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Abstract Foliar ionome, photosystem II activity, and leaf
growth parameters of Ranunculus acris L., a potential bio-
monitor of trace element (TE) contamination and
phytoavailability, were assessed using two riverbank soil se-
ries. R. acris was cultivated on two potted soil series obtained
by mixing a TE (Cd, Cu, Pb, and Zn)-contaminated technosol
with either an uncontaminated sandy riverbank soil (A) or a
silty clay one slightly contaminated by TE (B). Trace elements
concentrations in the soil-pore water and the leaves, leaf dry
weight (DW) yield, total leaf area (TLA), specific leaf area
(SLA), and photosystem II activity were measured for both
soil series after a 50-day growth period. As soil contamination
increased, changes in soluble TE concentrations depended on
soil texture. Increase in total soil TE did not affect the leaf DW

yield, the TLA, the SLA, and the photosystem II activity of
R. acris over the 50-day exposure. The foliar ionome did not
reflect the total and soluble TE concentrations in both soil
series. Foliar ionome of R. acriswas only effective to biomon-
itor total and soluble soil Na concentrations in both soil series
and total and soluble soil Mo concentrations in the soil
series B.
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TLA Total leaf area
VDLUFA Association of German Agricultural Analytic

and Research Institutes
WHC Water holding capacity
XANES X-ray absorption near edge structure

Introduction

Worldwide, some 22 million hectares of land have been de-
graded by contamination, and case studies arise everywhere
from increasing industrialization, urbanization, and lax envi-
ronmental regulations or their lack of respect (GACGC 1995;
Evangelou et al. 2012). In the European Union, on average,
about 4.2 potentially contaminating sites are estimated to exist
per 1,000 inhabitants and about 5.7 contaminated sites per 10,
000 inhabitants (EEA 2014). A tentative extrapolation to cov-
er 39 European countries results in an estimated 2.5 million
potentially contaminated sites of which about 14 % (340 000
sites) is estimated to be contaminated and in need of remedi-
ation measures. Trace elements (TE) are of concern at 35 % of
these sites (EEA 2014). Increases in TE (here, essential and
non-essential metal(loid)s with common concentrations in
plant shoots below 100 mg kg−1 dry weight, DW; Adriano
2001) in soils over time is mainly due to anthropogenic activ-
ities in both urban and agricultural soils (Burt et al. 2014;
Capra et al. 2014; Washa et al. 2014). Cadmium and Zinc
often deserve special emphasis due to their mobility in soils
and their presence in many pollutant linkages (Defra 2012);
indeed, there are many sources and pathways that lead to an
increase of Cd and Zn in soils, which can result in risks for
water resources or human health (Beesley et al. 2010; Bearup
et al. 2014; Li et al. 2014; Rashti et al. 2014). Briefly, Cd
inputs to agricultural soils are predominantly through aerial
depositions, and applications of P-fertilizers, soil amend-
ments, manure, and sewage sludges (McLaughlin and Singh
1999). Anthropogenic soil Zn contamination mainly results
from short- and long-range industrial and urban emissions to
the atmosphere (e.g., burning of coal and oil, waste incinera-
tion, industrial processes including non-ferrous metal
smelting), and (long-term) applications of P- and Zn-fertil-
izers, sewage sludges, some livestock manures, agrochemi-
cals, and industrial waste products (Alloway 2008; Belon
et al. 2012). Consequently, many topsoils display higher TE
(Cd, Zn, etc.) concentrations than background levels for their
soil type, e.g., median values range from 9 to 131 mg Zn and
from 0.06 to 0.77 mg Cd kg−1 soil DW in French agricultural
soil series (Baize et al. 2007; GIS sol 2009). Floodplain and
riverbank soils are among sites for dynamic biogeochemical
research as they largely control pollutant storage and release,
having interfaces with the atmosphere, soils, ground-, and
surface waters (Barth et al. 2009). Riverbank soils often
showed water and soil TE contaminations downstream efflux

of water treatment plants (Vystavna et al. 2012; Marchand
et al. 2014).

Physico-chemical analysis does not always provide evi-
dence of the biological actions of soil TE contamination (Zhou
et al. 2008). In addition, while providing relevant information
on geochemistry and fractionation of TE in the soil profile,
soil manipulation can disturb soil structure, enhances the sur-
face area exposed to extractants, and may distance the data
interpretation from field conditions (Beesley et al. 2010;
Moreno-Jiménez et al. 2011). Biomonitoring and bioassays,
notably with plants and stress enzyme activities (e.g., enzyme
activities involved in plant responses to stress caused by ex-
posure to TE in excess), complement the physico-chemical
analysis of environmental matrices, accounting for the subtle
biological changes in organisms affected by exogenous con-
taminants (Mench et al. 2000; Markert 2007; Marchand et al.
2011; Kolbas et al. 2013; Kumpiene et al. 2014). Plant mor-
phological traits are generally considered poorly sensitive to
fully assess potential phytotoxicity in moderately TE-
contaminated soils (Meers et al. 2006), while one additional
method would be to measure the photosynthetic performance
(Cambrollé et al. 2012).Measuring the yield of photosystem II
(PSII) chlorophyll fluorescence provides insights into the ex-
tent to which environmental stresses have damaged the pho-
tosynthetic apparatus of a plant (Maxwell and Johnson 2000).

The use of root-emerged macrophytes to biomonitor total
and soluble TE concentrations in riverbank soils is under in-
vestigations at several sites such as the Jalle d’Eysines River, a
Garonne tributary, SW of France (Bonanno 2013; Marchand
et al. 2014; Delmail 2014). Total metal concentrations in the
Jalle d’Eysines riverbank soil series were monitored by foliar
metal concentrations: for Mo in Phragmites australis (Cav.)
Trin. Ex Steud and Phalaris arundinacea L., for Cd in
P. australis and Carex riparia Ehrh. (Marchand et al. 2014).
Copper and Mo concentrations in the soil-pore water can be
monitored by respectively P. arundinacea and P. australis.

