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Abstract The effects of sewage sludge (SS) and its derived
biochar (SSBC) on the availability and uptake of polycyclic
aromatic hydrocarbons (PAHs) and potential toxic elements
(PTEs) by Solanum lycopersicum (tomato) fruits grown in
contaminated urban soil were investigated. Increasing appli-
cation rates of SS and SSBC (2, 5, and 10 %) decreased PAH
availability and, correspondingly, PAH accumulation (22–39
and 48–62 %, respectively) into tomato. SSBC was more ef-
fective in this regard. The available concentrations of PAHs
(Σ16PAH) in the SSBC treatments were significantly reduced
(from 30.0–47.3 %) as compared to the control treatment. The
availability of high-molecular-weight PAHs (containing four
to six benzene rings) was greatly affected, while low-
molecular-weight PAHs (containing two to three benzene
rings) was less affected by SSBC amendments. The addition
of SSBC showed the least effect on bioaccumulation of

naphthalene (two-ring PAH; 24.5–32.6 %), while the highest
effect was observed for benzo(b)fluoranthene (five-ring PAH;
3.1–86.8 %) and benzo(g,h,i)perylene (six-ring PAH; 51.8–
84.2 %). In contrast, increasing application rates of SS succes-
sively increased PTE (As, Cd, Cu, Pb, and Zn) availability and
accumulation (15–139 %) into tomato while SSBC succes-
sively decreased PTE availability and accumulation (17–
91 %). Changes in accumulation varied with PTE and the
extent to which PTE concentrations in soil was elevated.
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Introduction

Application of sewage sludge (SS) can improve soil fertility
and productivity (Singh and Agrawal 2008; Roca-Pérez et al.
2009; Ahmed et al. 2010). However, it can also elevate poly-
cyclic aromatic hydrocarbon (PAH) and potential toxic ele-
ment (PTE) concentrations (EC 2001) and damage soil quality
(Singh and Agrawal 2008; Creamer et al. 2008). SS produc-
tion has increased with urbanization throughout the world. In
light of this, there is a need to increase SS safety as a soil
amendment.

SS can be converted, through pyrolysis, into SS biochar
(SSBC). SSBC has been shown to enhance soil fertility
(Khan et al. 2013a; Liu et al. 2013; Marks et al. 2014) and
crop production (Hossain et al. 2010; Jeffery et al. 2011; Khan
et al. 2013b). In addition, SSBC has been shown to reduce
mobility and uptake of both PTEs and PAHs into crops
(Méndez et al. 2012; Waqas et al. 2014; Ahmad et al. 2014;
Luo et al. 2014). This is of interest as urban soils that are often
used in food production have been reported to have elevated
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levels of PAHs (Wei et al. 2014; Cai et al. 2012) and PTEs
(Qiao et al. 2011).

The characteristics of biochar such as structure, elemental
composition, surface area, porosity, and pH play an important
role in controlling the mobility of PTEs/PAHs in amended soil
and their subsequent bioaccumulation into plants (Ahmad
et al. 2014; Luo et al. 2014; Brennan et al. 2014). These
characteristics are dependent upon biomass type and pyrolysis
temperatures used in the production of biochar (Chen et al.
2008; Cao et al. 2011; Han et al. 2013). Recent studies have
been shown that the addition of biochar to soil reduces PAH
and PTE availability and their subsequent accumulation into
plants (Jiang and Xu 2013; Beesley et al. 2013; Oleszczuk
et al. 2014).

In this research, SS and SSBC materials were used to
amend the urban soil highly contaminated with PAH and
PTE. This study aimed to assess SS and SSBC with respect
to their potential to increase crop yield while mitigating PAH
and PTE transfer from contaminated urban soil to food plants.

Materials and methods

Soil sampling and preparation of biochar

SS was air-dried and SSBC prepared through its pyrolysis
(Waqas et al. 2014). The detailed information is given in
Supporting Information (SI). PAH- and PTE-contaminated
soil (0–10 cm) was collected from an urban site in Fujian,
China. The soil used in this research was contaminated owing
to its irrigation with contaminated wastewater. The soil
contained elevated concentrations of PAHs and PTEs.
Σ16PAH (9.9 mg kg−1) and mutagenic PAHs (Σ7PAHs:
5.49 mg kg−1) exceeded the maximum permissible limits
(MPL) (4.23 mg kg−1) set by the Ministry of Environmental
Protection, China (MEP 2007). Zn (421 mg kg−1) and Cd
(1.0 mg kg−1) concentrations exceeded the MPLs
(300 mg kg−1 and 0.6 mg kg−1, respectively) set by the State
Environmental Protection Administration, China (SEPA
1995), while As (4.71 mg kg−1), Cu (44 mg kg−1), and Pb
(142 mg kg−1) concentrations were lower than their respective
MPL limits (Table 1).

