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Abstract Technological, agricultural, and medical advances
have improved the lifestyle of humankind. However, these
advances have caused new problems that affect the environ-
ment and future generations. Emerging contaminants display
properties such as low degradation potential and environmen-
tal persistence. In addition, most contaminants are lipophilic,
which culminates in high bioaccumulation. The disposal of
pharmaceuticals and personal care products into the environ-
ment underlies microbial and bacterial resistance. Plasticizers
change several characteristics of industrialized materials, such
as flexibility, but they are potentially carcinogenic and disrupt
the endocrine system. Pesticides prevent the propagation of
numerous kinds of pests; nevertheless, they exert neurotoxic
and mutagenic effects, and they impact the environment neg-
atively. Addition of flame retardants to a number of materials
prevents flame propagation; however, after their release into
the environment, these chemicals may bioaccumulate in or-
ganisms and disrupt the endocrine system, too. Surfactants
can change the surface and interfacial properties of liquids,

but their presence in the environment can interfere with count-
less enzymes and can even impair the endocrine system of
various organisms and induce the feminization of species.
Hence, gaining knowledge about emerging contaminants is
increasingly important to minimize future damage and enable
proper monitoring of each class of compounds in the environ-
ment which will help to improve legislation on this matter.
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Introduction

The environment consists of the surroundings where the body
is, including air, water, land, natural resources, flora, fauna,
humans, and their interrelation. In recent decades, environ-
mental problems have become critical and frequent. Popula-
tion growth has called attention for increasing human action
and industrial development, and the need to meet the demands
of the modern world has culminated in catastrophic conse-
quences to the environment. Indeed, the continuous release
of chemicals seen in recent decades can induce acute toxicity,
and the bioaccumulation and biomagnification of contami-
nants can give rise to undesirable long-term effects, as repre-
sented in Fig. 1 (Kunz et al. 2002; Logar and Vodovnik 2007).

Public concern about the dangers that chemicals cause to
the environment, humans, and animals started to arise in 1962,
when Rachel Carson published the book entitled Silent
Spring. This milestone raised public awareness of the impact
of chemicals on wildlife and reproduction. Earlier, this impact
originated mainly from chlorinated hydrocarbons, i.e., the
PCB family of compounds, which included the pesticide di-
chlorodiphenyltrichloroethane (DDT). Recently, researchers
have focused on a number of consumer products that can
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interfere in the endocrine system (Rosner and Markowitz
2013). Endocrine disruptors are exogenous substances that
alter the functions of the endocrine system and adversely af-
fect the health, growth, reproduction, and progeny of organ-
isms, even at concentrations in the order of microgram and
nanogram per liter (Bila and Dezotti 2003). This class of
compounds can mimic, antagonize, or modify the levels of
endogenous hormones by altering their synthesis, metabolism,
expression, transport, or action. Unfortunately, discussions on
this topic go against industrial interests, even though Henry F.
Smyth Union clearly stated the responsibilities of industries in
his statement in 1946: Bit is the duty of the brake manufacturer
to produce a chemical with well-known health risks^ (Smyth
1946).

When DDT and other chlorinated hydrocarbons came into
general use in the 1940s and 1950s, scientific evidence point-
ed to the chronic toxicity of chlorinated hydrocarbons in ani-
mals and humans. In general, authors noted that this class of
chemicals accumulated in fat tissue and existed in the milk of
lactating animals, and many researchers mentioned the possi-
bility of chronic poisoning. Fitzhugh and Nelson reported the
chronic oral toxicity of DDT in their study on rats fed with

diets containing DDT from 100 to 800 ppm for a period of
2 years. These authors found that DDT produced chronic tox-
icity in the animals at all the concentrations. Their experiment
concluded that chronic poisoning with small amounts of DDT
elicited degenerative changes in rat liver as well as other or-
gans (Fitzhugh and Nelson 1947).

According to recent estimates, the society currently uses
about 100,000 compounds. Over 40,000 of these compounds
have been identified as persistent organic pollutants. This
number becomes even more worrying when one considers
technological advances and the rampant discharge of these
pollutants into the environment (Ginebreda et al. 2012a, b;
Rodil et al. 2012). The US Environmental Protection Agency
defines Bemerging contaminant^ as a chemical or material
with perceived, potential, or real threat to the human health
or the environment or for which published health standards are
lacking (USEPA 2008). Emerging contaminants include a
long list of routinely employed products such as pharmaceu-
ticals, cosmetics, plasticizers, and flame retardants, among
others. This list has grown rapidly in recent years, to include
an array of compounds with reported presence in the environ-
ment. Immune toxicity, neurotoxicity, endocrine disruption,

Fig. 1 The diverse persistent organic pollutants (POPs) released into the
environment may bioaccumulate and exert toxic effects on animals and
humans. Moreover, they can reach regions far apart from their initial

product ion, even affect ing the Inui t popula t ion through
bioaccumulation. They can also biomagnify and impact different
trophic levels of the food chain
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and carcinogenicity are among the consequences of exposure
to these contaminants (Balducci et al. 2012).

Several experimental models such as different organisms,
cells, and/or organelles can serve as Banalytical devices^ can
help to assess how pollutants affect the environment. The
biological response of tested organisms after exposure to these
substances may provide data on the toxicity, genotoxicity, and
estrogenicity of a compound or even aid identification of the
biomarkers of exposure or of the compounds that become
toxic only after bioactivation (Rand 1995; Pereira et al.
2012; Bandele et al. 2012). The toxicity of environmental
pollutants relates not only to the chemical structure of the
pollutant but also to the characteristics of each compartment
that receives the pollutant (soil, sediment, air, surface water,
and groundwater), the nature and the physical and chemical
properties of these compounds (solubility, volatility, biodeg-
radation, and adsorption properties), and biological targets
(fish, birds, and humans, among others) (de Oliveira et al.
2013).

In this scenario, this review addresses relevant characteris-
tics and summarizes the data that is available on the sources
and toxicity of compounds considered as emerging pollutants.
Despite not being exhaustive, this review describes state-of-
the-art knowledge about emerging environmental contami-
nants and highlights their known toxic effects on human and
environmental health.

Pharmaceuticals and personal care products

General information

The impact of pharmaceuticals and personal care products
(PPCPs) on the environment is a hot topic. Numerous research
works have reported that drug residues occur in the environ-
ment worldwide, mainly in water resources. Table 1 summa-
rizes some examples of drug residues and their main effects on
human health and other organism. Environmental contamina-
tion due to PPCPs may occur due to improper disposal of
prescription drugs, cosmetics, and veterinary antibiotics
(Zuccato et al. 2005; Jjemba 2008), which continuously enter
the environment.