Ranunculus acris L. (R. acris or meadow buttercup,
Ranunculaceae) is a weed of old pasture and hay meadows,
widely distributed throughout Europe and considered as a
common plant species of the agricultural landscape (Schmitz
et al. 2013; Bourdot et al. 2013). It is one of the most common
species along the Jalle d’Eysines River course, where it was
used to monitor total Ni concentration in soils, showing also a
site-dependent foliar ionome (Marchand et al. 2014). It was
not clear why R. acris was biomonitoring Ni and not Cd and
Zn, which have a speciation in the soil controlled by similar
factors, i.e., pH, content, and type of soluble organic matter,
hydrous metal oxides and clay, presence of organic and inor-
ganic ligands, and competition from other metal ions.

In addition to the Jalle d’Eysines river course, R. acris was
present at the TE-contaminated Fresnes sur Escaut site, north
of France. Therefore, this pot experiment aimed at appraising
the photosystem II activity and phenotypic responses of the
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meadow buttercup to increasing soil TE contamination, with
special attention to Zn and Cd, in two soil series differing by
their soil texture. They were made using the fading technique
with either a sandy loam (A) or silty clay (B) riverbank soil
from the Jalle d’Eysines River, SW France, and a TE-
contaminated technosol (F) developed over dredged sedi-
ments of the Escaut River channel, N France. Morphological
traits, foliar ionome, and photosystem II activity of R. acris
were compared on both soil series. In the general context of
TE transfer in the soil-plant continuum, the relationships be-
tween total element concentration in the riverbank soil, the
soluble element concentration, the foliar ionome of a rooted
macrophyte, in this case R. acris, and its trait responses were
monitored. Based on such relationships, the use of R. acris for
biomonitoring TE concentrations in riverbank soils and their
soil-pore water was questioned.

Material and methods

Soil preparation and analysis

The TE-contaminated technosol F (FAOWorld Reference Ba-
se for Soil Resources, thereafter referred to soil F) was sam-
pled (0–25 cm soil layer) at the PHYTOSED Scale 1 platform
(1 ha, Fresnes-sur-Escaut, France) in February 2012. It has
developed over dredged sediments of the Escaut River chan-
nel deposited at this landfill site over the last century (Bert
et al. 2012). Pseudo-total element concentrations in the soil
F (aqua regia extraction) are reported in Table 1. For the soil F,
emergence of Brassica rapa L. (ISO 11269–2:2005) was

reduced to 80 % and its growth by 10 % after 18 days, com-
pared to an uncontaminated VDLUFA (Association of
German Agricultural Analytic and Research Institutes)
soil. In the ISO 17512-1 (2008) test with Eisenia fetida,
earthworms were, however, more attracted (18 %) by
the soil F compared to the ISO soil. In the ISO
10872:2010 test with Caenorhabditis elegans Maupas,
the nematode reproduction was inhibited by 71.5 %
compared to the VDLUFA soil (Bert et al. 2012).

Riverbank soils used to make the soil series, displaying
lower total soil TE concentrations (e.g., 16–274 mg Zn and
0.09–1.6 mg Cd kg−1 DW soil) were sampled (0–25 cm soil
layer) in February 2012 at two sites, i.e., A and B correspond-
ing to the sandy soil #2 and clay soil #4 in Marchand et al.
(2014), along the Jalle d’Eysines River, a tributary of the Ga-
ronne River located in southwest France (44° 53′ 36″ N, 00°
40′ 40″ O), north of Bordeaux. From its source to its conflu-
ence with the Garonne River, the Jalle d’Eysines River is 32-
km long. Water depth varies from 0.8 to 2.5 m annually and
average flow volume is 3 m3 s−1. Sites A and B were, respec-
tively, located at 20 and 30 km from the river’s source. Soil
texture is sandy at site A with low clay proportion
while the soil B contains more clay than sand
(Table 2, Marchand et al. 2014).

Details on the geographic position of Escault and Jalle
d’Eysines Rivers and the location of sampling points (A, B,
and F) are presented in supplementary material (S1).

Soils A, B, and F were air-dried and sieved at 5 mm prior to
their use with the fading technique. It consists in mixing con-
taminated and uncontaminated soils, preferably of the same
type, in various proportions to obtain a realistic contaminated

Table 1 Total element concentrations in the riverbank soils (n=6) at the sites A and B along the Jalle d’Eysines River and in the soil F at the
PHYTOSED Scale 1 platform, Fresne sur Escaut

Site Total element concentration in soils (mg kg−1 DW)

Cu Zn Cr Ni Co Pb Cd Mn Mo As

A 8.6±6.7 a 16.1±5.9 a 17.4±7.1 a 3.9±2.3 a 1.6±0.8 a 11.5±1.8 a 0.09±0.03 a 84.4±5a 0.27±0.21a –

B 39.8±4.4 b 274.2±52.8b 85.3±9.1 b 39.1±1.6 b 16.1±0.4 b 70.1±5.1 b 1.6±0.54 b 767±107b 0.95±0.1b –

F 110±7.2 6089±825 99.7±4.2 42.9±3.5 17±1.6 956±88.6 9.4±0.9 976±126 4±0.4 42.9±3.5

French guideline values
for dredged sediment
management

100 300 150 50 – 100 2 – – 30

Inquiry threshold values
for French soils

35 150 100 70 30 60 0.7 – – –

Al
(g kg−1)

Fe
(g kg−1)

Ca
(g kg−1)

K
(g kg−1)

Mg
(g kg−1)

Na
(g kg−1)

P
(g kg−1)