Experimental design

Soil was amended with (or without) SS or SSBC materials
(<2 mm) at application rates of 2 % (SS2/SSBC2), 5 %
(SS5/SSBC5), and 10 % (SS10/SSBC10) on dry weight basis
(n=4). Soil without SS and SSBC was also included as a
control. Pots (4 kg) were irrigated with deionized water and
cultivated with the seedlings (n=2) of tomatoes (Solanum
lycopersicum). After 1 week, these seedlings were reduced
to one in each pot. The pots were kept in the control

greenhouse environment and irrigated with deionized water.
Ammonium nitrate solution (1 g per 100ml) was used twice to
fertilize the plants. Following a 72-day growing period, fresh
tomatoes were freeze-dried and stored (−20 °C).

PAH extraction and determination

Total PAHs were determined by GC-MS (Agilent
Technologies 5975C). Extracts were prepared with dichloro-
methane (DCM) and acetone (1:1 ratio) using an accelerated
solvent extraction system (ASE, Dionex-350). A hot water
(Milli Q) (200 °C) extraction (Dionex ASE) was used to as-
sess Bavailable^ PAH concentrations (Latawiec and Reid
2009). The detailed protocols are given in SI.

PTEs were determined using ICP-OES (PerkinElmer
Optima 7000 DV, USA) and ICP-MS (Agilent Technologies,
7500 CX, USA). Extracts of soil, SS, and SSBC treatments
were prepared using HNO3 and HCl mix acid extraction
(Khan et al. 2008), while tomato fruits were extracted using
HNO3 and H2O2 in a microwave accelerated reaction system
(CEMMars, V. 194A05). EDTAwas used to extract available
PTEs (see SI).

Quality control

Surrogate PAH-deuterated standards and reference materials
(PAH-Mix 9, XA20950009CY) were used to check the recov-
ery efficiency of ASE extraction and further purification pro-
cess. Satisfactory recovery was observed with an average re-
coveries ranging from 83±8 to 94±9 %. For PTE recovery,
plant (GBW07603-GSV-2) and soil (GBW07406-GSS-6)
standard reference materials (purchased from the National
Research Center for Standards, China) were included in each
batch. The PTE recovery was also satisfactory with an average
recovery ranging from 92±6 to 104±4 %. The reagent blanks
for both PAHs and PTEs were included to check their respec-
tive contamination during extraction and subsequent purifica-
tion processes.

Data analysis

SPSS 11.5 was used to statistically analyze the data.

Results and discussion

PAH/PTE in SS and SSBC

The concentration of Σ16PAHs in SS (5.78 mg kg−1) was
below the MPL (Σ9PAHs, 6 mg kg−1; CEC 2000). Pyrolysis
significantly (P≤0.01) reduced Σ16PAH concentrations in
SSBC to 1.70 mg kg−1 (Fig. S1), this value being below the
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MPL (6–20 mg kg−1) set by the International Biochar
Initiative (IBI 2012).

Biochars have shown different levels of PAHs dependent
upon the types of feedstocks and pyrolysis conditions used in
their production (Freddo et al. 2012). Longer pyrolysis time
and higher temperatures of pyrolysis have been observed to
reduce PAH concentrations in biochar (Freddo et al. 2012;
Hale et al. 2012; Wan et al. 2014). The concentrations of
PAHs in SS depend upon on the type of wastewater treated
(Dai et al. 2007). Previous studies have reported PAH concen-
trations in SS to range from 2 to 36 mg kg−1 (Baran and
Oleszczuk 2003). Thus, the SS used in the present research
had a relatively lower PAH concentration (5.8 mg kg−1).

The total concentrations of individual PAHs varied greatly
in SS and SSBC (Fig. S1). In SS materials, phenanthrene was
the dominant compound followed by benzo(b)fluoranthene,
while SSBC materials naphthalene, phenanthrene,

fluoranthene, and pyrene were dominant compounds
(Tables S1, S2, S3, and S4).