Initially, several researchers reported on the presence of
clofibric acid, a breakdown product of many blood lipid reg-
ulators and salicylic acid, in the environment (USEPA 2008).
Advances in technology and analytical techniques have con-
tributed to the identification and quantification of a large num-
ber of pharmaceutical compounds in ambient water, wastewa-
ter, and drinking water (Collier 2007; USEPA 2008). Scien-
tists have sought to monitor these pharmaceuticals because
they often contain chemicals such as sulfamethazine,
diclofenac, ibuprofen, salicylic acid, carbamazepine,
propanolol, fluoxetine (Collier 2007; Drewes et al. 2007),

bezafibrate, sulfamethoxazole, iopamidol (Zwiener and
Frimmel 2004), trimethoprim, sulfamethoxazole, and diaze-
pam (Madureira et al. 2010). Many studies have also indicated
that natural hormones like estrones, 17β-estradiol, and the
synthetic hormone 17α-ethinyl estradiol, the main active sub-
stance of oral contraceptives, exist in waters (Pessoa et al.
2012). Early studies on the occurrence of estrogens excreted
by human involved assessment of sewage treatment plants in
England. The main finding was that the hormone 17β-
estradiol stimulated feminization of male fish with consequent
production of vitellogenin (Fent et al. 2005; Lopes et al.
2010).

Countless pharmaceuticals undergo biological degradation
to active metabolites that still require evaluation. Because the-
se pharmaceuticals exert negative effects on humans and/or
aquatic organisms, are difficult to decompose, and can spread
and contaminate soil and water (Milic et al. 2013; Olofsson
et al. 2013; de Lorenzo and Fleming 2008), they constitute
emerging pollutants (Olofsson et al. 2013).

Despite having short half-lives, many PPCPs can persist in
the environment due to their continual disposal and release
into aquatic ecosystems (Jasim et al. 2006). Even after being
metabolized by the human organism and animals, drugs and
metabolites can still be excreted into the environment, to reach
the sewage. Besides the fact that PPCPs display the character-
istics of persistent organic pollutants (POPs), sewage treat-
ment stations (STPs) may not be able to remove them
completely (Stumpf et al. 1999). According to Rahman et al.
(2009), some important properties like water solubility, ad-
sorption coefficient (log KOC), bioconcentration (log KOW),
and Henry’s law constant decide the fate and behavior of
PPCPs. These properties can also define whether these com-
pounds sediment or associate with biota (Birkett and Lester
2003). Moreover, PPCPs are biologically active and not read-
ily biodegradable (Kummerer 2001). Finally, the ability of
these compounds to interact with particles in the environment
can also determine their fate (natural clays, sediments, col-
loids, and microorganisms, among others) (Filali-Meknassi
et al. 2004).

Although wastewater treatment efficiently removes impu-
rities from effluents, ensuring total removal of toiletries and
pharmaceutical waste from wastewater is not possible
(Mitjáns and Ventura 2005). In addition, the presence of con-
taminants in drinking water reveals that the methods used to
treat water are flawed (Ternes et al. 1999). The commonest
preservatives in cosmetics, skin creams, tanning lotions, and
hygiene products are parabens alkyl-p-hydroxybenzoates,
which display estrogenic activity. The use of the antiseptic
agent triclosan is also widespread. In fact, triclosan has been
incorporated in formulations for at least 30 years, being part of
the formulation of various products, like soaps, cream, and
shoe insoles. This compound can be discharged into sewage
systems (Daughton and Ternes 1999).
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Occurrence and course in the environment

Several studies have investigated the occurrence of pharma-
ceuticals in the aquatic environment. Results have revealed
the presence of estrogenic hormones and industrial chemicals
in surface water and groundwater in Austria, for example

(Hohenblum et al. 2004). In the Billings dam in Sao Paulo,
Brazil, a study conducted in 2005 detected the substances
diclofenac, ibuprofen, and caffeine (Almeida and Weber
2005). According to Heberer (2002), over 80 compounds of
various classes of existing drugs have been detected in
reclaimed wastewater, surface and ground water, sludge,

Table 1 Data summary for the main PPCPs detected in environmental samples

Emerging 

contaminant

Structure Physical and 

chemical properties

Known effects to 

organisms

References
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agricultural soils, aquatic and terrestrial biota, and raw and
finished drinking water (De Lorenzo and Fleming 2008;
Kumar and Xagoraraki 2010; Hedgespth et al. 2012;
Bondarenko et al. 2012).

Among a wide variety of pharmaceuticals, antibiotics have
gained special significance for their extensive application in
human therapy and veterinary medicine. They also promote
the growth of animals in livestock production. Concern about
the presence of pharmaceutical residues in the environment is
associated with their potential role in the widespread resis-
tance of bacterial pathogens and post-therapeutic effects (Xu
et al. 2007). The occurrence of drug residues in the environ-
ment could escalate their adverse effects on aquatic and ter-
restrial organisms and their levels in cells, organisms, and
populations (Bila and Dezotti 2003).

A significant amount of PPCPs and their metabolites are
excreted in urine, feces, or manure. They may undergo bio-
degradation or partial degradation or even occur in their orig-
inal form. They can enter water through flushing of unused
medications down the toilet or sink, excretion of unabsorbed
medications into the sewage system, excretion of veterinary
drugs into fields by farm animals, and improper commercial
disposal methods (Richardson and Bowron 1985; USEPA
2008). In addition, the female body excretes natural estrogens
(estrone, estradiol, and 17β-estriol). Even though these estro-
gens are inactive when conjugated to glucuronic acid, fecal
coliforms present in water bodies can activate them
(D’Ascenzo et al. 2003; Lopes et al. 2010).

In 1997, in the state of Rio de Janeiro, Brazil, authors
detected antilipemics, anti-inflammatories, and some metabo-
lites in the effluent of wastewater treatment plants and river
waters (Stumpf et al. 1999). Another study published in the
same year identified natural estrogens and synthetic contra-
ceptives, such as 17β-estradiol, 17α-ethinyl estradiol, and es-
trone, in sewage treatment plants (Ternes et al. 1999). Some
studies noted the presence of contaminating substances in five
points of the Tama River, Japan, including ethinyl estradiol,
estrone, and 17β-estradiol. 17β-Estradiol and estrone also
emerged in water samples in Austria. Synthetic hormones like
17α-ethinyl estradiol and natural hormones like 17β-estradiol
were some of the organic contaminants that prevailed in sur-
face waters of the USA (Kolpin et al. 2002; Bursch et al. 2004;
Furuichi et al. 2009).