A 10.5±5.3 a 4.6±2.5 a 2.9±1.3 a 3.2±1.1 a 0.4±0.1 a 0.6±0.1a 0.08±0.03a

B 82±5.1 b 43±1.7 b 16±4.5 b 22.5±1.6 b 10.5±1.3 b 4.5±0.6b 0.18±0.06b

F 17±2 86±14 31±1.5 3.8±0.4 3±0.2 0.2±0.04 3.05

Values are means±SD. Soils A and B: total element concentrations after wet-digestion in hydrofluoric acid (NFX 31147) and analysis by ICP-AES. Soil
F: pseudo-total element concentration after aqua regia extraction and ICP-AES analysis. The different letters stand for statistical significance between the
sites A andB at the 0.05 level with Student’s T test. Values in italics exceeded both the French guideline values for dredged-sediment management (http://
www.legifrance.gouv.fr/affichTexte.do?cidTexte=JORFTEXT000000423497) and the inquiry threshold values for French soils (Baize et al. 2007).
Values for the soil F (Kidd et al. 2014). P Olsen extraction
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soil series. Here, the soil series displayed a wide range of
metal (Cd, Cu, Pb, and Zn) exposures, well distributed,
allowing to gain dose-effect relationships, upper critical TE
concentrations for plant parameters, and effective TE concen-
trations in the soil-pore water. This technique allows to better
model the field soil conditions than hydroponics (Japenga
et al. 2007). The A soil series was made by carefully mixing
(run-over-run) the soil F with the soil A in a ratio from 0:100
to 100:0 % with a 20 % gradual step. Soil samples (1 kg DW)
were placed in plastic pots (1.3 L) to prepare six treatments
(four pots/treatment) labeled from A (0 %) to F (100 %), the
percentage between brackets being the soil F proportion. Sim-
ilarly, the B soil series was made by mixing soils F and B.
Soils were watered twice a week between February and April
2012 with deionized water and maintained at 70 % of field
capacity (water holding capacity, 10 % of air-dried soil mass).
In week 10, one RhizonMOMmoisture sampler (Eijkelkamp,
The Netherlands) was inserted with a 45° angle into each
potted soil. For all soils, soil-pore waters were collected (three
times 10 mL during weeks 16 and 17 to make a 30-mL sam-
ple) and kept at 4 °C prior to TE analysis by ICP-AES (Varian
liberty 200, Germany) and ICP-MS (Thermo X series 200,
USA) at the INRA USRAVE laboratory (Villenave d’Ornon,
France). Trace element concentrations in soil-pore water along
the Jalle d’Eysines River and at the PHYTOSED Scale 1
platform were detailed by Marchand et al. (2014) and Kidd
et al. (2014), respectively. The soil-soil-pore water partition
coefficients [KdTE (L kg−1)=total soil TE concentration
(mg kg−1)/TE concentration in the soil-pore water
(mg L−1)] were calculated for three (Zn, Cd, and Cu)
out of the four TE which exceeded both the French
guideline values for dredged-sediment management and
the inquiry threshold values for French soils on the soil
series A and B. The Kd values were not calculated for

Pb since its concentrations in the soil-pore water
remained below the detection limit (<0.8 μg L−1).

Plant material

In June 2011, 50 individuals of meadow buttercup (R. acris
L.) were sampled along the Jalle d’Eysines River. Plant sam-
ples were kept separate in buckets, standardized (similar be-
lowground and aboveground volumes), and then placed in
water in a greenhouse at the Centre INRA-Bordeaux Aqui-
taine (Villenave d’Ornon, France). Individuals were thereafter
grown in separate polyethylene containers (volume, 60×40×
15 cm3) containing perlite soaked with a quarter-strength
Hoagland nutrient solution (HNS, Hoagland and Arnon,
1950): KNO3 (1.62 mM), Ca(NO3)2 (0.69 mM), NH4H2PO4

(0.25 mM), MgSO4 (0.5 mM), H3BO3 (11.53 μM), MnCl2
(2.29 μM), CuSO4·5H2O (0.08 μM), (NH4)6Mo7O24

(0.13 μM), ZnSO4·7H2O (0.19 μM) and FeSO4 (48.6 μM).
Water volume was maintained constant by adding tap water.
Water was renewed and nutrients were added every month
during the growing season and every 2 months during winter
to avoid anoxia and nutrient depletion in the growth medium.
InMarch 2012 (week 10), one standardized plant (3–5 leaves)
was transplanted into each potted soil. All pots were randomly
placed on a bench in the same greenhouse during 7 weeks
[day (9–21 h) 1911±1232 μM photons m−2 s−1, 28±5 °C,
night (21–9 h) 19±3 °C].

Chlorophyll fluorescence

Chlorophyll fluorescence was measured once a week for all
plants in a fully developed and randomly selected leaf (n=4
replicates for all soils) using a portable modulated

Table 2 Main characteristics of soils (n=6) and soil-pore waters (n=4) at the sites A and B along the Jalle d’Eysines River and at the site F of the
PHYTOSED Scale 1 platform, Fresnes sur Escaut

Soil parameters

Soils Clays (<2 μm)
(g kg−1)

Silts (2–62 μm)
(g kg−1)

Coarse sand (200–2000 μm)
(g kg−1)

C
(g kg−1)

N
(g kg−1)

OM
(g kg−1)

C/N

A 81±19 a 42±31 a 779.3±24.9 a 11.3±2.9 a 0.93±0.22 a 19.5±5.1 a 12.0±0.6 a

B 383±28 b 451±47 b 58.3±48.3 b 26.3±6.8 b 2.4±0.5 b 45.5±11.7 b 10.7±0.8 b

F 134 661 151 152 4.9 30.6 31

Soil parameters Soil-pore water

Site CEC
(cmol kg−1)

pH EC
(mS cm−1)

WHC
(%)

Eh
(mV)

pH EC
(mS cm−1)

A 5.2±1.7 a 7.5±0.3 a 0.15±0.06 a 20.1±0.7 a 288±11.7 a 7.6±0.3 a 0.77±0.3 a

B 26.7±4.6 b 7.9±0.3 a 0.47±0.03 b 24.8±1 b 264±2.1 b 7.9±0.2 a 1.06±0.2 a

F 23.5 7.2±0.3 – – – – –

Values are means±SD. The different letters stand for statistical significance between sites A and B at the 0.05 level with Student’s T test. Values for the
soil F (Kidd et al. 2014

EC electrical conductivity, WHC water holding capacity, OM organic matter
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fluorometer (Pam-2500 Waltz, Germany) during the 7-
week growth period.

In the morning, in a dark chamber, the minimal fluores-
cence level in the dark-adapted state (F0) was measured using
a modulated pulse (<0.05 μmol m−2 s−1 for 1.8 μs) which was
too small to induce significant physiological changes in the
plant. Maximal fluorescence in this state (Fm) was measured
after applying a saturating actinic light pulse of 15,
000 μmol m−2 s−1 for 0.7 s. The value of Fm was recorded
as the highest average of two consecutive points. Values of
variable fluorescence (Fv=Fm−F0) and maximum quantum
efficiency of PSII photochemistry (Fv/Fm) were calculated
from F0 and Fm. This ratio of variable to maximal fluores-
cence correlates with the number of functional PSII reaction
centers, and dark-adapted values of Fv/Fm can be used to
quantify photoinhibition (Cambrollé et al. 2012).

