
RESEARCH ARTICLE

Phytoremediation of cadmium improved with the high production
of endogenous phenolics and free proline contents in Parthenium
hysterophorus plant treated exogenously with plant growth
regulator and chelating agent
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Abstract Pot experiments were conducted to evaluate the ef-
fects of gibberellic acid (GA3) and ethylenediaminetetraacetic
acid (EDTA) on growth parameters, cadmium (Cd)
phytoextraction, total phenolics, free proline and chlorophyll
content of Parthenium hysterophorus plant grown in Cd-
contaminated (100mg/kg) soil. GA3was applied as foliar spray
(10−2, 10−4 and 10−6 M) while EDTA (40 mg/kg soil) was
added to soil as single and in split doses. Results showed de-
crease in growth parameters due to Cd stress but
P. hysterophorus plant demonstrated Cd hyperaccumulator po-
tential based on bioconcentration factor (BCF). Lower concen-
tration of GA3 (10

−6 M) showed highest significant increase in
the growth parameters while Cd concentration, accumulation
(1.97±0.11 mg/DBM) and bioconcentration (9.75±0.34) was
significantly higher in the treatment T11 (GA3 10

−2+split doses
of EDTA). Cadmium significantly increased the root free pro-
line while total phenolic concentration was significantly high in
all parts of the plant. Chlorophyll contents were significantly
reduced by Cd. GA3 showed significant increase in phenolic
and chlorophyll contents in plant. Cadmium accumulation in
plant tissues showed positive correlation with free proline (R2=
0.527, R2=0.630) and total phenolics (R2=0.554, R2=0.723) in
roots and leaves, respectively. Cd contents negatively correlat-
ed with biomass, chlorophyll and total water contents. Proline
and phenolic contents showed positive correlation with dry
biomass of plant. These findings suggest further investigation

to study the role of endogenous phenolics and proline in heavy
metal phytoremediation.
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Introduction

Cadmium is one of the toxic heavy metals of great environ-
mental concern which enters the agricultural soil mostly
through anthropogenic activities such as mining, sewage ef-
fluents, pesticides, chemical fertilizer application and industri-
al waste disposal (Singh et al. 2003; Kidd et al. 2007;
Adewole et al. 2010; Mazharia and Homaeeb 2012; Hadi
et al. 2014). From soil and water, it can easily be absorbed
and accumulated in plant tissues due to its high bioavailability
in soil and consequently reaches the human bodies through
food chain (Alkorta et al. 2004; Liu et al. 2009; Ambedkar and
Muniyan 2013). Crops cultivated in polluted soil may accu-
mulate cadmium (Cd) in different parts, i.e. roots, leaves and
fruits. Consumption of Cd-polluted plants may develop a
number of Cd-related chronic diseases such as cancer, oxida-
tive stress, tissue necrosis and impairment of the kidney and
liver (Ogawa et al. 2004; Liu et al. 2005; Simmons et al. 2005;
Åkesson et al. 2006; John et al. 2008; Kafel et al. 2014;).
Heavy metals are not biodegradable (by microorganisms and
plants) and continuously accumulate in soil, and their pres-
ence in soil (especially agricultural soil) is of great concern for
both plant and animal health (Mubeen et al. 2010; Okedeyi
et al. 2014). For clean and sustainable environment, the re-
moval of toxic heavy metals from soil and water is very im-
portant and needs the development of effective, affordable and
environment-friendly technologies. Various conventional
methods (including both chemical and physical) have been
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used for the restoration of heavy metal-contaminated soil, but
these methods are very costly and laborious and adversely
affect both the soil structure and ecosystem. The discovery
of some plants having ability to accumulate and tolerate high
concentrations of heavy metals led to the development of a
new plant-based technology, known as phytoremediation
(Reeves and Brooks 1983; Baker and Brooks 1989; Entry
et al. 1999). Phytoremediation technology is cost effective,
solar driven, aesthetically pleasing and environment friendly
(Schwitzguebel et al. 2009; Chai et al. 2012). More than 400
species of plants have been investigated for their heavy metal
phytoremediation potential, and most of these plants belong to
Arabidopsis, Brassica, Sedum and Thlaspi species (Lone et al.
2008). In the present research, Parthenium hysterophoruswas
studied at its reproductive stage for its Cd phytoextraction
potential. This plant belongs to Asteraceae family and is na-
tive species of America, which invaded Australia, India, Pa-
kistan and some parts of Africa (Parsons and Cuthbertson
1992; Dhawan and Dhawan 1996). It is a fast-growing,
stress-tolerant perennial herb, which is unpalatable to herbi-
vores, thus prevents metal entrance into food chain. In previ-
ous literature, Parthenium has been used for lead (Pb)
phytoextraction (Hadi and Bano 2009).