Toxicity

Although the measured concentrations of PPCPs in the envi-
ronment were low, for example, in the order of 5 μg of cipro-
floxacin per liter (5 μg/L) and 500 ng of diclofenac per liter
(500 ng/L), the extent to which these compounds may pose a
risk to human health is unclear. Therefore, further studies on
toxicity level and antibiotic resistance, among other issues,
after long-term exposure to these contaminants are essential.

Additional investigations into bioaccumulation and cumula-
tive or synergistic effects of pharmaceutical compounds are
also welcome (Lopes-Serna et al. 2012; Parrot 2007; Collier
2007).

Researchers have collected some ecotoxicological data to
identify drugs that are potentially hazardous to the environ-
ment, but the currently available data are not sufficient. Sci-
entists have usually evaluated the toxic effects of residual
drugs on aquatic biota (Bila and Dezotti 2003). Migliore
et al. (1998) investigated the effects of sulfonamide antibiotics
on plant species; they observed how these antibiotics modified
plant development modified modification of microbial and
bacterial resistance (Migliore et al 1998).

Exposure to PPCPs, classified as compounds that disrupt
the endocrine system, can result from a chronic dose rather
than bioaccumulation, which makes them toxic to the receptor
organism (CEC 1999). Larsson et al. (2000) noted these ef-
fects in their study on fish species such as Cyprinus carpio,
Rutilus rutilus, and Oryzias latipes; these authors detected
increased synthesis of vitellogenin, a protein related to the
development of ova and regulated by estrogen. The occur-
rence of such chemicals in the aquatic environment probably
impairs reproduction and elicits sexual anomalies. Exposure
to estrogens can also cause fish feminization during sexual
differentiation (Bila and Dezotti 2003). However, all the con-
sequences of the presence of estrogens in aquatic organisms
still need unveiling (Bila and Dezotti 2003; Rahman and
Brazel 2006).

Plasticizers

General information

Plasticizers are organic compounds of low molecular weight;
their addition to polymeric materials allows for efficient plas-
tic processing and formulation. Plasticizers enable the fabrica-
tion of a wide variety of plastics, and they have found multiple
applications in areas such as the automobile industry, medical
products, and commodities. The production of plasticizers has
reached 100,000,000 t/year, as a result of the great demand by
the plastic industry (Yan et al. 2010).

There are many types of plasticizers: phthalates, phos-
phates, adipates, benzoates, trimellitates, esters of sulfonic
acids, sulfonamides, and elastomers, among others (Wypych
2004; Rahman and Brazel 2006). Phthalic acid esters
(phthalate) (Viecelli et al. 2011) such as di-(2-ethylhexyl)
phthalate (DEHP), diethyl phthalate (DEP), and dibutyl
phthalate (DBP) are the most often employed; they exist in
medicines, perfumes, nail polish, shampoos and lotions,
paints, and adhesives for printers (Gómez-Hens and Aguilar-
Caballos 2003; Andrady and Neal 2009). However, phthalates
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exhibit adverse effects on human and organisms, as summa-
rized in Table 2.

Bisphenol A (BPA) is another widely used plasticizer. The
production of this monomer is primarily intended for the man-
ufacture of polycarbonate plastic and the synthesis of epoxy
resins. Polycarbonates have also found application in consum-
er electronics, automotive equipment, food packaging, plastic
bottles, and water bottles (CEC 1999). Epoxy resins are
employed in coatings for beverage and food cans, pharmaceu-
tical packaging, adhesives, and dental sealants (Andrady and
Neal 2009).

According to the Environmental Protection Agency of
the USA and some of its international counterparts, most
plasticizers constitute priority organic pollutants (Birkett
and Lester 2003; Chang et al. 2007). They can also act as
endocrine disruptors by negatively impacting the hormon-
al system of animals and humans (Nagel and Bromfield
2013).

According to Horn et al. (2004), plasticizers consist of
clear, colorless, oily liquids. Plasticizer incorporation into a
material increases flexibility, or distensibility, facilitating ma-
terial handling. Plasticizers can reduce the viscosity, lower the
temperature of the second-order transition, or reduce the elas-
tic modulus of the final product (Horn et al. 2004; Biermann
et al. 2012). In some cases, plasticizers provide transparent
materials that are highly resistant to heat and chemicals
(Simmchen et al. 2012).

Because plasticizers have relatively low molecular
weight, they easily spread around the environment (water,
foods, etc.). Some plasticizers contain a high amount of
fat; as a result of their lipophilic nature, they display high
mobility and pass through natural barriers such as the
skin, lung, and gut tissues without difficulty (Yan et al.
2010; Simmchen et al. 2012). Factors like temperature,
plasticizer concentration, and other characteristics (solu-
bility and diffusion coefficient) commonly influence plas-
ticizers leaching and migration (Wypych 2004; Rahman
and Brazel 2006; Goulas et al. 2007).

Occurrence and course in the environment

Nearly 25 years ago, the presence of plasticizers in the
environment was already a matter of concern (Wams
1987). Numerous studies have identified phthalates in
soils (Bauer and Herrmann 1997; Cartwright et al. 2000;
Fries and Mihajlovic 2011), surface water (Taylor et al.
1981; Horn et al. 2004), indoor air (Butte et al. 2001;
Becker et al. 2004), and the atmosphere (Thuren and
Larsson 1990). DEHP, DEP, DBP, and BPA are the plas-
ticizers that commonly arise in the environment (Quan
et al. 2006).

Understanding the potential environmental pathways
followed by plasticizers may aid proper management of

their production and use, to ensure health and environ-
mental safety. Plasticizers enter the environment not only
through loss during production and distribution but also
by leaching from the finished product or through ineffec-
tive wastewater treatment (Matamoros et al. 2012). Plas-
ticizers like phthalates do not chemically bind to the poly-
mer matrix, which culminates in their facile release into
the environment as well as animal and human exposure to
these contaminants (Zimmer et al. 2012).

The main routes through which plasticizers enter the
environment are direct transfer (building materials), urban
runoff, emission by industries and deposition in atmo-
spheric air, deterioration of water supply and sewage
pipes, solid waste disposal (from which plasticizers leach
into landfills), industrial activities, wastewater and sewage
treatment plants (effluent discharge, waste disposal activ-
ities like incineration, waste discharge into landfills), and
application of fertilizers (Liu et al. 2009; Wagner and
Oehlmann 2009; Yan et al. 2010).