Growth parameters

In week 17, after measuring the survival rate (S2), plants were
harvested. The total leaf area (TLA, cm2plant−1) of each indi-
vidual was immediately measured by digital image analysis
(Epson Expression 10000XL, WINFOLIA software, Regent
Instrument, Canada). Leaf samples were then carefully
washed with tap water, rinsed with deionized water, blotted
with filter paper, placed in paper bags, and oven-dried for 48 h
at 55 °C to a constant weight. In week 18, the leaf dry weight
(DW) yield (g plant−1) was measured [n=4 replicates for all
soils except for B (0 %): n=1 survivor plant and B (80 %): n=
2 survivor plants, due to powdery mildew]. The specific leaf
area (SLA, cm2 g−1) was calculated as the ratio of the total leaf
area (TLA) over the leaf DW yield.

Mineral analysis

Dried leaf samples were ground (<1.0-mm particle size,
Retsch MM200) and stored in plastic containers (100 mL) at
room temperature, in dark conditions. For all soil treatments,
four leaf aliquots (0.5 g DW) from individual replicates were
wet digested under microwaves (180 °C, CEM Marsexpress,
USA) with 5 mL supra-pure 14 M HNO3, 2 mL 30 % (v/v)
H2O2 not stabilized by phosphates, and 1 mL Milli-Q water.
Certified reference material (BIPEA maize V463) and blank
reagents were included in all series. Macroelements and TE
concentrations in solutions were then determined by ICP-AES
(Varian liberty 200) and ICP-MS (Thermo X series 200) at the
INRA USRAVE laboratory [n=3 out of four replicates, ran-
domly selected, except n=2 for B (80 %)]. All elements were
recovered (>95 %) according to the standard values and the
standard deviation for replicates (n=3) was <5 %. All element
concentrations in plant and soil samples are presented
on DW basis.

Statistical analysis

The influence of sampling sites A and B on the main soil
characteristics and the total TE concentrations in riverbank
soils were tested using a Student’s T test. The dilution rate
effect on the foliar ionome of R. acris was assessed with a
one-way ANOVA for both the soil series A and B. A principal
component analysis (PCA) was conducted on soil-pore waters
and a second one on the foliar ionome of R. acris after a 50-
day exposure to the soil series A and B. Pearson correlation
coefficients between soil TE concentrations, soil-pore water
TE concentrations, and foliar ionome of R. acris grown on the
soil series A and B were calculated. The x,y data sets were
curve-fitted by the Excel software (Microsoft, USA) for the
Kd values of Zn, Cd, and Cu vs. the dilution rate for the soil
series A and B. The maximum efficiency of PSII (Fv/Fm) in
leaves of R. acris depending on the soil series A and B, dilu-
tion rate (%), and exposure time (weeks) were represented
using a surface response analysis. Finally, the crossed effects
of the soil series and the dilution rates after a 50-day exposure
were tested on the leaf DWyield, the TLA, and the SLA using
a two-way ANOVA. Normality and homoscedasticity of re-
siduals were met for all tests. Differences were considered
statistically significant at p<0.05. All statistical analyses were
performed using the R software (version 3.0.1, R Foundation
for Statistical Computing, Vienna, Austria).

Results

Physico-chemical analyses of soils and soil-pore waters

Total soil Cu, Cd, Fe, Mo, Pb, and Zn varied in the decreasing
order: F>B>A, while total soil Cr, Co, Ni, and Mn ranked as
F≈B>A (Table 1). All TE concentrations in the soil A were
lower than both the inquiry threshold value for French soils
(Baize et al. 2007; Table 1) and the French guideline values for
dredged-sediment management (Arrêté du 9 août 2006, Ta-
ble 1). Total soil Zn was within its common range (20–200 mg
Zn kg −1 DW, Blum et al. 2012) for both soils A and B. Total
soil Cd and Pb were within their common ranges (i.e., 0.05–
1 mg Cd and 10–30 mg Pb kg−1 DW) in the soil A, but were
slightly higher in the soil B. Total Cu, Zn, Pb, and Cd concen-
trations in the soil B exceeded the inquiry threshold values for
French soils, i.e., 2-fold for Zn and Cd, but were below French
guideline values for dredged-sediment management (Table 1).
Total soil concentrations of the other TE were within the com-
mon ranges and below both the French guideline values for
dredged sediment management and the inquiry threshold
values for French soils. Higher total soil Al, K, Mg and Na,
and extractable P in the soil B likely resulted from its higher
clay and OM contents (Tables 1 and 2). For the soil F, total soil
Cd, Cu, Pb, and Zn largely surpassed both the inquiry
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threshold values for French soils and French guideline values
for dredged-sediment management, i.e., 20-, 10-, and 5-fold
for Zn, Pb, and Cd, respectively (Table 1), and total soil As as
well for these guidelines.

Soil physico-chemical parameters at site A differed from
those at site B (Table 2). Soil texture was sandy at site Awith a
low clay content while the soil B contained more clay than
sand. Similarly the soil A had lower C, N, and OM contents
and lower CEC, EC, and WHC values than the soil B. Mean
soil pH (7.5–7.9) did not significantly differ between soils A
and B and was similar to pH value for the soil F (7.2). The soil
F texture was silty loam with an intermediate OM content
between the soil A and B values. The CEC values of soils F
and B were similar and higher than for the soil A.

Total element concentrations in the soil-pore water did not
follow the gradient of total element concentrations in soils
(Table 3, Fig. 1). For convenience, we referred to element
concentration in the soil-pore water as soluble element con-
centration throughout the paper.

Soil series A Mean values of soluble Ni, Fe, B, P, K, and As
concentrations peaked for the soil A (0%), soluble Cu andMo
ones for the soil A (20 %) but their values were similar com-
pared to A (0 %), and soluble Cr, Cd, and Zn concentrations
for the soil A (60 %) (Table 3). As the percentage of soil F
increased, soluble concentrations decreased for Na, K, P, Ni,
Mo, Mg, Fe, and As; remained steady for Al, B, Cu, Mn, and
Pb; and rapidly raised at A (20 %) to reach a plateau for Zn
(39 μg L−1) and Cd (0.3 μg L−1).

