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Abstract A horizontal subsurface flow constructed wetland
(HSSF-CW) was designed to improve the water quality of an
artificial lake in Beijing Wildlife Rescue and Rehabilitation
Center, Beijing, China. Artificial neural networks (ANNs),
including multilayer perceptron (MLP) and radial basis func-
tion (RBF), were used to model the removal of total phospho-
rus (TP). Four variables were selected as the input parameters
based on the principal component analysis: the influent TP
concentration, water temperature, flow rate, and porosity. In
order to improve model accuracy, alternative ANNs were
developed by incorporating meteorological variables, in-
cluding precipitation, air humidity, evapotranspiration, so-
lar heat flux, and barometric pressure. A genetic algorithm
and cross-validation were used to find the optimal net-
work architectures for the ANNs. Comparison of the ob-
served data and the model predictions indicated that, with
careful variable selection, ANNs appeared to be an effi-
cient and robust tool for predicting TP removal in the
HSSF-CW. Comparison of the accuracy and efficiency
of MLP and RBF for predicting TP removal showed that

the RBF with additional meteorological variables pro-
duced the most accurate results, indicating a high poten-
tiality for modeling TP removal in the HSSF-CW.

Keywords Aquatic environment restoration . Horizontal
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Introduction

As the economy in China has developed, increased discharges
of nitrogen- and phosphorus-rich wastewater into water bod-
ies such as lakes, estuaries, and reservoirs have led to a great
number of ecological problems. Constructed wetlands (CWs)
are now recognized as a cost-effective ecotechnology, owing
to their many advantages, including low maintenance, their
capacity to absorb sudden increased nutrient loads, and their
low energy consumption (Kadlec and Wallace 2009). The
most common types of CWs are free water surface and
horizontal subsurface flow CWs (HSSF-CWs), both of
which have been used for the treatment of types of waste-
water such as industrial wastewater, agricultural runoff,
municipal wastewater, domestic wastewater, and
stormwater (Guo et al. 2014; Huang et al. 2015; Khan
et al. 2009; Kipasika et al. 2014; Vymazal and Biezinova
2015). However, few researches about the use of HSSF-
CWs for the restoration of waterfowl-contaminated aquatic
environment have been reported.

Contaminants in wastewater are removed by different com-
ponents, and treatment performances are related to the design
and operation of individual CWs. Complicated physical, bio-
logical, and chemical processes are responsible for the remov-
al of different kinds of contaminants in CWs. Macrophytes,
the CW substrate, water flow, and microorganisms provide the
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media for these processes. The small localized environments
of CWs, combined with various physicochemical reaction
conditions, contribute to the variation in the removal of certain
contaminants.

Currently, efforts to quantify the physicochemical interac-
tions that are related to contaminant removal processes rely
largely on explicit mathematical models. Effective models for
these processes would make the operation mechanisms more
visible and can provide scientific support for improved man-
agement of CWs. The first-order k-C* model, proposed by
Kadlec and Knight (1996), is the most commonly used model
in describing contaminant treatment processes. Many efforts
have been made to improve the accuracy of different kinetic
models, and details of several modified models, such as the
CW2D andMonodmodels, have been reported (Akhbari et al.
2012;Wynn and Liehr 2001). Incorporating additional param-
eters increases the accuracy of model predictions. However,
models may become increasingly complicated as more param-
eters are included. Meanwhile, incompatibility with the as-
sumption of the normal distribution adds constraints to the
applicability of models. Contaminant removal processes and
interactions are nonlinear (Kadlec and Knight 1996; Rousseau
et al. 2004), and datasets may not be either normally or expo-
nentially distributed. Therefore, models without data linear
correlation and certain distribution requirements have been
increasingly documented (Akratos et al. 2008; Guo et al.
2014; Song et al. 2013).