The widespread use of plasticizers makes human expo-
sure to these compounds and their release into the envi-
ronment unavoidable. Both biotic and abiotic factors, such
as adsorption and volatilization of organic matter in
aquatic and terrestrial systems, influence environmental
contamination with these substances (Yan et al. 2010).
Plasticizers may undergo degradation by aerobic and an-
aerobic organisms, but their adsorption onto particles
slows the degradation rate. Plasticizers may adsorb onto
soil and sediments and spread through the terrestrial en-
vironment, which will depend on their carbon content
(Yan et al. 2010).

Toxicity

Some plasticizers are potential disruptors of the endo-
crine system (Arcadi et al. 1998; Mlynarcíková et al.
2005; Robinson and Hellou 2009; López-Casas et al.
2012). One of such endocrine disruptors, BPA, is one
of the most often used plasticizers worldwide. It accounts
for several endocrine disorders in multiple systems, such
as changes in salivary glands (Folia et al. 2013), thyroid,
and the male reproductive system (Zhou et al. 2013).
BPA is also neurotoxic (Kundakovic et al. 2013) and
impairs cell division as well as plant growth (Adamakis
et al. 2013).

Most tissues contain enzymes that can hydrolyze the dies-
ter to its monoester mono-(2-ethylhexyl) phthalate (MEHP),
whereas complete hydrolysis seems to require enzymes pres-
ent in phase I biotransformation in the liver. This metabolism
generates other metabolites such as mono-(2-ethyl-5-hy-
droxy) phthalate, mono-(2-ethyl-5-oxo-hexyl) phthalate,
mono-(2-ethyl-5-carboxypentyl) phthalate, and mono-(2-
carboxymethylhexyl) phthalate. According to the results of
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Horn et al. (2004), these metabolites are more toxic than their
parent compounds (Horn et al. 2004). Glucuronidation facili-
tates their removal from the body. In this way, the body ex-
cretes most of the adsorbed DEHP within 24 h, avoiding its
accumulation in the tissues. In children, particularly infants,
metabolism is not mature, so glucuronidation and excretion
are lower at the same time that MEHP hydrolysis increases.
The latter situation is especially problematic because DEHP
toxicity stems from its conversion into MEHP (Albro and
Thomas 1973; Kluwe 1982; Garcia et al. 2002; Simmchen
et al. 2012).

In rats and mice, both DEHP and MEHP produce toxic
effects in the liver, kidneys, and testicles. Reports on carcino-
genicity and reproductive toxicity also exist (Rossi and
Schettler 2000; Tickner et al. 2001).

Pesticides

General information

According to the Environmental Protection Agency of the
USA, pesticides constitute any substance or mixture of sub-
stances that can prevent, destroy, repel, or mitigate a pest
(USEPA 2007). In addition, the Food and Agriculture Orga-
nization of the United Nations says that the term pesticide also
covers substances used to control disease vectors in humans or
animals, regulate plant growth, and maintain the ideal condi-
tions for the use of vegetation (FAO 2012).

The classification of pesticides relies on the pattern of
use and the pests they combat. In the latter case, the main
classes are insecticides, herbicides, fungicides, and

Table 2 Physical and chemical properties of plasticizers and data on their biological effects

Emerging 

contaminant

Structure Physical and chemical 

properties

Biological effects References
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rodenticides (USEPA 2007; Nougadère et al. 2012).
Grouping many compounds on the basis of similarities
in their chemical structures is possible (Alonzo and
Corrêa 2003), e.g., organochlorines (including aldrin and
DDT), organophosphates (diazinon and malathion), carba-
mates (carbaryl and propoxur), pyrethrins and pyrethroids
(tefluthrin), triazines (atrazine), phenoxyacid (2,4-

dichlorophenoxyacetic acid), chloroacetanilides, also
called chloroacetamides (metolachlor and alachlor), and
phenylureas (diuron) (Barr 2008). Organochlorines, or-
ganophosphorus, and pyrethroids (which are synthetic an-
alogues of pyrethrins) serve mainly as insecticides, acari-
cides, or nematicides. Table 3 lists some data and peculiar
characteristics for some compounds of these classes.

Table 2 (continued)
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The use of pesticides has provided many public bene-
fits. For example, food supply has become safer and more
plentiful, and the occurrence of vector-borne disease has
diminished (Barr and Needham 2002; Cooper and Dobson
2007; Pacioni and Veglia 2007). Unfortunately, because

pes t ic ides are s tab le in the envi ronment , they
bioaccumulate, and the excessive use of these substances
can easily cause poisoning through various toxicity mech-
anisms (Fenik et al. 2011). The widespread application of
pesticides contaminates the soil, air, and water, as well as

Table 3 Data and characteristics of the main classes of pesticides
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fruits and vegetables, which increases the human vulner-
ability to contamination and may even affect the fauna
and flora (Pimentel 2005; Fenik et al. 2011; Hernández
et al. 2013). In addition, the synergies between pesticides
are worrisome. Understanding the fate and occurrence of
these compounds, mainly at low levels, requires analytical
methods with much lower detection limits than traditional
methods (Pacioni and Veglia 2007; Andreu and Picó
2012).

Physical and chemical properties can vary depending on
the chemical characteristics of the compounds. Organochlo-
rines are persistent pesticides belonging to the group of POPs:
they have long environmental half-lives and tend to
bioaccumulate in the food chain. They are liposoluble, have
low volatility, and may spread to various places via exposed
animals or physicochemical processes (Borga et al. 2001;

Alonzo and Corrêa 2003; Barr 2008; Andreu and Picó
2012). In general, organophosphates, carbamates, synthetic
pyrethroids, triazines, phenoxyacid, and chloroacetanilides,
among others, are considered nonpersistent. Most decompose
within several weeks under exposure to sunlight and water, so
they do not tend to bioaccumulate, except in cases of unfavor-
able degradation conditions. However, extensive use of these
products has culminated in constant human exposure to pes-
ticides via domestic use or the food chain (Barr 2008; Andreu
and Picó 2012).

Occurrence and course in the environment

Organisms may take up pesticides through ingestion of food
and water, inhalation, and contact with the skin or exoskeleton
(Van Der Werf 1996; Hernández et al. 2013). Geographical

Table 3 (continued)

Kow
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location also influences exposure to pesticides. As a result of
crop spraying, pesticide detection prevails in rural residents as
compared with inhabitants of urban zones. Pesticide concen-
trations found in rural residents are also higher (Mckinlay
et al. 2008).