Soil series B The soil B displayed the highest soluble Na and
Mg concentrations, and they decreased thereafter as the soil F
percentage raised (Table 3). Lowest soluble concentrations
were for As, Cd, Mo, K, and Zn in the soil B (0 %) and for
Cu and Cr, respectively, in the soil B (40 %) and the soil B
(60 %). Soluble P and Fe concentrations were low at all dilu-
tion rates. Soluble Zn and Cd concentrations were the lowest
in soil B (0 and 20 %) and the highest in soil F (Table 3,
Fig. 1). Soluble Zn and Cd concentrations displayed maxi-
mum values around 22 μg Zn and 0.2 μg Cd L−1 in soil F
(Table 3). Soluble Ni concentration was the lowest for the soil
F, and soluble Al, Mn, and Pb concentrations remained below
detection limits for all soils.

PCA on the composition of the soil-pore water The first
axis (PC1, 33.4 %) corresponded to the dilution rate of the
soil series A, while the second axis (PC2, 21.3 %) matched
with the dilution rate of the soil series B. Accordingly, the soil-
pore water can be divided in three groups. Group 1 (A 0% and
A 20%) included soil-pore water with the highest B, Fe, Mn,
P, K, As, Mo, and Cu concentrations. Group 2 (B 0 to 40 %)
gathered soil-pore water with the highest Ca, Mg, and Na
concentrations, but with the lowest Cd and Zn ones. Group T
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3 (A 40 to 80%, B 60, and 80%, F) had the highest soluble Cr,
Zn, and Cd concentrations (Fig. 1).

Partition coefficients The Log KdZn values ranged from 2.8
(soil A) and 4.6 (soil B) to 5.6 L kg−1 (soil F). The Log KdCd
values varied from 2.9 (soil A) and 4.2 (soil B) to 4.7 L kg−1

(soil F). Values of the Log KdCu increased from 2.5 (soil A)
and 3.5 (soil B) to 4.4 (soil F). For Cd, Cu, and Zn, the distri-
bution of Log Kd values vs. the dilution rate was best curve-
fitted with a quartic polynomial equation for both the soil
series A and B (Fig. 2).

Foliar ionome of R. acris

No symptoms of element toxicity such as spotted necrosis and
chlorosis were visible on any R. acris leaves but four plants on
the soil B (0 %) and two plants on the soil B (80 %) suffered
from a powdery mildew attack leading to the death of three
plants for the soil B (0 %) and two for the soil B (80 %).

The foliar element concentrations did not follow the pat-
terns of total element concentrations in the soils and the soil-
pore waters (Fig. 5; Table 4). The ranges of foliar concentra-
tions (in mg kg−1 DW) were: Cd 0.1–0.3, Cu 6.5–12.7, Cr
0.4–0.8, Ni 0.4–0.7, and Pb 1.9–3.5 (Table 4). Foliar Zn con-
centrations peaked for plants cultivated on the soils A (80 %),
B (80 %), and F, i.e., 124, 115, and 112 mg kg−1, respectively.
In both soil series, foliar Al, Ca, Cu, Mg, P, K, and Na con-
centrations did not significantly depend on the dilution rate.
Foliar Mo, Pb, and Zn did not vary with the dilution rate in the
soil series A, as well as foliar Cd concentration in the soil
series B. Conversely, foliar As, B, Cd, Cr, Fe, Mn, and Zn
concentrations, respectively, peaked at 0–20, 20, 80, 80, 20–

80, 0–20–80, and 80 % in the soil series A and at 80 % for all
elements in the soil series B except for As (40 %) and Cd (no
variation with the dilution rate).

The PCA based on the foliar ionome discriminated two
groups. The first one (B 60%, A 40%, and A 60%) displayed
lower foliar Ni, Mn, Mg, Fe, Cu, Cr, and B concentrations
compared to the second group (A 0%, A 20%, A 80%, B 0%,
B 20 %, B 40 %, B 80 %, and F) (Fig. 5). Several foliar
element concentrations were correlated: Cr/As/Na/Fe/Zn,
P/K/B/Cd/Cu, and Mn/Mg/Ca/Mo.

Relationships between soil TE concentrations, soil-pore
water TE concentrations, and the foliar ionome of R. acris

The Pearson coefficient (r) between the total concentration in
the soil and the soluble concentration was significant (p<0.05)
for As, Cu, Fe, Mo, Ni, K, and Na for the soil series A and for
As, Cd, Mg, Mo, K, Na, and Zn for the soil series B. This
Pearson coefficient calculated between the total concentration
in the soil and the foliar ionome of R. acris was only signifi-
cant for Na in the soil series A and for Mg, Mn, Mo, and Na in
the soil series B. Finally, the Pearson coefficient between the
soluble element concentrations and the foliar ionome of
R. acris was significant for Mo and Na in both the soil series
A and B (Table 5).

Chlorophyll fluorescence and growth parameters

Leaves of R. acris displayed steady maximum quantum effi-
ciency of PSII (Fv/Fm) at dawn over a 50-day exposure period
for both soil series A and B (Fv/Fm ranged between 0.65 and
0.8) (Fig. 3). The leaf DW yield ranged between 0.24–0.78

 d = 2 
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 B20% 

 B40% 

 B60% 
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Fig. 1 Principal component analysis (PCA) of the soil series A and B and of the soil F accounting for Al, As, B, Cd, Ca, Cr, Cu, Fe, Mg, Mn, Mo, Ni, P,
Pb, K, Na, and Zn concentrations in the soil-pore water (PC1, 33.4 %; PC2, 21.3 %)
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and 0.01–0.4 g plant−1 for the soil series A and B, respectively
(Fig. 4). However, neither the influence of the soils A and B,
nor the dilution rate, nor their interaction was significant on this
leaf DW yield (p>0.05, Table 5). Substantial variations in leaf
DW yield between replicates at each dilution rate and for both
soil series were noted. Similarly, the mean TLA values ranged
between 40–110 and 10–80 cm−2plant−1 for both soil series A
and B, with relatively large differences between replicates and
no significant differences for the TLA according to the soil
series, the dilution rate and their interaction (Table 6, Fig. 4,
p>0.05). Conversely, the SLA was significantly lower for the
soil series A (80–120 cm−2 g−1 plant−1) compared to the soil
series B (110–220 cm−2 g−1 plant−1) (Table 6, Fig. 4, p<0.05).