Artificial neural networks (ANNs), including multilayer
perceptron (MLP) and radial basis function (RBF), can be
used to describe complex internal relationships without any
data distribution requirements. ANNs can also effectively
solve nonlinear prediction problems with non-normal distri-
butions. To data, ANNs have been widely used to forecast
water demand in urban areas (Liu et al. 2003), to forecast daily
stream flow (Wang et al. 2006), to simulate the lake level
fluctuations (Talebizadeh and Moridnejad 2011), and to find
the deterministic factors influencing algal blooms (Wilson and
Recknagel 2001). ANN-based predictions of the effluent con-
taminant concentrations, such as chemical oxygen demand,
biochemical oxygen demand, total nitrogen, total suspended
solids, and organic matter, have also been studied (Akratos
et al. 2009; Naz et al. 2009; Pastor et al. 2003; Tomenko
et al. 2007). However, few published data are available on
the application of ANNs to simulation of total phosphorus
(TP) removal in waterfowl-contaminated aquatic environ-
ment, which places restrictions to the wide application of
HSSF-CWs.

With this in mind, the main objectives of the current study
are therefore (1) to examine whether ANNs can be used to
predict the removal of TP in a HSSF-CW used for aquatic
environment restoration, and (2) to exploit additional vari-
ables for which data are either available or easily measured
in the field to improve the TP removal.

Materials and methods

Site description

The HSSF-CW is located in Beijing Wildlife Rescue and
Rehabilitation Center, Beijing, China (Fig. 1). An artifi-
cial lake (∼1 ha surface area) that is a major habitat for
waterfowl falls inside the center. Excessive nutrient in-
puts, such as nitrogen and phosphorus mainly from the
frequent activities of waterfowl, caused eutrophication
problems in the lake. The artificial lake was built without
any water outlets or facilities for the improvement of hydrody-
namics. Besides, high-density polyethylene (HDPE)-imperme-
able membrane (tensile strength=>17 MPa, thickness=1.5–
3.0 mm, permeability coefficient=<1.0×10−13 g/(cm/s/Pa))
was used for preventing infiltration processes of the lake water
into the groundwater environment. With continuous inputs of
nutrient-enriched wastewater, the artificial lake operated with a
poor water recycling capacity.

To improve the water quality of the artificial lake, a HSSF-
CW system was constructed and has been in operation since
2008. Iris tectorum was planted at a density of 3 stems/m2.
The HSSF-CW bed was filled with gravel (5–30 mm in diam-
eter) to a depth of 0.80 m. Oxygenation processes were en-
hanced by introducing oxygen through ventilation pipes
(10 cm in diameter and 0.50 m in length). Wastewater in the
lake was pumped to the first pond, with an influent hydraulic
loading of 200 m3/day, and then flew sequentially to the sec-
ond and third ponds by gravity. Treated water at the outlet of
the third pond flew back to the lake. Plants were allowed to
grow naturally for about 2 months before sampling for water
quality. The HSSF-CW froze over and so was shut down
through winter. Dead leaves and branches of aboveground
plants were not harvested.

Sample collection and analysis

Treatment performance of the HSSF-CW system has been
monitored since August 2008. To determine the water quality,
triplicate water samples were collected at each sampling site
every 2 weeks from August 2008 to November 2012. A YSI
6-series sonde (YSI Inc., Yellow Springs, OH, USA) was used
to record information on a range of variables, including total
suspended solid, water temperature, dissolved oxygen, pH,
conductivity, and turbidity. Total nitrogen and TP concentra-
tions in 5-mL water samples were determined using a
SmartChem 200 discrete chemistry analyzer (WESTCO,
USA), following digestion with H2SO4–HClO4. Each sub-
sample was filtered through a Millipore membrane filter
(0.45 μm) and was immediately analyzed for concentrations
of phosphate, nitrate, and ammonia. Chemical oxygen de-
mand was measured using colorimetric procedures (0–
1500 mg/L; Hach Corp., Loveland, CO, USA). Water depth
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and flow velocity at each sampling location were measured by
FlowTracker (YSI Inc., Yellow Springs, OH, USA), and trip-
licate measurements were recorded. Meteorological variables,
including solar heat flux, barometric pressure, precipitation,
evapotranspiration, and humidity, were recorded hourly by
WeatherHawk (CampSci, USA). Although the samples were
analyzed for a range of contaminants, only TP values were
included in the model. The resulting physicochemical data
were summarized in Table S1.