Most pesticides are often applied as mixtures to crops. Be-
cause they are either directly applied to the soil or sprayed
onto crops, they are directly released into the environment
(Biziuk et al. 1996; Hernández et al. 2013). Their application
in the liquid form contaminates the environment more than
their application as powder (Fenik et al. 2011). Rain and wind
transport the applied pesticides to the surroundings. The quan-
tities found in a given region usually reflect the intensity and
frequency of pesticide use (Biziuk et al. 1996; Fenik et al.
2011). The persistence of pesticides in the soil will largely
depend on the physical and/or chemical reactions that they
undergo with other substances and microorganisms present
in the soil, which should culminate in different environmental
behavior. Relatively degradation-resistant and water-soluble
pesticides can be transported to water bodies, where they have
been found in significant amounts (Konstantinou et al. 2006).
Pesticides can come into direct contact with water upon their
application to control aquatic plants in the environment. They
can also reach water indirectly through draining of agricultural
land, soil permeation, and water and waste discharge into wa-
ter bodies (Biziuk et al. 1996; Guzzella et al. 2006). In surface
waters, pesticides can travel long distances, leading to exten-
sive contamination (Yan et al. 2010).

Toxicity

Solvent constituents favor the absorption of pesticides, regard-
less of their structure (Alonzo and Corrêa 2003). Human ex-
posure to pesticides results in a series of health problems,
which range from irritation to serious diseases that may ulti-
mately lead to death (Simonelli et al. 2007).

Pesticides are generally highly soluble, and organisms can
absorb them by various routes. After absorption, these com-
pounds are rapidly distributed throughout the body, to under-
go biotransformation reactions (Ecobichon 1996; Timchalk
2006). The US Environmental Protection Agency has already
issued a document demonstrating that some of these com-
pounds can act as endocrine disruptors, to modify the levels
of hormones (USEPA 2006; Ji et al. 2008).

Poisoning by pesticides directly alters the endocrine system
(Colburn et al. 1993; Ji et al. 2008; Mckinlay et al. 2008; Yan
et al. 2010). Occupational exposure is linked to neurotoxic
effects, like Parkinson’s disease (Franco et al. 2010), various
genotoxic effects (Bolognesi 2003; Sailaja et al. 2006), cyto-
genetic damage (Bolognesi 2003), and induction of carcino-
genic (Sailaja et al. 2006; George and Shukla 2011) and mu-
tagenic effects (Ruiz and Marzin 1997).

Flame retardants

General information

The addition of flame retardants to different products, espe-
cially polymeric materials, makes them more resistant to high
temperatures, prevents the ignition process, and reduces the
probability that flame spread rapidly during the combustion
process. Flame retardants can be classified as reactive and
non-reactive compounds, depending on the mechanism
through which they are added to materials. Their non-
reactive addition favors their emergence in air, water, and food
and leads to their accumulation in the organism.

Over 175 substances serve as flame retardants, which in-
clude organic halogenated flame retardants (the compound
contains chlorine and bromine atoms in its chemical structure),
flame retardants displaying nitrogen, and flame retardants
bearing inorganic phosphorus (Birnbaum and Staskal 2004).

Brominated flame retardants are divided into additives and
reagents, depending on how they are added to materials. The
industry employs tetrabromobisphenol A (TBBPA),
hexabromocyclodecane (HBCD), and polybrominated
diphenyl ether (PBDE) the most often (Table 4 depicts the
main representatives of this class). Brominated flame retar-
dants are efficient and less costly. For these reasons, this type
of flame retardant is the most frequently applied worldwide.
However, these compounds account for adverse effects on the
human health and the environment (Strandman et al. 2000).
Moreover, there are no laws to monitor their use in some
countries, except in Europe and some states of the USA,
where reduced use of brominated flame retardants occurs be-
cause the legislation has banned the manufacture of products
containing some representatives of PBDEs in their formula-
tion (Hale et al. 2001).

The basic differences between the compounds of this class,
such as molecular weight and physicochemical properties,
define their behavior in the environment (Cetin and Odabasi
2011) and regulate their accumulation and magnification in
humans, wildlife, and ecosystems.

In general, the distinguishing physicochemical properties
of flame retardants are their hydrophobic potential, low vapor
pressure, and high octanol–water partition coefficient (log
KOW). Therefore, most flame retardants persist in the environ-
ment, have the potential to bioaccumulate in the organism and
the environment, are potentially toxic, and are prone to long-
range atmospheric transport, which raises the levels of these
compounds in remote areas like the Arctic regions (Hale et al.
2001; Abb et al. 2011).

Occurrence and course in the environment

TBBPA, with application in electrical and electronic
equipment, furniture, and construction materials (Geens
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et al. 2009), has emerged in food, air, dust (Thomson and
Grounds 2005; Wilson et al. 2007; Geens et al. 2009; Abb

et al. 2011), water, fish, and sediments (Yang et al. 2012)
as well as in human fluids like urine (Calafat et al. 2007a,

Table 4 Main representatives of the polybrominated diphenyl ether class of flame retardants and their known effects
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b), serum (Dirtu et al. 2008), breast milk (Ye et al. 2008;
Shi et al. 2009), and human amniotic fluid (Cariou et al.
2008). PBDEs are another class of flame retardant that has
arisen as contaminant. PBDEs comprise chemical com-
pounds added to consumer goods during or after the
manufacturing process. Because PBDEs do not establish
effective chemical bonds with the material during the fab-
rication process, the products can release these contami-
nants during handling and disposal. Consequently, differ-
ent levels of PBDE congeners have emerged in the human
blood, adipose tissue, breast milk, placental tissue, brain,
marine mammals, fish, and bird eggs (Hopper and
McDonald 2000; Siddiqi et al. 2003; Sjödin et al. 2014;
Kodavanti and Ward 2005).

Evidence of the toxicity of classic flame retardants has led
to the use of new compounds, e.g., organophosphorus (OP)
flame retardants (Van der Veen and De Boer 2012), as alter-
natives to the aforementioned emerging contaminants
(Stapleton et al. 2008). Nevertheless, OP can also persist in
the environment. Indeed, researchers have already detected
them in several environmental samples (Andresen et al.
2004; Hartmann et al. 2004; Reemtsma et al. 2008) and ani-
mals (Kim et al. 2011). Some research teams have reported
that their levels and the levels of PBDEs in indoor dust are
comparable (Reemtsma et al. 2008; Stapleton et al. 2008).