Discussion

Relationships between total and soluble TE concentrations
in the soil series

The fading technique, previously used by Japenga et al.
(2007) and Kolbas et al. (2013), allowed to obtain the soil
series A and B, with a realistic gradual soil TE contamination
but differing by their soil texture. Trace element concentra-
tions of soil-pore water in the soil series A and B slightly
exceeded the As and Cu values, but not the Zn one, for an
uncontaminated soil with similar pH but slightly lower OM
content (in μg L−1: As [1–3]; Cu [2–10]; and Zn [<1–360],
Beesley and Dickinson 2010). Soluble Cr concentrations were
however similar to previous findings in uncontaminated con-
ditions (Burbridge et al., 2012; Marchand et al. 2014). Our
soluble TE concentrations are generally lower than values
reported in the soil-pore water of contaminated soils (in μg
L−1): Cu [370–1780] (Bes et al. 2010); Cu [1050] and Pb [80]
(Karami et al. 2011); Cu [168–270], Zn [57–610], and Pb
[1.25–14.9] (Kabala et al. 2014) and Moreno-Jiménez et al.
(2011). Unlike the gradient of total concentrations created by
fading the soil F with either the soil A or soil B, the soil-pore
water in both soil series generally did not display gradual
increases in soluble element concentrations in line with the
percentage of TE-contaminated soil F. Generally, soil TE
availability depends on the characteristics of particle surfaces,
e.g., organic matter (OM), oxyhydroxides of Fe, Al, and Mn
(FeMnOx), phyllosilicate minerals, carbonates, and sulphides,
their sorption properties and/or reactions with the solution in
contact. Such reactions are driven by soil physico-chemical
parameters such as pH, CEC, and the redox potential and
dissolution-precipitation reactions (Violante et al. 2008;
Moreno-Jiménez et al. 2011; Manzano et al. 2014). The clay
content, total OM content, and the CEC in our soils were in the
increasing order B>F>A, while the coarse sand content was
in the decreasing order B<F<A. The Fe/Mn (hydr)oxide con-
centrations were the highest in the soil F and the lowest in the
soil. Consequently, the CEC, total OM, clay, and Fe/Mn
(hydr)oxide contents increased in the soil series A, while they
decreased, except for Fe/Mn (hydr)oxides, in the soil series B.

The slight increase in soluble Zn/Cd in both soil series was
mainly related to the increment of total soil Zn/Cd, but only
correlated in the soil series B. The soil texture of the soil series
indeed influencedmarkedly the soluble Zn/Cd concentrations.
Their values were higher in the soil series A than in the B one,
even though the slight decrease of pH in the soil series B from
7.9 to 7.2 may in theory favor metal desorption from Fe/Mn
(hydr)oxides. This was reflected by differences in the KdZn
and KdCd modeling soluble vs. total soil Zn/Cd. Both KdZn
and KdCd, and also KdCu were higher in the soil series B,
notably at dilution rates between 0 and 20 %, suggesting that
the OM and clay contents and the hydrous Fe/Mn oxides
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Fig. 2 Calculated soil-soil-pore water partition coefficients (Log Kd) for
a Zn, b Cd, and c Cu as a function of the dilution rate on the soil series A
and B
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would more buffer soluble Zn, Cd, and Cu concentrations in
this soil series despite a significant supply of total Zn, Cd, and
Cu. Such results confirmed that the kinetically labile solid-
phase pool of metal would be key factor for plant Zn and Cd
uptake along with the labile metal in soil solution (Nolan et al.
2005). The soil and SPW pH remained roughly steady (7.2–
7.9) in both soil series, likely explaining low soluble Al, Mn,
and Pb concentrations, as these elements likely (co)precipitate
as (hydr)oxides and with phosphates and carbonates and react

with clay and OM. Soluble Ca and B concentrations remained
steady in both soil series despite contrasting soil textures and
increase in total soil Ca in line with the soil F percentage.

In the soil series A, soluble As, Fe, Ni, and Mg concentra-
tions progressively decreased despite the gradual increase of
their total soil concentrations. This occurred also for soluble
Cu and Mo concentrations but at high soil F addition rates.
Such decreases may be driven in theory by increases in soil
CEC, hydrous Fe/Mn oxides, clay, and OM contents in line

Table 5 Pearson correlation
coefficients (r) between soil TE
concentrations, soil-pore water
(SPW) TE concentrations and fo-
liar ionome of R. acris grown on
the soil series A and B

Total concentration in the
soil/concentration in the SPW

Total concentration in
the soil/foliar ionome

Concentration in the
SPW/foliar ionome

Soil series A B A B A B

Al 0.33 0.26 0.12 −0.31 −0.1 0.38

As −0.85* 0.72 −0.24 0.18 0.43 0.25

B −0.5 −0.02 −0.42 0.37 −0.08 −0.04
Cd 0.19 0.84* 0.38 −0.05 0.44 0.06

Ca 0.18 −0.31 −0.3 0.19 −0.19 −0.34
Cr 0.32 0.36 −0.05 0.04 −0.28 0.03

Cu −0.67* 0.19 0.35 −0.39 −0.25 0.02

Fe −0.85* −0.2 0.37 0.37 −0.22 0.05

Mg −0.61 0.65* −0.34 0.59* 0.37 0.49

Mn −0.54 −0.25 −0.12 −0.57* 0.18 −0.25
Mo −0.67* 0.55* 0.38 0.51* −0.58* 0.54*

Ni −0.81* −0.21 0.31 −0.27 −0.35 −0.32
P – – – – −0.05 0.04

Pb −0.29 0.2 0.11 0.2 0.07 0.1

K −0.78* 0.76* 0.33 0.01 −0.24 0.04

Na 0.83* 0.66* 0.73* 0.62* 0.75* 0.64*

Zn 0.21 0.74* 0.39 0.52 0.23 0.26

The values in italics are statistically significant (*p<0.05)
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Fig. 3 Response surface for the
maximum efficiency of PSII (Fv/
Fm) in the leaves of R. acris
depending on the soil series A and
B (between brackets), the dilution
rate (%), and exposure time
(weeks). (n=4)
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with the progressive addition of soil F. Decrease in soluble P
concentration may reflect sorption of phosphates on hydrous
Fe oxides and clay as for arsenates and molybdates. Iron and
Mn (hydr)oxides can react by sorption and co-precipitation
with cations, e.g., Zn, Cd, Cu, and Ni, and anions, e.g., arse-
nates (As(V)) (Violante et al. 2010), molybdates (Caporale
et al. 2011), and phosphates (Yan et al. 2010). Such pH-
dependent reactions may simultaneously occur with
oxyanions and cations as soil pH was near 7 in the soil series
A. Total soil Na and K were similar in the soils F and A, and
decreases in soluble Na and K concentrations may mirror the
increase in soil CEC. Metal mobilization by dissolved organic
compounds is reported for Zn, Cr, and Cu (Alvim Ferraz and
Lourenço 2000), Ni (Tipping et al. 1998; Wells et al. 1998),