In contrast to the observed reductions in PAH concentra-
tions, pyrolysis significantly (P<0.01) increased total PTE
concentrations in SSBC (Table 1). Conversion of SS to
SSBC increased total PTE concentrations by the following
factors: As (×5.2), Cd (×1.5), Cu (×1.4), Pb (×1.3), and Zn
(×1.7). The pyrolysis process conserved PTEs and converted a
large volume of the SS into liquid fuels and gaseous emissions
(Fagbemi et al. 2001) which led to overall increases in
PTE concentrations. However, available PTE concentra-
tions were reduced (Table 1). Conversion of SS to SSBC
decreased available PTE concentrations by the following
factors: As (×21), Cd (×6.1), Cu (×8.1), Pb (×2.6), and
Zn (×6.8). These results are consistent with previous
work that also demonstrated increases in total PTE con-
centrations and decreases in their available fractions

Table 1 Physical and chemical
characteristics of SS and SSBC
along with reference values for
maximum permissible limits
(MPLs) and background
concentrations

Parameters SS SSBC Soil Max permissible limits Background
soilc

USEPAa

(sludge)
SEPAb

(soil)

pH (H2O) 6.64 7.40 7.25

EC (mS cm−1) 10.2 6.38 0.44

N (%) 3.61 2.71 0.16

C (%) 27.3 21.6 5.98

S (%) 2.44 2.11 0.08

NH4-N (mg kg−1) 39.4 12.4 9.03

NO3-N (mg kg−1) 2.71 4.03 1.31

DOCd (mg kg−1) 11063 383 431

BET Surface area (m2 g−1) 2.15 3.97 8.81

Pore volume (cm3 g−1) 0.008 0.03 0.03

Pore size (nm) 14.58 9.31 8.41

Total PTE concentrations (mg kg−1 dw)

As 2.31 11.9 4.71 75 6.3 5.88

Cd 1.53 2.32 1.01 85 0.6 0.05

Cu 171 237 43.9 4300 100 19.8

Pb 53.8 71.9 142 840 350 35.6

Zn 1105 1879 421 7500 300 79.5

∑16PAHs (μg kg−1) 5780 1701 9.9

∑7PAHs (μg kg−1) 3608 484 5.49

Available PTE concentrations (mg kg−1 dw)

As 1.07 0.05 0.23

Cd 1.03 0.17 0.39

Cu 35.3 4.35 4.32

Pb 9.02 3.41 20.3

Zn 387 56.7 30.2

a Permissible limits set for sewage sludge by the United States Environmental Protection Agency (USEPA 1995)
b Permissible limits set for soil pH >6.5 by the State Environmental Protection Administration (SEPA 1995)
c Soil background values taken from Chen et al. (1992) for Fujian province, China
dDissolved organic carbon
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following SS conversion to SSBC (Khan et al. 2014;
Waqas et al. 2014).

Influence of SS and SSBC on soil and PAH/PTE
concentrations

Table 2 summarizes the influence of SS and SSBC amend-
ments on soil basic properties and PAH/PTE concentrations.
The changes observed in soil pH, EC, DOC, and total and
available nutrients are discussed in SI.

Following SS amendment, the available concentrations
of Σ16PAH were significantly (P<0.05) reduced in the
SS10 treatment (29 %) but not in SS2 and SS5 treat-
ments (Fig. S2); while available Σ16PAH concentration
was significantly (P<0.05) reduced in all SSBC treat-
ments (30–47 %) (Tables S1, S2, S3, and S4).
Figure S2 shows that the sum of available Σ16PAH con-
centration was significantly reduced in SSBC treatments
as compared to control. The available Σ16PAH concen-
trations in the SSBC2, SSBC5, and SSBC10 treatments
were reduced by 30.0, 40.2, and 47.3 %, respectively, as
compared to the control treatment (Fig. S2). The avail-
able concentrations of PAHs (Σ16PAH) were only signif-
icantly (P<0.05) reduced (29.3 %) in the SS10 treatment
but not in SS2 and SS5 treatments (Fig. S2). The possi-
ble mechanisms involved in sorption of PAHs are given
later in BBioaccumulation of PAHs/PTEs^ section.

The greatest decrease in available PAHs was observed
in SSBC10-amended soil. The availability of PAH com-
pounds of low molecular weight (containing two to three
benzene rings) was less affected by SSBC amendment.
In contrast, high-molecular-weight PAHs (containing four
to six benzene rings) were more greatly affected. This
outcome is in keeping with the fact that higher-
molecular-weight PAHs partition more strongly with car-
bonaceous sorbents than lower-molecular-weight PAHs
(Xing and Pignatello 1996).

Following SSBC amendment, available PTE concen-
trations decreased with respect to the control soil: As
(57–65 %), Pb (14–54 %), Cu (3–46 %), and Zn (7–
17 %) (Cd availability was increased slightly (3–13 %)).
In contrast, the addition of SS significantly (P<0.001)
increased the available concentrations of PTEs (As, Cd,
Cu, and Zn) (Tables 2 and S5). As mentioned earlier,
the SS material (Table 1) had several times higher con-
centrations of selected available PTEs than SSBC,
which, upon mixing, could be released into amended
soil.