Plants grown on metal-contaminated soil often show slow
growth and lower biomass and accumulate lower metal con-
centration within the biomass (Persans and Salt 2000; Li et al.
2003). For efficient heavy metal phytoremediation, plant
should have high biomass and can also tolerate and accumu-
late high concentration of toxic heavy metal within their tis-
sues. Heavy metal-tolerant plants generally have lower bio-
mass or most plants showing high biomass do not show tol-
erance to heavy metals in soil. To increase biomass as well as
metal phytoextraction potential of plants, several chemical
modifications (applied to plant or added to soil/ water) have
been done by several scientists, such as the application of
hormones and metal chelators (Kamnev and Van Der Lelie
2000; Chen and Cutright 2001; Hadi and Bano 2009;
Falkowska et al. 2011). In the present experiment, a plant
hormone gibberelic acid (GA3) and a synthetic chelator ethyl-
enediaminetetraacetic acid (EDTA) were used for increasing
the Cd phytoremediation potential of the plant. GA3 enhances
plant growth and biomass while EDTA increases the metal
bioavailability in soil by forming complexes with metals
(Benjerano and Lips 1970; Broughton and McComb 1971;
Chen et al. 2004; Hadi and Bano 2009; Hadi et al. 2010).

Plant under stress conditions produce and accumulate a
variety of metabolic products including amino acids (such as
proline) and phenolic compounds (Grace and Logan 2000;
Diaz et al. 2001; Sakihama and Yamasaki 2002). Many inves-
tigators have reported accumulation of free proline under con-
ditions of salinity, drought, intense light and ultraviolet radia-
tion and heavy metals and in response to oxidative stress and
biotic stresses (Fabro et al. 2004; Choudhary et al. 2005;

Haudecoeur et al. 2009; Yang et al. 2009). Proline not only
takes part in protein synthesis but also showed a positive cor-
relation with plant stress tolerance. Proline maintains osmotic
or cell turgor pressure, reduces electrolyte leakage by stabiliz-
ing membranes and protects plant from oxidative stress by
reducing concentration of reactive oxygen species (ROS)
(Xu et al. 2009; Hayat et al. 2012). Similarly, phenolic com-
pounds are produced during heavy metal stress and act as
antioxidant and directly scavenge ROS (Michalak 2006).
ROSs can destroy lipids, DNA, proteins and chlorophyll by
producing highly reactive (nascent) oxygen (Ramadevi and
Prasad 1998). High concentrations of phenolic compound
have been reported in different plants such as wheat in re-
sponse to nickel toxicity (Diaz et al. 2001),Phaseolus vulgaris
when exposed to cadmium, Phyllanthus tenellus leaves in
response to copper sulphate (Diaz et al. 2001) and maize due
to aluminium (Winkel-shirley 2002).

The present study was carried out with objectives to eval-
uate the effect of plant growth regulator (gibberellic acid,
GA3) and a chelating agent (EDTA) either alone or in different
combinations (synergistic effect) on (1) growth and biomass
of the P. hysterophorus plant in Cd-contaminated soil; (2)
concentration of proline and phenolics in different parts of
the plant; (3) Cd absorption, its translocation into plant shoot
and accumulation in different parts of the plant; (4) effect of
Cd on contents of chlorophyll in leaves; and (5) correlation of
total phenolics and free proline with dry biomass and Cd con-
tents of plant parts.

Materials and methods

Preparation of soil and addition of cadmium

Soil was collected from fields nearby the University of
Malakand at Chakdara, Pakistan. The soil was grounded into
powdered form after drying in sunlight. Water holding capac-
ity (300 ml water/kg soil±3) and pH (6.5±0.3) of the soil was
calculated. The dried soil was then added into plastic pots
(18 cm height×15 cm diameter) at the rate of 1 kg soil/ pot.
Cadmium (100mg/kg soil) was added to each pot as cadmium
acetate dihydrate (CH3COO)2Cd·2H2O (Merck, Germany)
solution and allowed for 2 months. No cadmium was added
to the control (C) pots.

Transplantation of seedlings and plant growth

Each pot was watered a day before transplantation of plantlets.
Seedlings (P. hysterophorus plantlets) of uniform size were
selected and single plantlet was transferred into each pot.
Three replicate pots were used for each treatment and controls.
Two controls were used, one without cadmium (C) and the
other with cadmium only (C1). C and C1 were compared for
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the effect of Cd on growth. Plants were watered, at 3-day
interval. Plants were grown under natural condition of light
and temperature (35/25 °C).