Toxicity

Strandman et al. (2000) have shown that exposure to PBDEs
could begin even before birth, during gestation in the maternal
womb, since there are reports on the presence of PBDEs in
placenta samples. Recently, many studies have demonstrated
the toxic potential of PBDEs, including hepatic, immune, neu-
rotoxicity, endocrine actions, and the development of cancer
(Pestana et al. 2008).More precisely, PBDEs induce cell death
in hepatic cell lines via the mitochondrial pathway (Souza
et al. 2013), leading to dysfunction in rat liver mitochondria
(Pereira et al. 2012, 2014). Furthermore, potential reproduc-
tive toxicity such as induction of abnormal growth in female
reproductive organs, breast, and liver has resulted from
disrupted thyroid hormone receptors, estrogen, progesterone,
and androgen caused by the action of PBDEs as antagonists or
agonists of androgen, progesterone, and estrogen receptors
(Mcdonald 2002; Legler and Brouwer 2003; Madia et al.
2004; Stoker et al. 2005; Hamers et al. 2007; Costa and
Giordano 2007; Costa et al. 2008; Talness 2008).

TBBPA exerts toxic effects on both animals and
humans. It affects the endocrine system: in the thyroid
hormonal system, it binds to the thyroid hormone trans-
port protein, transthyretin (Kitamura et al. 2005; Fini et al.
2007), and causes endocrine disruption and oxidative
stress in aquatic species (de Wit 2002; Roniz et al.
2004; Hamers et al. 2006; Shi et al. 2010). Recently, the

thyroid effect elicited by TBBPA has been reported to
have teratogenic effects on Xenopus tropicalis embryos
(Shi et al. 2010). Neurotoxic effects due to exposure to
TBBPA include increased ROS production and higher
basal intracellular calcium concentration (Hendriks et al.
2012; Mousa and Michelangi 2012).

The toxicity of hexachlorobutadiene (HCBD) affects the
thyroid function, brain development, neuron function, repro-
duction, and general development (Marvin et al. 2011). This
compound has low toxicity in different animals, but distinct
administration modes can enhance toxicity and favor mutage-
nicity (Danerub 2003).

Alternative flame retardants are also toxic. Meeker and
Stapleton (2010) have described associations between organ-
ophosphorous flame retardants present in indoor dust and
changes in T4 and prolactin levels as well as decreased sperm
concentration. Hence, the rising levels of these novel flame
retardants cannot be overlooked.

Surfactants

General information

Surfactants are emerging contaminants belonging to a diverse
group of chemicals with distinct solubilization properties.
These chemicals are present in household cleaning detergents,
personal care products, textiles, paints, polymers, pesticide
formulations, and pharmaceuticals; they also find application
in mining, oil recovery, and the pulp and paper industries
(Ying 2006).

The classification of these emerging contaminants usually
relies on their ionic behavior in solution: anionic, cationic,
nonionic, or amphoteric (Yan et al. 2010). The commonest
classes of surfactants are the following: (1) anionic: linear
alkylbenzene sulfonic acid (LAS), sodium dodecyl sulfate
(SDS), alkyl sulfate (AS), sodium lauryl sulfate (SLS), and
alkyl ethoxysulfate (AES); (2) cationic: quaternary ammoni-
um compound (QAC), benzalkonium chloride (BAC),
cetylpyridinium bromide (CPB), cetylpyridinium chloride
(CPC), and hexadecyltrimethylammonium bromide
(HDTMA); (3) nonionic: alkylphenol ethoxylate (APE), alco-
hol ethoxylate (AE), and fatty acid ethoxylate (FAE); and (4)
amphoteric: amine oxide (AO) (Ivanković and Hrenović
2010).

Surfactants generally consist of a polar head group (either
charged or uncharged) and a nonpolar hydrocarbon tail (Ying
2006), but the development of new surfactants has generated
dimeric (gemini) surfactants bearing two amphiphilic moieties
linked together at the level of the head group by a spacer group
(Zana 2002a; Yang et al. 2010). The properties of dimeric
surfactants have stimulated the synthesis and investigation of

13812 Environ Sci Pollut Res (2015) 22:13800–13823



even longer homologues, the oligomeric surfactants (Zana
2002b).

A fundamental property of surfactants is their ability to
form micelles in solution, because each molecule contains
both hydrophobic and hydrophilic groups, which provide sur-
factants with excellent detergency and solubilization proper-
ties. At low concentration in water, surfactant molecules exist
as monomers. The concentration of the surfactant at which the
thermodynamics of the surfactant–solvent system favors mi-
celle formation is called the critical micelle concentration
(CMC) (Haigh 1996).

CMC can be regarded as the maximum solubility of sur-
factants (Könnecker et al. 2011). Nonionic surfactants have
lower CMC levels than anionic and cationic surfactants (Ying
2006), and dimeric surfactants can exhibit superior solution
properties to the traditional ones, such as lower CMC (Menger
and Littau 1993; Zhu et al. 2012).

Occurrence and behavior in the environment

The extensive use of surfactants has led to the release of some
of these chemicals into rivers (Odokuma and Okpokwasili
1997), and they can accumulate in sludge sewage treatment
flow (Holt et al. 1995; Cserháti et al. 2002). After their use,
surfactants can enter the environment through sewage dis-
charge into surface water, pesticide application, or sludge dis-
posal on land (Ying 2006).

After release into the environment, surfactants undergo
many processes. One of such processes is biodegradation,
which enhances their removal and reduces their impact on
biota. Degradation of surfactants by microbial activity is the
first transformation that they experience (Ying 2006). Biodeg-
radation depends primarily on the chemical structure of the
surfactant and on the physicochemical conditions of the envi-
ronment (Ivanković and Hrenović 2010).

Even though a major proportion of surfactants undergo
degradation in wastewater treatment plants, some surfactant
may end up in surface waters, soil, or sediment (Holt et al.
1995). In surface waters, the dilution process canminimize the
toxic effects of surfactants on aquatic organisms, so the con-
centrations of surfactants allowed in this environment are be-
low the effective concentrations that are toxic to aquatic or-
ganisms (Ivanković and Hrenović 2010).

In soil or sediment, sorption is one of the processes that will
determine whether a contaminant will persist (Haigh 1996).
Sorption on soil or sediment can reduce the toxicity of surfac-
tants in the environment. Data on sorption can help to estimate
the distribution of a surfactant in different environmental com-
partments and its bioavailability. In addition, sorption signifi-
cantly affects the biodegradation of a surfactant (Ying 2006).