These results confirm that SS conversion to SSBC repre-
sents a promising opportunity to convert higher risk SS into
SSBC with lower concentrations of PAHs and less available
PTEs.

These results are in keeping with our previous reports
(Waqas et al. 2014; Khan et al. 2013a, 2014) and those
of others (Lehmann et al. 2011; Ahmad et al. 2012) that
have reported a decrease in available fractions of PTEs
in biochar-amended soils. Immobilization of PTEs in
biochar-amended soils has been reported to be depen-
dent on pH, DOC, EC, and functional groups of bio-
chars (Kookana et al. 2011).

Quantification of plant biomass

SSBC addition significantly (P≤0.01) increased the to-
mato yields as compared to the control treatment. The
increases in yields were counted from 31 to 52 % in
SSBC-amended soils (Fig. 1). SS addition also signifi-
cantly (P≤0.05) increased the tomato biomass as com-
pared to the control soil, but no significant difference
was observed between SS10 and SS2 treatments. The
release of high concentrations of nutrients, particularly,
NH4-N, NO3-N, and available P from SSBC and SS
into respective amended soils (Table 2) could be en-
hanced the plant growth and high fruit yield. In previ-
ous studies, the addition of biochar derived from forest
residues also increased available nutrients in soil, but no
significant difference in biomass production was ob-
served (Lucchini et al. 2014). Tomato green waste bio-
char addition into Ferrosol soil significantly increased
corn shoot biomass, while significantly decreased its
yield in Orthic Tenosol-amended soil (Smider and
Singh 2014). SS-amended soil had contained higher
available PTE concentrations as compared to SSBC-
amended soils (Tables 1 and 2); thus, the SS10 (the
highest application rate) may have caused a negative
effect on biomass yield that overcomes the gains be-
cause of increases in the nutrient concentrations in
plants. The data show that SSBC material has higher
influence over SS for enhancing tomato fruit yield.
These results indicated that SSBC had a greater influ-
ence in enhancing tomato fruit yield compared to SS.

Bioaccumulation of PAHs/PTEs

At all application rates, SSBC had greater influence than SS
addition in terms of reducing PAH accumulation in tomato
(Fig. 2). SSBC addition significantly (P<0.01) reduced
Σ16PAH (48–62 %) in tomato, while SS addition reduced
Σ16PAH by 22–39 %. The decrease in PAH bioaccumulation
of higher-molecular-weight PAHs was greater than that of
lower-molecular-weight PAHs (Fig. 2).

The reductions in bioaccumulation of individual PAH
compounds varied greatly. In SSBC2 treatment, the de-
creases in individual PAH bioaccumulation ranged from
25 to 71 %, this being higher than in the SS2 treatment
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(9–39 %). The addition of SSBC5 decreased individual
PAHs (27–81 %) to a greater extent than in the SS5
(14–50 %). In SSBC10 treatment, the highest reduction
(32–87 %) in PAH bioaccumulation was observed, while
in SS10 treatment, this reduction ranged from 22 to
66 %. Results indicated that the effect of SSBC and

SS on bioaccumulation of two- to three-benzene-ring
PAHs was less than for four- to six-benzene-ring PAH
compounds. Both SSBC and SS treatments showed the
least effect on bioaccumulation of NA (two-ring PAH),
while highest effect was observed for B(b)F (five-ring
PAH) and B(ghi)P (six-ring PAH).

Table 2 Physical and chemical
properties of soil and soil
amended with SS and SSBC
(n=4)

Parameters Control SS2 SS5 SS10 SSBC2 SSBC5 SSBC10

Basic characteristics

pH 7.25 7.19 7.13 7.01 7.27 7.30 7.36

EC (mS cm−1) 0.39 0.81 1.32 1.71 0.49 0.79 1.26

N (%) 0.14 0.77 1.85 2.68 0.18 1.37 1.55

C (%) 5.08 8.35 13.6 20.0 4.92 12.8 19.3

S (%) 0.06 0.40 1.11 1.72 0.12 1.13 2.09

NH4-N (mg kg−1) 8.93 34.2 43.2 54.2 16.2 35.3 42.4

NO3-N (mg kg−1) 1.47 44.3 23.6 13.7 100 43.2 37.1

DOC (mg kg−1) 361 1763 3989 5720 360 504.5 613

BET surface area (m2 g−1) 8.7 7.5 7.3 6.4 7.7 7.6 6.6

Pore volume (cm3 g−1) 0.02 0.02 0.02 0.02 0.02 0.02 0.02

Pore size (nm) 9.39 10.5 11.7 11.9 10.7 11.9 12.5

Available PAHs (μg kg−1 dw)