Treatments used

The plants were treated as given in Table 1.

Exogenous application of GA3

Three different concentrations (10−2, 10−4 and 10−6 M) of GA3

were applied to the plants in the form of foliar spray (10 ml/
plant) in four doses (each dose at 10-day intervals). First treat-
ment was made 10 days after transplantation. Polythene bags
were used to cover soil in pots during application of GA3 so
that hormone droplets will not reach into the root zone.

EDTA addition into soil

A total of 40 mg of EDTAwas added per kilogramme soil (i.e.
single pot) in the form of aqueous solution in two different
ways, i.e. single dose of 40 mg EDTA/pot (kg soil) and in four
split doses, each of 10 mg EDTA/dose, at 10-day interval.
First treatment of EDTA (single or split dose) was made
10 days after transplantation.

Combination treatments of GA3 and EDTA

Some plants were treated with both GA3 and EDTA in combi-
nation. Three different concentrations of GA3 (10

−6, 10−4 and
10−2 M) and two different ways of EDTA (40 mg/pot) applica-
tion (single and split doses) were used in six types of different
combinations (3×2). In the combination treatments, both the
GA3 and EDTA applications were made as mentioned earlier.

Plant growth parameter analysis

Plant shoot length was measured on weekly basis. After two
and a half months from transplantation (at flowering stage),
the plants were harvested and lengths of the plants root and
shoot were measured using a centimetre ruler. Plants were

washed with a 5 mM solution of EDTA and Tris-HCl (pH
6.0) and then rinsed with distilled water to remove any
surface-bounded metal (Genrich et al. 2000). After washing,
each plant was cut into three parts, i.e. roots, stem and leaves,
and fresh biomass of each part was measured with the help of
analytical balance. The parts of each plant were packed in
separate paper envelopes and then dried in oven for 48 h at
80 °C. The dry biomass of each part was measured by analyt-
ical balance and then grinded into powdered form.

Analysis of free proline in plant root and leaves

Bates et al. (1973) method was used for the quantification of
free proline within different parts (root and leaves) of three
replicate plants. Fresh plant tissue (100 mg from each part)
was homogenized/crushed in 2-ml tubes containing 1.5 ml of
3 % sulfosalicylic acid. The homogenate was then centrifuged
for 5 min at 13,000 rpm. The supernatant (only 300 μl) was
transferred into new tube and then 2 ml each of acid ninhydrin
(containing 1.25 g of ninhydrin heated in 20 ml of phosphoric
acid (6 M) and 30 ml of glacial acetic acid until dissolved
completely) and glacial acetic acid were added to it. The mix-
ture was kept in water bath (100 °C) for 1 h. The tubes were
immediately dipped into ice after removing from water bath.
Toluene (1 ml per tube) was added to the reaction mixture and
then vigorously mixed for 10–30 s. Toluene containing chro-
mophore layer was removed from the aqueous phase with the
help of micropipette and warmed to the room temperature.
Spectrophotometer was used (250-nm wavelength) to mea-
sure the absorbance of each sample. Toluene was used as a
blank (control). The standard curve was used to calculate the
concentration of proline in samples. Three replicates were
used for each sample.

Total phenolic estimation in roots and leaves

Total phenolics were calculated in root, stem and leaves of
three replicate plants. Dried sample (200 mg each) was mixed
with 10 ml of methanol (80 %) and then shake for at least
30 min in close vessel (flask) to prevent evaporation of sol-
vent. From each extract, 2 ml was taken in separate tubes and