Sorption depends on the nature of the adsorbent and on the
concentration of the surfactant (Adeel and Luthy 1995; Ou
et al. 1996). In the presence of increasing surfactant

concentrations, fewer active sorption sites are available on
the surface of the solid and more hemimicelles arise. Surfac-
tants have relatively high sorption on sludge, sediment, and
soil, and their sorption is higher in cationic, followed by non-
ionic and anionic surfactants (Ying 2006). The effective CMC
of surfactants in soils and sediments is generally much higher
than their CMC in clean water systems (Haigh 1996).

Toxicity

Surfactants are toxic to organisms. High levels of these
chemicals can affect the ecosystem (Ivanković and Hrenović
2010), as shown in Table 5. Surfactants are widely dispersed
in the environment, so concern regarding their ultimate envi-
ronmental fate and effects (Haigh 1996) as well as their bio-
degradation products is large.

Anionic surfactants can bind to bioactive macromolecules
such as peptides, enzymes, and DNA, to modify their biolog-
ical function through changes in the polypeptide chain folding
and the surface charge of a molecule (Ivanković and Hrenović
2010). In addition, anionic surfactants can link to phospho-
lipids on the cell membrane and proteins, to increase perme-
ability and reduce selectivity, which may culminate in cell
death.

In general, anionic, nonionic, and cationic surfactants can
modify microorganisms such as Vibrio fischeri, Ceriodaphnia
dubia, Carassius auratus, Artemia salina, and Daphnia
magna, among others, to elicit luminescence (in the case of
V. fischeri), immobilization, and changes in cell density
(Sütterlin et al. 2008; Mariani et al. 2006; Singh et al. 2002;
Liwarska-Bizukojc et al. 2005; Warne and Schifko 1999;
Garcia et al. 2007).

Biodegradability is a desirable characteristic to prevent pol-
lution; however, partial biodegradation may result in interme-
diates that may be more harmful to the environment than the
parent compound (Haigh 1996). For example, the biodegra-
dation of APE generates nonylphenols (NOP) and
octylphenols (OP), but NP is approximately ten times more
toxic than its ethoxylate precursor (Renner 1997; Scott and
Jones 2000). Besides, NP and OP can induce vitellogenin
production in male fish, a protein that by sexually mature
females generate under the influence of estrogens (Pedersen
et al. 1999). Hence, NP and OP act as endocrine disruptors in
fish (Jobling and Sumpter 1993; Ivanković and Hrenović
2010).

Nanomaterials

General information

Nanotechnology is often regarded as Benabling technology^
(Mann 2006). It exploits properties and phenomena developed
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at the nanoscale. BNano^ derives from the Greek word nanos,
which means a dwarf. The invention of the first tool to ma-
nipulate atomic structures, a scanning tunnelling microscope
(STM), is one of the most important milestones in nanotech-
nology development (Piotrowska et al. 2009). Since the
1990s, implementation of nanotechnologies has escalated
and has found many practical applications in the industry
and daily life (Nanonet 2014). A large number of new
nanoproducts are expected to appear in the market within
the next few years. Over 800 products based on nanotechnol-
ogy exist (Maynard et al. 2006; Rejeski and Lekas 2008).

Nanoparticles reach dimensions of up to several dozens of
nanometers and resemble large complexes of protein mole-
cules. However, they differ from proteins in terms of chemical
composition, shape, size, density, aggregation, type of surface,
and physicochemical properties (e.g., magnetic, optical, and
electrochemical properties) (Piotrowska et al. 2009).

One of the side effects of the large-scale use of nanotech-
nology is the release of nanomaterials into the environment.
Because the industry has employed nanotechnology, it also
accounts for the production of waste containing residual
nanomaterials. Indeed, the amount of Bnanowaste^ should
increase in the future.

Nanomaterials offer a wide range of applications in the
medical, technological, and scientific areas. Nanotechnology
constitutes an interdisciplinary area that involves physics,
chemistry, and biology from the start; this area includes the

manipulation of nanoparticles (NP). NPs usually measure less
than 100 nm, and their physical, chemical, electrical, magnet-
ic, and biological properties differ from those of other mate-
rials. In this context, because of the application of NPs in
biomedicine, their fundamental characteristics are size and
format. Indeed, the uptake of organic NPs by cells depends
on these characteristics (Faramazi and Sadighi 2013).

Various chemical, physical, and biological methods exist to
synthesize nanomaterials. Physical methods have disadvan-
tages such as low production rate. Although chemical
methods are generally inexpensive, they require solvents that
produce toxic and hazardous by-products (Faramazi and
Sadighi 2013). In contrast, biological methods are sustainable:
they occur in living systems including bacteria, fungi, algae,
viruses, and plants (Ahmad et al. 2003; Sweeney et al. 2004;
Singaravelu et al. 2007; Thakkar et al. 2010; Shakibaie et al.
2010; Mishra et al. 2010). Moreover, they are generally cost-
effective, biocompatible, nontoxic, and eco-friendly (Krumov
et al. 2009).

Toxicity

Adverse effects of NPs on the human health depend on indi-
vidual factors such as genetics and existing disease, exposure,
and NP chemistry, size, shape, agglomeration state, and elec-
tromagnetic properties. Recent epidemiological studies have
shown a strong correlation between particulate air pollution

Table 5 Toxicity data for different types of surfactants. Adapted from Ivanković and Hrenović (2010)

Surfactant Test species Endpoint Concentration (mg/L) References

LAS Vibrio fischeri EC50—luminescence 30 min 109.7 Sütterlin et al. (2008)

Dunaliella sp. EC50—24 h 3.5 Utsunomiya et al. (1997)

Ceriodaphnia dubia EC50—immobilization 48 h 5.96 Warne and Schifko (1999)

Carassius auratus EC50—immobilization 48 h 5.1 Singh et al. (2002)

SDS Vibrio fischeri EC50—luminescence 15 min 2.36 Mariani et al. (2006)

Raphidocelis subcapitata IC50—cell density 72 h 36.58 Liwarska-Bizukojc et al. (2005)

Artemia salina LC50—larvae mortality 24 h 41.04 Liwarska-Bizukojc et al. (2005)

Gammbusia affinis EC50—immobilization 48 h 40.15 Singh et al. (2002)

QAC Vibrio fischeri EC50—luminescence 30 min 0.5 Sütterlin et al. (2008)

Dunaliella sp. EC50—24 h 0.79 Utsunomiya et al. (1997)

Salmo gairdneri EC50—immobilization 48 h 1.21 Singh et al. (2002)

AE Microcystis aeruginosa Estimated EC10—cell density 0.154 Belanger et al. (2006)

Navicula pelliculosa Estimated EC10—cell density 0.140 Belanger et al. (2006)