and As (Kalbitz and Wennrich 1998). Due to gradual increase
in soil OM derived from the soil F, dissolved OMmight raise in
the soil-pore water, but its potential effect was not ev-
idenced here on soluble As, Ni, and Cu concentrations,
whereas soluble Cr concentration transiently increased
in the soils A (60) and A (80). Conversely, in the riv-
erbank soil series of the Jalle d’Eysines River,
displaying gradual increases in OM and clay contents
but steady soil pH, total, and soluble soil Cr concentra-
tions were negatively correlated (Marchand et al. 2014).

In the soil series B, total and soluble soil As, Cd, Mg, Mo,
Zn, Na, and K concentrations were positively correlated. For
Mo, this confirmed previous findings with the Jalle d’Eysines
riverbank soils (Marchand et al. 2014). Increased total soil Mo
as well as slightly lower OM and clay contents may explain
higher solubleMo in the soils B (80) and F. Higher hydrous Fe
oxide and clay contents in the B soil series likely explain low
and steady soluble As, Ni, Fe, and P concentrations compared
to the soil series A. Slight soluble As increase in soils B (80)
and F may be related to lower clay and OM contents. Organic
matter is able to react with arsenite and arsenate, limiting As
mobility through sorption (Goldberg 2002) and formation of
insoluble complexes (Wang and Mulligan 2006). Conversely,
dissolved organic matter (DOM) can promote As desorption
from Fe/Mn (ox)hydroxides (Bauer and Blodau 2006). In-
crease in soluble K concentration was mainly due to higher
total soil K in the soil B and, may be, to changes in soil texture
from silty clay loam to silty loam. Total soil Na and Mg were
faded in the soil series B and consequently soluble Na andMg
concentrations decreased. As soil OM and clay contents were
high in both the soils B and F, soluble Cu concentration
remained steady and lower than in the soil series A. Further
investigations on the TE speciation in the solid phases and the
soil-pore water, e.g., extended x-ray absorption fine structure
(EXAFS), μXANES imaging, and DGT, are needed to better
characterize the influence of soil texture and TE-bearing

a b c

Fig. 4 a Leaf DWyield (g), b total leaf area (cm2 plant−1), and c specific leaf area (cm2 g−1) of Ranunculus acris for the soil series A and B and a 50-day
growth period (n=4, except for B (80 %) n=2)

Table 6 Two-way ANOVA (type II) for analyzing the influence of the
soil series A and B (soil type and dilution rate as factors) after a 50-day
exposure period on leaf dry weight yield, total leaf area (TLA), and
specific leaf area (SLA) (n=4)

Df Mean sq F value p (>F)

Leaf DW yield Soil type 2 0.7 2.6 0.08

Dilution rate 4 0.4 0.7 0.61

Soil dilution rate* 4 0.8 1.5 0.21

Residuals 37 4.9

TLA Soil type 2 11,514 2.1 0.13

Dilution rate 4 14,491 1.3 0.28

Soil dilution rate* 4 15,333 1.4 0.25

Residuals 43 117,848

SLA Soil type 2 32,158 4.3 0.02

Dilution rate 4 23,484 1.6 0.07

Soil dilution rate* 4 4174 0.3 0.8

Residuals 35 130,925

The value in italics is statistically significant (*p<0.05)

Df degree of freedom, Mean Sq mean square value, p p-value
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phases on TE exposure in the studied soil series (Davison and
Zhang 2012; Grafe et al. 2014).

Relationships between the foliar ionome, morphological
traits, and indicators of soil TE exposures

The soil fading did not significantly affect the leaf DW yield,
the TLA, and the SLA of R. acris on the 50-day exposure
period for both soil series A and B. Thus, a dilution effect on
foliar TE concentrations due to changes in leaf biomass
across each soil series was unlikely. Similarly, PSII
maximum efficiency of R. acris was not impacted by
the gradual soil TE contamination. Indeed, photosystem
II activity and foliar traits of R. acris gave coinciding
responses for each soil series studied.

In plant photosynthesis, Zn is involved in the catalytic
function of the chloroplastic b-carbonic anhydrase (b-CA) en-
zyme, which rapidly inter-converts CO2 and H2O into HCO3

ions. Additionally, Zn-finger proteins regulating transcription
through site-specific interactions play a role in photosynthesis
(Yruela 2013). Under high Zn exposure, a decline in the pho-
tosynthetic function may occur (Cambrollé et al. 2012). Foliar
Zn concentrations of R. acris were in compliance with com-
mon concentrations in aboveground plant parts, i.e., 20–
100 mg kg−1 DW (Blum et al. 2012) and slightly higher than
those of this species along the Jalle d’Eysines river (37–
55 m kg−1, Marchand et al. 2014) due to a higher Zn exposure
(Fig. 5). Phytotoxicity symptoms usually become visible at
foliar Zn concentration over 300 mg kg−1 DW (Marschner
2011). Stress-enzyme activities however indicate early phyto-
toxic effect in leaf dwarf bean when 100 mg Zn kg−1 DW is
exceeded (Mench et al. 2000). This upper critical threshold

value was surpassed in R. acris from the soils A (80), B (80),
and F. Indeed, 2-week-old beans grown on the soil F showed a
slight decrease of the root biomass and increased activities of
guaiacol peroxidase, isocitrate dehydrogenase, and malic en-
zyme in primary leaves, ranking this soil as slightly phytotoxic
(JO Janssen, Hasselt University, personal communication).
Here, photosystem II activity was not affected, as well
as leaf growth parameters, and the foliar ionome did not
evidence antagonism with Zn. For both soil series A
and B, the foliar Zn concentrations of R. acris did not
reflect the total Zn concentrations in the soil and the
soil-pore water. This confirmed previous findings sug-
gesting R. acris as a Zn excluder storing more Zn in its
belowground parts (Marchand et al. 2014).

