavailability of POPs by bacteria, the mechanisms by which
these POPs are tolerated by certain plants or bacterial species,
and how relevant traits like the survival of the inoculated
bacteria in POPs environments as well as maximum detoxifi-
cation by the use of combinations of different POPs-degrading
bacteria will provide a broader and more efficient application
of phytoremediation of POPs-contaminated environment.
Moreover, the knowledge about metabolic activities of the
bacteria and their diversity by using metagenomic techniques
can further help us to design more sustainable bacterial
assisted phytoremediation strategies.
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