Ceriodaphnia dubia EC50—immobilization 48 h 0.39 Warne and Schifko (1999)

Pimephales promelas NOEC—survival> 4.35 Belanger et al. (2006)

AO Phosphobacterium phosphoreum EC50—luminescence 15 min 2.4 Garcia et al. (2007)

Daphnia magna EC50—immobilization 48 h 6.8 Garcia et al. (2007)

LAS linear alkylbenzene sulfonic acid, SDS sodium dodecyl sulfate, QAC quaternary ammonium compound, AE alcohol ethoxylate, AO amine oxide,
EC50 half maximal effective concentration, IC50 half maximal inhibitory concentration, LC50 half maximal lethal concentration, EC10 effective
concentration at 10 % inhibition
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levels, respiratory and cardiovascular diseases, various can-
cers, and mortality (Buzea et al. 2007). Orrenius et al. recently
discussed the implications of different mechanisms of cell
death in toxicology (chemicals, drugs, and environmental pol-
lutants) (Orrenius et al. 2011). In the same way, increased
understanding of the complexities of nanomaterial-induced

perturbation of different cell death pathways will allow better
prediction of the consequences of human exposure to these
materials. In the majority of the cases, the key to understand-
ing the toxicity of nanomaterials is that their smaller size
(smaller than cells and cellular organelles) allows them to
penetrate these basic biological structures and disrupt their

Fig. 3 Similarity between the
structures of PBDE-100 (flame
retardant) and bisphenol A
(plasticizer) as compared with tri-
iodothyronine thyroid hormone
(T3) and the endogenous hor-
mone estrone

Fig. 2 Adverse effects caused by exposure to nanoparticles. Figures were produced by using Servier Medical Art: www.servier.com
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normal function (Buzea et al. 2007). Figure 2 summarizes
some adverse effects caused by exposure to nanoparticles.

According to Andón and Fadeel (2012), evaluating the cell
death pathways helps to assess nanotoxicology. Assessing and
quantifying each specific biochemical signal of cell death in-
duced by nanomaterials can aid this investigation. The litera-
ture reports that NPs impact cells through three mechanisms
of programmed cell death.

A number of studies have described how carbon nanotubes
(CNTs) at doses of 10 and 50 μg/mL affect apoptosis. CNTs
can induce apoptosis in A549 lung carcinoma cells. Carbon
black NPs (13 nm) elicit apoptosis in bronchial epithelial cells
via intrinsic apoptosis signaling with Bax activation and re-
lease of cytochrome c from mitochondria. TiO2 NPs (15 nm)
induce apoptosis by destabilizing lysosomal membrane and
releasing cathepsin B, which suggests that the apoptosis path-
way varies depending on the chemical nature of the NPs
(Srivastava et al. 2011; Schrand et al. 2010). Several other
classes of NPs including fullerenes, gold NPs, iron core-gold
shell nanoparticles, and iron oxide NPs activate autophagy
in vitro (Johnson-Lyles et al. 2010; Li et al. 2010; Wu et al.
2011). Some nanomaterials can produce reactive oxygen spe-
cies as well as in vitro cytotoxicity; they can also pass through
cell membranes and biological barriers such as the blood–
brain barrier (Xia et al. 2006; Foley et al. 2002; Kashiwada
2006; Kim et al. 2006). In addition, NPs constitute potent
inducers of micronuclei, which attest to their genotoxicity
and mutagenicity (Lindberg et al. 2009; Totsuka et al. 2009).

Future perspectives

A large number of toxic compounds, mostly originating from
excessive population growth and industrial and agricultural
activities, are continuously entering the environment. In some
cases, these toxic compounds can have serious acute effects
on the organisms exposed to them. In addition, because they
can induce chronic effects, exposure to low doses of these
chemicals is also important (USEPA 2008; Ginebreda et al.
2012a, b). A problem common to all of the emerging classes
of contaminants presented in this article, which covered a
large number of chemicals with different structures such as
synthetic and natural hormones, phytoestrogens, organochlo-
rine pesticides (DDT), plasticizers (bisphenol A), and flame
retardants (PBDEs), among others, is their ability to disrupt
the endocrine system (Bila and Dezotti 2007; Bergman et al.
2012). This happens because their chemical structures are
very similar to the structure of human endogenous hormones,
as shown in Fig. 3. However, this similarity is not required for
the effect to occur.

Until recently, concern about environmental toxicology
focused on toxic compounds that were present in large
quantities in the environment. Nowadays, major concern

resides on emerging contaminants, for which toxicologi-
cal data are lacking. Little knowledge about associated
biomarkers coupled with lack of legislation is also a wor-
rying issue. In this context, some chemicals that are po-
tentially toxic to humans have been extensively investi-
gated. Other chemicals that harm the biota and pose risks
to humans have also received researchers’ attention. Fi-
nally, some other pollutants that are not directly toxic to
human beings or whose environmental concentrations in
the biota are not high have also been the object of several
investigations. This is because they can modify environ-
mental characteristics and bring about major environmen-
tal damage (Pierre-Marie et al. 2011). Thus, researchers
have produced considerable knowledge that will assist the
management of emerging contaminants. Unfortunately,
people, animals, and the environment have actually been
exposed to multiple chemicals from a variety of sources at
once, while current risk assessment is most often carried
out on one chemical substance only, at low doses (EFSA
2013; Pierre-Marie et al. 2011).

BChemical mixtures^ refers to combined exposure to mul-
tiple chemicals (EFSA 2013). For example, freshwater
sources contain hundreds of measurable emerging contami-
nants. Of the 16 contaminants present at the highest concen-
trations in LakeMichigan, 11 of them are pesticides, including
diazinon, chlorpyrifos, endosulfan, melathion, atrazine, per-
methrins, dichlorvos, manganese, zinc, imidacloprid, and
naphthalenes (Raley-Susman 2014). Thus, single chemical
risk assessment has proven to be efficient but fail to extrapo-
late the data to the contaminants existing in real life.

In conclusion, the need for high-quality information on
emerging contaminants is evident. Assessing exposure tomul-
tiple chemicals is crucial, in order to estimate the effects of
emerging pollutants more accurately. This will require tech-
nological improvements and the design of sensitive and selec-
tive methods for the identification, confirmation, and quanti-
fication of these compounds (Aguera et al. 2013). Biomarkers
of effects, environmental monitoring, and surveillance are also
essential for accurate assessment. Furthermore, legislation and
more data on the occurrence, distribution, uptake, and conse-
quences of the exposure to these compounds are welcome.
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