Statistical analysis

SPSS 19.0 (IBM, USA) was used to determine the effects of
sampling dates and locations on water quality. Relationships
between TP removals and different environmental variables
were determined using SPSS 19.0.

Principal component analysis

Data standardization and extraction are crucial for function
approximations. Principal component analysis (PCA) can be
used to decrease the complexity of high-dimensional func-
tions and, therefore, could increase the accuracy of model
predictions (Jain and Dubes 1988). Using dimensional reduc-
tion, PCA orthogonalizes the components of different vari-
ables and ranks the resulting principal components in order.
As a result, components for which the greatest degree of var-
iance is explained come first, while those that contribute least
to the total variance of the dataset are eliminated.

In the present study, we used the nonlinear iterative partial
least squares iteration algorithm, which has a proven higher
accuracy than other methods (StatSoft 1998). N-fold cross-
validation was performed to maximize the chance of finding
significant relationships among different variables and to en-
sure the general validity of models. In order to eliminate issues
caused by using various scales and units for different vari-
ables, data were rescaled to [−1, 1], using a normalization
method based on the following equation (Sarle 2001):

xt ¼ 2 x − xminð Þ
xmax − xmin

−1 ð1Þ

where xt is the transformed data, and xmax and xmin are the
maximum and minimum values, respectively.

Results of the PCA indicated that variables differed in their
importance, and these variables were then considered as the
inputs for the development of ANNs according to their avail-
ability in the field.

ANN

The generalization capability of ANNs refers to the capability
of the optimized networks to choose the correct responses to
various learning samples. Topology and connection weights
of neurons are the factors that have the most influence on the
generalization capability of a neural network (Sarle 2001).
MLP and RBF, with inherent advantages and disadvantages
for each function, are the most common types of ANNs. The
RBF network, with a single hidden layer of radial neurons, is a
feedforward learning network. It can minimize the prediction
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Fig. 1 Diagram of the horizontal subsurface flow constructed wetland system
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error of outputs by modeling a Gaussian response surface for
each neuron. In addition, RBF can be trained more quickly
than MLP. However, the large number of neurons required for
the RBF fitting processes increases the dimensionality of the
input space. Therefore, both RBF and MLP were used in this
study in order to select the most suitable networks.

As the removal processes of different contaminants and the
interactions among different variables proved to be close to
the pattern of continuous functions (Reed et al. 1995), a typ-
ical three-forward neural network, which includes three layers
(input layer, hidden layer, and output layer), was used to ap-
proximate the continuous functions of the TP removal. Based
on the PCA results, the inputs for ANNs were the variables
that influenced the TP removal mostly, while the TP removal
was considered as the single output layer. The hidden layer
was set to one, and the number of neurons in the hidden layer
was determined by the Vapnik-Chervonenkis (VC) dimen-
sion. The network generalization was optimized with a lower
tolerance than a given value ε at a high degree of confidence
as follows:

ε ≤
VC

M
ln

M

VC
ð2Þ

For the neural network with a single hidden layer

VC ¼ I � H þ H � O ð3Þ
where I,H, andO are the number of neurons in the input layer,
the hidden layer, and the output layer, respectively. Training
was processed to choose a combination of M and H to make
the tolerance error smallest.

A genetic algorithm was introduced to the learning pro-
cesses in order to calculate the connection weights among
different neurons. A number of hybridizations and a constant
probability mutation were used by the genetic operator. As a
result, the neural network tended to minimize the total system
error by constantly upgrading the initial connection weights.
The activation function for the hidden layer used in this study
was the scaled conjugate gradient algorithm. As this algorithm
was independent of specified parameters and time consuming,
line searches could be avoided (Møller 1993). The algorithm
determined the minimum number of points in the weight
space by approximating the quadratic errors. By avoiding line
searching at each iteration, the speed of convergence
increased.

In order to estimate the generalization error of the different
networks, leave-one-out cross-validation was used for training
processes (Sarle 2001).Merits of the fitting processes (F) were
calculated using the following function:

F ¼
1þ α 1−

H

Hmax

� �

SSE
ð4Þ

where α is the impact coefficient for the number of neurons in
the hidden layer, and SSE represents the sum of squares for
error.