Table 1 Treatments done during the whole experiment

Treatment Treatment code Treatment Treatment code

Control (without Cd) C Cd+GA3 10
−6 M+EDTA 40 mg T6

Control (Cd only) C1 Cd+GA3 10
−6 M+EDTA 10 mg T7

Cd+GA3 10
−2 M T1 Cd+GA3 10

−4 M+EDTA 40 mg T8

Cd+GA3 10
−4 M T2 Cd+GA3 10

−4 M+EDTA 10 mg T9

Cd+GA3 10
−6 M T3 Cd+GA3 10

−2 M+EDTA 40 mg T10

Cd+EDTA 40 mg single dose T4 Cd+GA3 10
−2 M+EDTA 10 mg T11

Cd+EDTA 10 mg split doses T5
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centrifuged at 13,000 rpm for 3 to 5 min. Singleton and Rossi
(1965) method with slight modifications was used for analysis
of total phenolics in extract. Folin-Ciocalteau (FC) reagent
(250 μl) was mixed with 100 μl gallic acid standard solutions
or methanolic extract, and the mixture was kept in dark (at
room temperature) for 3–5 min. Then 7 % (500 μl) sodium
carbonate (Na2CO3) solution was added to the mixture, and
dH2O was used and raised the net volume up to 5 ml. The
mixture was kept in dark at room temperature for 2 h. Spec-
trophotometer was used to measure the absorbance of the
samples at 760 nm. Different standard solutions (0, 10, 30,
50, 100, 150 mg/l) of gallic acid were prepared in methanol
(80 %), and their absorbances were used as standard for mea-
suring total phenolics in each sample. Methanol solution with
a concentration of 80 % was used as blank (control). Three
replicates were used for each sample.

Chlorophyll estimation in leaves

Concentration of chlorophyll a and b was measured by using
the method of Arnon (1949). First of all, fresh leaves were
obtained from the plants (both control and treated plants).
Then 2 ml of acetone (80 %) was mixed with 200 mg of fresh
leaves and properly grinded. After grinding, the mixtures were
shifted into Ependorf tubes and then centrifuged for 5 min at
10,000 rpm. The supernatant (after centrifugation) was poured
into clean test tubes and 6 ml of acetone (80 %) was added to
it. The samples were then analysed for absorbance at 645 and
663 nm in spectrophotometer. The following formulas were
used for calculating the concentration of chlorophyll a and b:

Chlorophyll a μg=mlð Þ ¼ 12:7 A663ð Þ−2:69 A645ð Þ
Chlorophyll b μg=mlð Þ ¼ 22:9 A645ð Þ−4:68 A663ð Þ

Cd analysis in different plant parts

Oven-dried samples (root, stem and leaves) were first ground-
ed into powdered form and then subjected to acid digestion
using Allen’s (1974) method. Dried powder (0.25 g) from
each sample was taken into separate flasks (50 ml). Three-
acid mixture (6.5 ml) containing sulfuric acid, nitric acid and
perchloric acid (1, 5 and 0.5 ml, respectively) was added to
each flask. For complete digestion, each flask (sample) was
kept on electric hot plates until completely digested. The
digested samples were then filtered into another volumetric
flask (50 ml), and with the help of dH2O, the volume was
raised up to 50 ml. Each filtrate sample was then stored in
small plastic bottles. The samples were then analysed for Cd
concentration with the help of atomic absorption/flame spec-
trophotometer (model Hitachi Z-8000, Japan). Three replicate
plants per treatment were analysed for Cd content.

Statistical analysis

The data was subjected to analysis of variance (ANOVA) and
correlations between parameters. Tukey’s HSD test (p≤0.05)
was used for checking significant differences between means.
SPSS 16 and MS Excel 2007 were used.

Results

Effect of GA3 and EDTA treatments on length (root
and shoot), biomass (fresh and dry) and water contents
of P. hysterophorus plant under Cd stress

Plant length, biomass and water content were significantly
reduced by Cd addition into soil (100mgCd/kg) when control
C (without Cd) and C1 (with Cd only) were compared, except
the dry biomass (DBM) of stem and total water content
(TWC) of leaves (Table 2). The effect of all treatments (except
EDTA-treated plants T4, T5) significantly increased the root
and shoot length on Cd-contaminated soil when compared to
C1 (Cd only) (Fig. 1). The highest significant root length
(24.33±1.00 cm) and stem length (44.33±4.73 cm) was dem-
onstrated by the treatment T3 (GA3 10−6 M, foliar spray).
Fresh biomass (FBM) and TWC of root significantly in-
creased in all treatments (except T10 and T11), while FBM
of stem and leaves were significantly higher only in GA3-
alone treatments (T1, T2 and T3) as compared to C1
(Table 2). All treatments significantly increased DBM of root,
stem, leaves and entire plant, and the highest significant DBM
in roots (1.65±0.02 g), stem (2.40±0.05 g), leaves (2.40±
0.05 g) and entire plant (6.45±0.12 g) was recorded in treat-
ment T3 (Cd+GA3 10

−6 M) as given in Table 2.