Cadmium is a non-essential element for plants, easily taken
up by roots, likely following the Zn and Fe uptake pathways
(Hassan and Aarts 2011). It is also transported through mem-
branes by the natural resistance associated macrophage pro-
tein (NRAMP) family (Pottier et al. 2014). Phytotoxic effects
of excess Cd are dose-dependent (Semane et al. 2010; Lin and
Aarts 2012; D’Alessandro et al. 2013). Foliar Cd concentra-
tions of R. acris, i.e., 0.1–0.3 mg Cd kg−1, were very low
compared to the phytotoxic range (5–700 mg kg−1, Chaney
1989), similar to those for R. acris sampled along the Jalle
d’Eysines River (0.1–0.3 mg Cd kg−1, Marchand et al. 2014),
and in line with common Cd concentrations in aerial plant
parts (0.05–0.5 mg kg−1, Blum et al. 2012). Bonanno (2013)
reported Cd concentrations in roots, stems and leaves of Typha
domingensis Pers., P. australis (Cav.) Trin. ex Steud., and
Arundo donax L. below 0.1 mg kg−1 DW, suggesting macro-
phytes act as Cd excluders. Conversely, Marchand et al.
(2014) found higher foliar Cd concentrations, e.g., up to

 d = 2 
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Fig. 5 Principal component analysis (PCA) on foliar Al, As, B, Cd, Ca, Cr, Cu, Fe, Mg, Mn, Mo, Ni, P, Pb, K, Na, and Zn concentrations of R. acris
grown on the soil series A and B (PC1, 33.9 %; PC2, 21.2 %)
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1.13 mg kg−1 in leaves of Iris pseudacorus L. The inter-
specific diversity, but also the development stage of macro-
phytes, shoot biomass, and sampling time, in line with soil
physico-chemical and microbial conditions are key factors
for foliar Cd concentrations and may explain such variations
(Wu et al. 2013). Our results confirmed the lack of relationship
between foliar Cd concentration of R. acris and soluble Cd
concentration in the soils. This plant species was likely a Cd
excluder in both soil series A and B and not a relevant bio-
monitor for both total and soluble soil Cd.

Soluble Ni concentrations in the soil series A, i.e., 2.9–
15.9 μg L−1 slightly surpassed the values for the Jalle
d’Eysines riverbank soils, i.e., 3.1–5.3 μg L−1 (Marchand
et al. 2014), but foliar Ni concentrations in this pot experiment
were at least 3-fold lower compared to those forR. acris leaves
collected along the Jalle d’Eysines riverbanks, i.e., 1.2–
3.3 mg kg−1 (Marchand et al. 2014). No correlation was found
between Ni concentrations in R. acris leaves, the soil and the
soil-pore water, which disagreed with Marchand et al. (2014).
Similarly, soluble Cu concentrations in the soil series A, i.e.,
11.1–31.2 μg L−1 were slightly higher than the values for the
Jalle d’Eysines riverbank soils, i.e., 11.1–19.6 μg L−1,
but foliar Cu concentrations of R. acris grown on the
soil series A were 2-fold lower compared to those sam-
pled on the Jalle d’Eysines riverbanks, i.e., 15.8–
16.9 mg kg−1 (Marchand et al. 2014). The lack of cor-
relation between foliar Cu concentration of R. acris and
total and soluble soil Cu in both soil series A and B
confirmed previous findings (Marchand et al. 2014).

Foliar Na concentrations of R. acris were positively corre-
lated with both total and soluble soil Na for the soil series A
and B. Similarly, foliar Mo concentrations were positively
correlated with both total and soluble soil Mo for the soil
series B, but negatively for the more sandy soil series A. A
bias resulting from the high variability of foliar concentrations
on this soil series prevented to clearly rule on the relationship
between the Mo concentration in the soil and the pore water
and the leaf Mo content. In line with Marchand et al. (2014)
reporting no significant correlation between total and soluble
soil Mo and the foliar Mo concentration of R. acris, this plant
species would not be relevant for biomonitoring Mo without
accounting for the soil type.

Even for the soil F with high TE contamination, photosys-
tem II activity and leaf morphological parameters did not in-
dicate deleterious effects on R. acris growth. This agreed with
previous findings showing nomajor adverse effects of this soil
on the abundance and diversity of the springtail communities,
no deleterious effect on the soil bacterial communities and a
vegetation cover close to 100 % in plots at the PHYTOSED
Scale 1-platform (Bert et al. 2012). Plant assays accounting for
stress-enzyme activities may however be relevant to detect
early phytotoxic effects if any in the soil series A and B
(Kumpiene et al. 2014).

Conclusions

Relationships between total TE concentrations in the soil and
soil-pore water, foliar ionome of R. acris L., its photosystem II
activity and foliar morphological traits were assessed for a
sandy (A) and a silty clay loam (B) soil series obtained by
fading a TE-contaminated technosol developed on dredged
sediments (soil F) by two riverbank soils. The TE concentra-
tions in soil-pore water of both soil series did not reflect the
gradual increase in soil TE contamination. For Zn, Cu, and
Cd, the partition coefficient Kd between the soil and the soil-
pore water was influenced by the soil series texture. Increases
in total soil TE did not affect leaf DWyield, total and specific
leaf areas, and the photosystem II activity of R. acris over a
50-day exposure period. The foliar ionome of R. acriswas not
effective for biomonitoring total and soluble element concen-
trations in both soil series A and B, except for Na. Such results
highlight that total TE concentration in the soil but also (1) the
soil texture, (2) its physico-chemical parameters, (3) TE chem-
ical speciation, and (4) the plant species strategy implemented
for facing a TE exposure are key factors when selecting a
macrophyte for biomonitoring TE exposure in a riverbank
soil. Additional parameters such as (5) the development stage
of the plant, (6) the intraspecific variability as a driver of TE
tolerance and TE transfer to aerial parts in macrophytes, (7)
the bacterial and fungal communities in the soil, and the soil-
pore water and the plants (e.g., endophytic bacteria) should be
considered in further investigations. Such set of drivers may
limit the use of rooted macrophytes as relevant biomonitors of
TE exposure.
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