Based on hybridization of the classical gradient algorithm,
constant probability mutation operation was adopted by the
mutation operators (Krishna and Murty 1999). Datasets com-
piled for model development were randomly partitioned into
learning sets and test sets by stratified sampling. As a result,
about 70 and 30 % of the data were used for training and
testing, respectively. We only used learning sets for training
in the model development, whereas test sets were used to
assess the overall performance of ANNs.

Results and discussion

Relationships between TP removal and environmental
variables

To prepare for PCA, a correlation analysis was carried out
between candidate input variables and the coefficients were
calculated using the following equation:

r ¼
X n

i¼1
xi−xð Þ yi−yð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX n

i¼1
xi−xð Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX n

i¼1
yi−yð Þ2

q ð5Þ

where x and y are the mean values of xi and yi, respectively.
As −1 and +1 are equally important when considering

the significance of environmental variables and 0 indicates
no correlation in PCA, absolute values of the correlation
coefficients were used in the following analysis. In this
study, 330 of 582 data points were used to identify the
correlations between TP removal and different environmental
variables.

Consequently, the absolute coefficients ranged from 0 to
0.84 (Table 1). The influent TP concentration (absolute
r value=0.62, p=0.013), flow rate (absolute r value=0.84,
p=0.004), temperature (absolute r value=0.73, p=0.029),
and porosity (absolute r value=0.65, p=0.032) were strongly
correlated to TP removal. The flow rate was correlated with
water temperature, but the coefficient value was low (absolute
r value=0.28; p=0.057), indicating that these two variables
were independent. However, certain physicochemical vari-
ables, such as DO, turbidity, and conductivity, were correlat-
ed with TP removal with low absolute r values ranging from
0.39 to 0.42. The four factors of area, inlet–outlet distance,
bulk density, and porosity, were strongly correlated with each
other (absolute r=0.57–0.73, p<0.05). However, with the
exception of porosity, these variables had little impact
on TP removal. There were no significant relationships
between the meteorological variables and TP removal
(absolute r=0.01–0.20, p>0.05).
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Principal component analysis

PCAwas performed with 302 iterations and converged in the
criterion of 0.0001. Sevenfold cross-validation was used in
this study. Contributions of the estimated principal compo-
nents to the total variance were calculated (Fig. 2a). Principal
components that contributed less than 5% to the total variance
were eliminated, resulting in a three-dimensional dataset,
which explained the 91.45 % of the total variance (Fig. 2b).

The three principal components were rotated using the
varimax rotation method to facilitate interpretation. Results
indicated that the first principal component, contributing
38.29 % to the total variance, represented the influence of
the influent TP concentration, temperature, dissolved oxygen,
turbidity, and conductivity. The intercepts of the extracted
variables were 0.981, 0.977, 0.936, 0.961, and 0.929, respec-
tively. Out of these variables, the influent TP concentration
and temperature were selected as the inputs for the ANNs.
The first principal component therefore represented physico-
chemical effects.

The second principal component accounted for 32.02 % of
the total variance and primarily reflected the interaction be-
tween TP removal and wetland unit variables. The intercepts
for area, distance, soil density, and porosity were 0.926, 0.961,
0.937, and 0.980, respectively. In this study, we used porosity

as an input variable because using this variable makes it easier
to compare effects of components such as plants and sub-
strates on the removal of contaminants in future research.

The third principal component explained 21.14 % of the
total variance and was related to the flow rate and water depth.
The loadings of these two variables were 0.981 and 0.973,
respectively. Compared to water depth, the flow rate was se-
lected as an input variable based on its strong correlation with
TP removal.

As a result, the input variables, including the influent TP
concentration, temperature, porosity, and flow rate, represent-
ed physicochemical characteristics, wetland unit features, and
hydraulic dynamics and were selected for the development of
ANNs.

ANNs

In this study, two kinds of ANNs were developed. The first
kind of ANNs was developed from the four input parameters
that were extracted by PCA, as detailed above. Improved
ANNs that included meteorological variables, such as solar
heat flux, barometric pressure, precipitation, evapotranspira-
tion, and humidity, were also developed in order to grasp
seasonal effects on the TP removal.