Effect of different treatments of GA3 and EDTA on Cd
phytoaccumulation

Root cadmium concentration of the plant was increased sig-
nificantly in all the treatments when compared with C1 (con-
trol with Cd only), and the highest significant root Cd concen-
tration (1267.00±12.60 and 1245±16.20 ppm) was recorded
for the EDTA treatments T4 and T5, respectively (Table 3).
The treatment T11 (Cd+GA3 10

−2 M+EDTA split doses) sig-
nificantly increased the highest Cd concentration in stem and
leaf (166.33±18.00 and 570.00±23.45 ppm, respectively).
Accumulation of Cd (mg/DBM) in different parts of the plant
was high significantly in all treatments (except in T1 plant
stem) as compared to C1 (Table 3). The high significant Cd
accumulation in roots was found in GA3 and EDTA combi-
nation treatments T9, T10 and T11, respectively, 0.84±0.04,
0.86±0.03 and 0.87±0.04 mg Cd/DBM. The treatment T11
showed the highest Cd accumulation in stem (0.26±0.03 mg
Cd/DBM), leaves (0.83±0.04 mg Cd/DBM) and entire plant
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(1.97±0.11 mg Cd/DBM). The treatments showed an increase
of 4.07–9.79-fold Cd contents in roots, 1.61–3.21 in stem,
1.86–4.71 in leaves and 2.37–5.65-fold in entire plant Cd
accumulation compared to C1 as given in Table 3. The highest
increase in Cd accumulation within roots (9.79 times), stem
(3.21 times), leaves (4.71 times) and entire plant (5.65 times)
was demonstrated by the treatment T11 (Cd+GA3 10

−2 M+
EDTA split doses). The results showed that the highest Cd
accumulation percentage was found within roots followed
by leaves of the plant while the lowest Cd accumulation per-
centage was noted in the plant stem (Table 3). Cadmium
bioconcentration factor (BCF) of the plant being higher than
the one (i.e. 1.85±0.22) in the control C1 plants shows that
P. hysterophorus is a hyperaccumulator of Cd. The treatment
further increased the Cd BCF and the increase was found
statistically significant as compared to the control C1. The
highest significant Cd BCF (9.75±0.34) was demonstrated
by the treatment T11 (Cd+GA3 10

−2 M+EDTA split doses).

Effect of exogenous GA3 and EDTA on total phenolics,
free proline and chlorophyll (a/b) under Cd stress

Free proline and total phenolics in roots, stem and leaves
while chlorophyll (a/b) contents in leaves of the plant are
presented in Table 4. Cadmium added to the soil significantly
increased free proline contents in plant roots while total phe-
nolics were significantly higher in all parts (root, stem and
leaves) of the plant (comparing C with C1). Free proline in
stem increased significantly in T3 (GA3 treatment) and in
leaves of combination treatments (T10 and T11) when com-
pared with control C1 (Table 4). The total phenolics in roots
significantly increased with GA3 treatments while EDTA
treatments (T4 and T5) showed non-significant increase in
phenolics (compared to control C1) as given in Table 4. In
leaves, all the treatments showed significant increase in total

phenolics (compared to C1). The highest significant total phe-
nolic content in roots (79.00±3.94 ppm) was found in treat-
ment T7 while in stem (34.00±2.50 ppm) and leaves (156.00
±13.20 ppm), it was recorded in the treatment T11 (Table 4).
The chlorophyll (a/b) was reduced significantly in plant on
cadmium-polluted soil (comparing C with C1). The treat-
ments containing GA3 foliar spray significantly increased
chlorophyll (a/b) concentration in leaves of the plant as com-
pared to C1, except the chlorophyll a contents of T9, T10 and
T11 (where the increase is non-significant compared to C1).
EDTA-alone treatments showed significant decrease in chlo-
rophyll content as compared to C1 (Table 4).

Correlations among different parameters measured

Correlations among different parameters measured in roots of
the plant are presented in Table 5. The table shows significant-
ly positive correlations among certain parameters (length,
FBM, DBM and TWC). The correlation of root Cd concen-
tration with length (R2=−0.452), FBM (R2=−0.588), DBM
(R2=−0.674) and TWC (R2=−0.546) of the plant roots was
found negative. Cadmium concentration in roots showed
highly significant positive correlation (R2=0.661) with the
accumulation of Cd in roots. The concentration of free proline
and total phenolics in roots showed a positive significant cor-
relations (R2=0.527 and R2=0.554, respectively) with Cd ac-
cumulation, but their correlation with the concentration of Cd
in roots was non-significant. Total phenolics of roots showed
positive significant correlations with length (R2=0.728), FBM
(R2=0.537) and TWC (R2=0.590) while its correlation with
roots DBM was positive but non-significant. Proline contents
of roots demonstrated positive correlation with the growth
parameters but were non-significant. Table 6 shows positive
and significant correlations among length, FBM, DBM and
TWC of the stem, while the correlations of these parameters
with stem Cd concentration were negative. Stem Cd accumu-
lation showed negative correlations with growth parameters.
Free proline and total phenolic concentration of stem showed
positive correlation with all the parameters measured in plant
stem, but the correlations of proline concentration was statis-
tically significant only with phenolic content (R2=0.577) and
Cd accumulation (R2=0.867). The correlations of total pheno-
lics were significant with all the parameters except Cd con-
centration and accumulation in stem. Table 7 demonstrates
correlations among different parameters measured in plant
leaves. Like roots and stem, the leaves of plant showed posi-
tive significant correlations among the growth parameters
(FBM, DBM and TWC). Cadmium concentration and accu-
mulation of leaf demonstrated negative correlations with the
growth parameters. Correlation between free proline and total
phenolics of leaves was positive and significant. The correla-
tions of chlorophyll with growth parameters were positive and
were negative with Cd concentration.

Fig. 1 Effect of different treatments of GA3 and EDTA on root and shoot
length of Parthenium hysterophorus plant, in cadmium-contaminated soil
(100 mg Cd/kg soil). C (without Cd), C1 (with Cd), T1 (Cd+GA3

10−2 M), T2 (Cd+GA3 10
−4 M), T3 (Cd+GA3 10

−6 M), T4 (Cd+EDTA
40 mg), T5 (Cd+EDTA 10 mg), T6 (Cd+GA3 10

−6 M+EDTA 40 mg),
T7 (Cd+GA3 10−6 M+EDTA 10 mg), T8 (Cd+GA3 10−4 M+EDTA
40 mg), T9 (Cd+GA3 10−4 M+EDTA 10 mg), T10 (Cd+GA3

10−2 M+EDTA 40 mg), T11 (Cd+GA3 10
−2 M+EDTA 10 mg)
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Discussion

Plant growth and biomass

Plant growth and biomass have been reported to be highly
sensitive to heavy metal stress (Arun et al. 2005; Hadi and
Bano 2009; John et al. 2009; Hadi et al. 2010). Heavy metal
like cadmium in plant tissues reduces plant growth due to
toxicity (Khatamipour et al. 2011). In the present investiga-
tion, cadmium demonstrated significant reduction in growth

and biomass ofP. hysterophorus plant (comparing Cwith C1).
Decrease in growth of plants in cadmium-contaminated soil is
often observed, and this reduction in length (of root and shoot)
and biomass could be directly related to the negative effect of
heavy metal on the division of meristematic cells and on the
cell elongation and expansion (Houshmandfar andMoraghebi
2011). One of the reasons for inhibition of cell elongation
might be the effect of metals on cell wall components and
their structures (Poschenrieder et al. 1989). Present results
showed reduction in fresh biomass and consequently in the

Table 5 Correlations among different parameters measured in roots of P. hysterophorus plant

Length FBM DBM TWC Cd concentration Cd accumulation Proline Phenolics

Length Pearson correlation 1 0.945** 0.833** 0.950** −0.452 0.131 0.415 0.728**

Sig. (1-tailed) 0.001 0.001 0.001 0.070 0.343 0.090 0.004

FBM Pearson correlation 0.945** 1 0.921** 0.994** −0.588* −0.010 0.397 0.537*

Sig. (1-tailed) 0.001 0.001 0.001 0.022 0.488 0.101 0.036

DBM Pearson correlation 0.833** 0.921** 1 0.872** −0.674** −0.001 0.371 0.299

Sig. (1-tailed) 0.001 0.001 0.001 0.008 0.499 0.117 0.173

TWC Pearson correlation 0.950** 0.994** 0.872** 1 −0.546* −0.012 0.393 0.590*

Sig. (1-tailed) 0.001 0.001 0.001 0.033 0.485 0.103 0.022

Cd concentration Pearson correlation −0.452 −0.588* −0.674** −0.546* 1 0.661** 0.132 0.163

Sig. (1-tailed) 0.070 0.022 0.008 0.033 0.010 0.341 0.306

Cd accumulation Pearson correlation 0.131 −0.01 −0.001 −0.012 0.661** 1 0.527* 0.554*

Sig. (1-tailed) 0.343 0.488 0.499 0.485 0.010 0.039 0.031

Proline Pearson correlation 0.415 0.397 0.371 0.393 0.132 0.527* 1 0.423

Sig. (1-tailed) 0.090 0.101 0.117 0.103 0.341 0.039 0.085

Phenolics Pearson correlation 0.728** 0.537* 0.299 0.590* 0.163 0.554* 0.423 1

Sig. (1-tailed) 0.004 0.036 0.173 0.022 0.306 0.031 0.085

**p=0.01, correlation is significant at this level (1-tailed); *p=0.05, correlation is significant at this level (1-tailed)