Table 1 Pearson correlation coefficients between TP removal and different environmental variables from the HSSF-CW

Variable Physicochemical factor Hydrological factor Wetland unit factor Meteorological factor

TPi DO Turb Cnd T D Flow A Dis Den Por Sol Bar Pre ET Hum

TPi 1

DO 0.62 1

Turb 0.56 0.47 1

Cnd 0.61 0.67 0.42 1

T 0.63 0.67 0.48 0.8 1

D 0.07 0.03 0.12 0.05 0.06 1

Flow 0.55 0.44 0.36 0.39 0.28 0 1

Aera 0.08 0.02 0.07 0 0 −0.03 0.01 1

Dis 0.03 −0.04 0.13 0.06 0.02 −0.07 0.01 0.64* 1

Den −0.05 0.04 0.06 0.01 0.03 0.01 −0.07 −0.63* −0.62* 1

Por −0.01 −0.01 0.06 0.03 −0.02 −0.04 0.04 0.73* 0.63* −0.57* 1

Sol 0.27 −0.3 0.17 0.22 0.33 0 0.01 0.02 0.03 0.1 0.03 1

Bar 0.02 0.10 0 0.11 0.17 0 0 0.12 0 0.06 0.01 0.11 1

Pre 0.32 −0.27 0.26 0.19 0.15 0.12 0.1 0.03 0.01 0.02 0.07 0.19 0.01 1

ET −0.11 0.14 0 0.13 0.23 0 −0.18 0.01 0 −0.02 0.06 0.24 0.09 −0.13 1

Hum 0.03 −0.10 0.01 0.20 −0.14 0.01 0 0.05 0.01 0.07 −0.05 0.02 −0.01 0.22 0.15 1

Removal 0.62* 0.39 0.40 0.42 0.73* −0.06 0.84** 0.31 −0.12 0.2 −0.65* 0.15 0.01 −0.17 0.20 0.09

TPi influent total phosphorus concentration,DO dissolved oxygen, Turb turbidity,Cnd conductivity, Twater temperature,Dwater depth,Flow flow rate,
Dis inlet–outlet distance, Den soil density, Por porosity, Sol solar heat flux, Bar barometric pressure, Pre precipitation, ET evapotranspiration, Hum air
humidity

*p<0.05; **p<0.01
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ANNs with four input parameters

The number of neurons in the MLP input layer was set as 4,
corresponding with the PCA results. The output layer
contained a single TP removal neuron with a linear activation
function. Generally, ANNs make training easily fall into a
local minimal architecture and searching is usually limited to
a subspace of the entire structure (Murata et al. 1994). In order
to solve this problem, a genetic algorithm was incorporated
into the training processes. The genetic algorithm upgrades
the initial network weights by constant genetic mutation, so
that the networks tend to minimize the total system error
(Krishna and Murty 1999). Large learning rates produced os-
cillations in ε estimates, while small ones increased the num-
ber of epochs. In order to achieve a satisfactory level of accu-
racy, training was carried out by setting the constant training
epoch value to 1000 and the constant learning rate to 0.15
(Murata et al. 1994). As training progressed, the number of
neurons in the hidden layer was optimized, while other param-
eters were maintained constant. The performance of the MLP

functions was optimized according to the ε estimates. After
training, the ε values for each model were estimated and the
general performance of different architectures was evaluated
by averaging the individual ε estimates (Fig. 3a). As a result,
theMLP network was completely fine-tuned for 276 iterations
with a learning rate equal to 0.21. The optimal network archi-
tecture for a minimum ε value of 0.055 was 4–13–1 for the
number of neurons in the input, hidden, and output layers,
respectively.

The MLP input variables were used for RBF training. The
number of neurons in the input layer coincided with the num-
ber of input variables, and the only TP removal neuron in the
output layer was exploited by the linear activation function.
Gaussian function was used to generate output signals for the
number of neurons in the hidden layer. Using the leave-one-
out cross-validation method, the ε estimates were calculated
for each model, and the performance of the trained models for
each network architecture was tested by averaging the indi-
vidual VS ε estimates (Fig. 3a). As a result, the algorithm that
was initialized with the estimated optimal architecture con-
verged in 18 epochs and the best architecture achieved was
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4–18–1 for the number of neurons in the input, hidden, and
output layers, respectively.