Table 6 Correlations among different parameters measured in stem of P. hysterophorus plant

Length FBM DBM TWC Cd concentration Cd accumulation Proline Phenolics

Length Pearson correlation 1 0.944** 0.937** 0.941** −0.543* −0.070 0.437 0.745**

Sig. (1-tailed) 0.001 0.001 0.001 0.034 0.415 0.078 0.003

FBM Pearson correlation 0.944** 1 0.972** 0.999** −0.572* −0.132 0.333 0.771**

Sig. (1-tailed) 0.001 0.001 0.001 0.026 0.341 0.145 0.002

DBM Pearson correlation 0.937** 0.972** 1 0.964** −0.689** −0.257 0.267 0.651*

Sig. (1-tailed) 0.001 0.001 0.001 0.007 0.210 0.201 0.011

TWC Pearson correlation 0.941** 0.999** 0.964** 1 −0.553* −0.114 0.341 0.785**

Sig. (1-tailed) 0.001 0.001 0.001 0.031 0.362 0.139 0.001

Cd concentration Pearson correlation −0.543* −0.572* −0.689** −0.553* 1 0.867** 0.275 0.040

Sig. (1-tailed) 0.034 0.026 0.007 0.031 0.001 0.193 0.451

Cd accumulation Pearson correlation −0.070 −0.132 −0.257 −0.114 0.867** 1 0.577* 0.481

Sig. (1-tailed) 0.415 0.341 0.210 0.362 0.001 0.025 0.057

Proline Pearson correlation 0.437 0.333 0.267 0.341 0.275 0.577* 1 0.640*

Sig. (1-tailed) 0.078 0.145 0.201 0.139 0.193 0.025 0.013

Phenolics Pearson correlation 0.745** 0.771** 0.651* 0.785** 0.040 0.481 0.640* 1

Sig. (1-tailed) 0.003 0.002 0.011 0.001 0.451 0.057 0.013

**p=0.01, correlation is significant at this level (1-tailed); *p=0.05, correlation is significant at this level (1-tailed)
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water contents within different plant parts under cadmium
stress (comparing C with C1). Similar reduction in fresh bio-
mass under cadmium stress was reported by Zheng et al.
(2010) and Khatamipour et al. (2011) inGlycyrrhiza uralensis
plant. Cadmium has also been found to cause physiological
drought by altering water content in plant tissues (Barcelo and
Poschenriede 1990).

Addition of EDTA into the cadmium-contaminated soil
further reduced the plant growth while application of GA3

foliar spray enhanced the growth and biomass of the
P. hysterophorus plant. This decreasing effect of EDTA on
plant growth and biomass might probably be due to increase
in mobility of cadmium by EDTA in soil (Lou et al. 2007;
Epelde et al. 2008). The increase in growth and biomass might
be due to the role of GA3 in promotion of cell enlargement
(Buchanan et al. 2000) and on the rate of cell division (Moore
1989; Arteca 1996), two main processes for the increase in
growth and biomass. GA3 enhances the synthesis of DNA,
RNA and protein (Benjerano and Lips 1970; Broughton and
McComb 1971) and ribose and polyribosome multiplication
(Evins and Varner 1972) would increase biomass of a plant.
GA3 treatment also increases permeability of cell membrane
(Wood and Paleg 1974; Crozier and Turnbull 1984) that
would enhance absorption of mineral nutrients and their trans-
port and utilization (Crozier and Turnbull 1984; Aloni et al.
1986; Al-Wakeel et al. 1995; Ansari 1996; Khan et al. 1998),
thus, enhancing the capability of the GA3-treated plants for
high biomass production as demonstrated in our experiment
(Table 2). Increase in biomass due to GA3 application has
been observed in tomato (Masroor et al. 2006) and in maize
plant (Hadi et al. 2010).

Plant cadmium contents

The results showed that P. hysterophorus plant is a
hyperaccumulator of cadmium at its flowering stage obvious
from its high bioconcentration factor (1.85). GA3 and EDTA
in combination greatly increase cadmium concentration with-
in different parts of the plant. The reason might be that EDTA
increases the metal bioavailability in soil solution (Elless and
Blaylock 2000; Chen and Cutright 2001; Thayalakumaran
et al. 2003; Meers et al. 2005; Mamindy-Pajany et al. 2014;)
while the GA3 increases absorption and translocation of cad-
mium into different parts of the plant (Tassi et al. 2008; Hadi
et al. 2014).

Proline concentration

Accumulation of proline in plant tissue is often considered as
an indicator of environmental stress such as drought, salinity
and heavy metal stress. It has been found that free proline
chelates cadmium ion in plant tissues and converts them into
non-toxic complex of Cd-proline (Sharma et al. 1998). Our

results showed a strong correlation between free proline and
cadmium accumulation within different tissues of the
P. hysterophorus plant. This suggests that free proline may
play an important role in Cd accumulation and also in the
reduction of cadmium toxicity within plants. Several plants
have been reported to accumulate high concentration of free
proline under heavy metal stress such as sunflower, wheat,
tomato, milk thistle, Solanum nigrum and Vigna unguiculata
(Lalk and Dorfling 1985; Bhattacharjee and Mukherjee 1994;
Costa and Morel 1994; De and Mukherjee 1998; Zengin and
Munzuroglu 2006; Sun et al. 2007; Khatamipour et al. 2011).
Higher concentration of free proline was recorded in the roots
of P. hysterophorus plant as compared to the stem and leaves.
Similarly high root proline concentration in V. unguiculata
plant was found by Bhattacharjee and Mukherjee (1994).
GA3 treatment demonstrated high concentrations of free pro-
line, which suggest an important role of GA3 in the synthesis
of proline.

Phenolic concentration within plant tissues

Phenolic compounds play an important role in protection, res-
toration and degradation processes caused by toxic chemicals
(Rice-Evans et al. 1997). High concentration of total phenolics
has been found in different plants under various environmen-
tal stresses (Grace and Logan 2000; Lavola et al. 2000; Diaz
et al. 2001; Sakihama and Yamasaki 2002). Soluble phenolic
compounds showed important antioxidant activity and are
thus considered to be closely related to stress situations (Wild
and Schmitt 1995). Schwitzguébel et al. (2001) reported that
Scots pine accumulates high concentration of soluble pheno-
lics subjected to Cd stress. Phenolic compounds act as antiox-
idant during heavy metal stress (Michalak 2006). High con-
centration of phenolics was recorded in leaves of the
P. hysterophorus plant compared to roots and stem. Similarly
high concentration of phenolic compounds in leaves of
Crotalaria juncea was reported (Uraguchi et al. 2006).

Chlorophyll contents

Excess of cadmium in soil decreases content of chlorophyll
(Ngayila et al. 2008), its synthesis rate (Vajpayee et al. 2000),
efficiency of photosystems (Chugh et al. 1997), photosynthet-
ic enzymes (Mobin and Nafees 2007; Thapar et al. 2008) and
plant water balance and consequently reduces plant growth
and biomass (Zhou and Qiu 2005). Present results demonstrat-
ed that negative correlation existed between cadmium con-
tents of leaf and the chlorophyll contents (Table 7) which are
in agreement with earlier reports of Mobin and Nafees (2007),
Sun et al. (2008), Ekmekci et al. (2008) and Xue et al. (2014),
who found that heavy metal suppressed the photosynthetic
activity of plants. Faller et al. (2005) demonstrated that Cd2+

has inhibitory effect on the photoactivation of photosystem II
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as result of its competitive binding with the Ca2+ site. The net
photosynthetic rate has been shown to decrease conspicuously
with high concentrations of cadmium (Lakshaman and
Surinder 1999). Different physiological activities influence
the metabolization of chlorophyll in plants. The chlorophyll
a was first synthesized and transformed into chlorophyll b
(Guo et al. 2006). Present results showed higher content of
chlorophyll a in Parthenium plant as compared to the chloro-
phyll b (Table 4) and showed agreement with the findings of
Mobin and Nafees (2007).

Conclusions and recommendations

Phytoextraction capabilities of P. hysterophorus plant highly
increased at flowering stage (reproductive stage), and on bases
of its bioconcentration factor, i t is suggested as
hyperaccumulator of cadmium. GA3 increased cadmium accu-
mulation in plant. The effect of GA3 was more pronounced at
higher concentration in combination with split doses of EDTA
at low concentrations. Free proline and total phenolics signifi-
cantly increased with the increase in Cd concentration in plant
tissues, especially in the GA3-treated plants. This suggests that
GA3 has some role in the synthesis of these compounds. Pro-
line and phenolics showed positive correlation with the plant
dry biomass as well as with the Cd accumulation in different
parts of the plant. Further study is recommended to investigate
the biochemical and molecular basis of proline and phenolic
synthesis and the mechanism through which GA3 enhance
their biosynthesis in plant during Cd stress.
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