Validation of the MLP and RBF networks was performed
by comparing the observed and predicted TP removals
(Fig. 4a). Quantitative statistics, including determination co-
efficients (R2) and mean absolute errors (MAEs) between the
actual and simulated outputs, were considered as indicators of
the model performance. Modeling results suggested a strong
correlation between the observed and predicted TP removals,
indicated by the high R2 values in Table 2. Model predictions
were close to the observed values when TP removal was
smaller than 0.6 g/(m2/day). TheMAEs for the networks were

somewhat lower than those reported in previous studies
(Bowes et al. 2010; Nayak et al. 2006; Steer et al. 2002). Both
of the MLP and RBF networks were underpredicted when the
removal was higher than 0.6 g/(m2/day). Most of data points
were within the range from 0.20 to 0.89 g/(m2/day), with the
exception of some outliers that may have been caused by
extreme hydraulic characteristics and temperature values. Ex-
treme meteorological variables might have also contributed to
the outliers.

Improved ANNs with meteorological variables

Previous research demonstrated that rainfall has an impact on
the evapotranspiration rate and can introduce a certain amount
of phosphorus to the local environments (Kadlec and Wallace
2009; Sharpley and Kleinman 2003). Meanwhile, metabolism
processes, which can transport rhizosphere water containing a
certain content of phosphate (0.60–1.31 g/(m2/day)) to differ-
ent organs and tissues (Kadlec and Wallace 2009), were influ-
enced by variable meteorological conditions. In this study,
five additional variables (solar heat flux, barometric pressure,
precipitation, evapotranspiration, and humidity) were intro-
duced to the development of ANNs. Even though meteoro-
logical variables and TP removal were not highly correlated,
these variables were included in order to improve the model
accuracy.

Both MLP and RBF were trained for nine input variables.
Setups for the improved ANNs were similar to those used for
the networks earlier. As a result, the optimal numbers of neu-
rons in the hidden layer for MLP and RBF were 11 and 17,
respectively (Fig. 3b). Modeling results indicated that the im-
proved ANNs (R2

LS=0.887–0.912, R
2
TS=0.739–0.801) per-

formed better than the ANNs (R2
LS=0.739–0.851, R

2
TS=

0.651–0.717) developed from the four input variables. Most
of the predictions were close to the observed values, and the
number of outliers was greatly reduced (Fig. 4b), indicating
improvedmodel performance of the improvedANNs. As both
the predictions and the input variables were averaged over
extended time periods, the fit of the RBF, with its high R2

and low MAE, was considered to be more accurate for
predicting TP removal in the HSSF-CW system. In addition,
training algorithm for the RBF network resulted in a smaller
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a ANNs with four input parameters. b ANNs with additional parameters

Table 2 Statistical parameters for
the two kinds of ANNs R2LS pLS MSELS MAELS R2TS pTS MSETS MAETS Epocha

MLP 0.739 0.004 0.055 0.049 0.651 0.013 0.093 0.060 370

RBF 0.851 0.002 0.046 0.037 0.717 0.004 0.082 0.053 45

Improved MLP 0.887 0.002 0.045 0.033 0.739 0.007 0.080 0.051 301

Improved RBF 0.912 0.000 0.037 0.016 0.801 0.004 0.057 0.029 15

R2 determination coefficient, p p value, MSE mean-squared error, MAE mean absolute error
a Number of training epochs
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number of epochs (Table 2), which is an important property of
adaptive systems (Kadlec and Wallace 2009).

Conclusions

ANNs with meteorological variables included are efficient
alternatives for modeling TP removal in the HSSF-CW sys-
tem. In this study, the improved RBF network gave good
results for TP removal. Comparison of the observed and pre-
dicted TP removals showed that it is useful to evaluate the
model performance, as by doing this, the important role of
meteorological effects was highlighted. Additional variables
should be studied in combination with interactions. Stochastic
models could be further improved by incorporating variables
related to explicit removal mechanisms for different
contaminants.
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