Naphthalene (NA) 141 127 120 105 111 85.1 79.9

Acenaphthylene (CAN) 30.3 24.7 22.3 20.4 19.3 18.7 17.7

Acenathphene (AC) 27.4 24.3 23 22.9 20.1 19.3 17.1

Fluorine (FL) 32.4 27 25 24 21.7 19.9 18.6

Phenanthrene (PHE) 150 145 138 127 130 120 105

Anthracene (AN) 43 32.1 26.8 27.7 28.3 24.3 22.5

Fluoranthene (FLA) 263 243 211 198 190 159 142

Pyrene (PY) 123 102 96.1 73.1 76.8 59 50

Benzo(b)anthracene (B(b)A) 37 30.8 28.8 26.2 22 20 18.1

Chrysene (CHR) 36.2 29.4 26.3 25 23 20.7 16.9

Benzo(b)fluoranthene (B(b)F) 49 40.2 36.2 34.7 25.3 23.3 20.6

Benzo(k)fluoranthene-2 (B(k)F) 48.9 40.5 34.5 21 30.6 24.6 19.1

Benzo(a)pyrene (B(a)P) 28.4 23.2 19 17.8 17.1 16.6 11.9

Indeno(1,2,3-c,d)pyrene
(I(1,2,3c-d)P)

14.3 12 8.03 6.3 7 5.9 5.3

Dibenzo(a,h)anthracene (D(a,h)A 13.0 10 9.33 8 7.4 6.3 5.3

Benzo(g,h,i)perylene (B(g,h,i)P) 12.5 9.1 7.6 5.2 6.5 6.2 5

Two-ring PAH 141 127 120 105 111 85.1 79.9

Three-ring PAH 283 253 235 222 220 202 180

Four-ring PAH 460 405 362 323 311 258 226

Five-ring PAH 126 104 89.7 73.5 73 64.5 51.7

Six-ring PAH 39.8 31 25 19.5 20.9 18.4 15.6

∑ SUM 16 PAH 1051 921 832 743 737 629 554

Available PTEs (mg kg−1 dw)

As 0.23 0.35 0.60 0.70 0.10 0.09 0.08

Cd 0.39 0.68 0.64 0.63 0.40 0.42 0.44

Cu 4.32 6.37 7.03 10.4 4.21 3.32 2.34

Pb 20.3 21.3 21.7 22.0 17.4 14.3 9.32

Zn 30.2 32.5 59.3 70.3 28.1 26.3 25.0
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The structure (porosity and surface area) and element com-
position (C, N, and S) of SSBC are very different than those of

SS (Table 1). These differences underpin the sorptive capacity
of these materials. The degree of sorption of organic com-
pounds like PAHs depends on the hydrophobic nature of the
contaminants. Similarly, biochar surface properties including
aromaticity and polarity can also play an important role in the
adsoption of organic contaminants (Chen et al. 2008). Xu
et al. (2011) reported that electrostatic attraction between bio-
chars and organic contaminants can be one of the possible
mechanisms for adsorption of organic compounds. The poros-
ity of biochar based on its elemental compositions affects the
sorption of PAHs. The high carbon content in biochar and the
lowest polarity may be linked with larger sorption sites for
PAH compounds. Basic characteristic differences such as
pH, EC, DOC, available nutrients, and interactions among
organic and inorganic co-contaminants could be acted as fac-
tors controlling the PAH sorption (Brennan et al. 2014).

The decreases in bioaccumulation of PAHs/PTEs in
tomato fruits were consistent with the findings reported
in our previous work (Waqas et al. 2014; Khan et al.
2014). Other research groups have also observed a de-
crease in As bioaccumulation in plant grown in biochar-
amended soil (Beesley et al. 2013). The lower bioaccumulations
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of PAHs and PTEs in tomato grown in SSBC-amended
soil as compared to the control and SS-amended soils
could be linked with lower available fractions of these
contaminants in SSBC-amended soil (Table 2). These
findings demonstrated that SSBC addition into contam-
inated soil can minimize the possible health risk associ-
ated with PAH and PTE bioaccumulation and magnifi-
cation into food chains.

Bioaccumulation of PTEs was significantly (P≤0.05) in-
creased in tomato grown in SS-amended soils (Fig. 3). SS10
increased PTE accumulation by As (×1.6), Cd (×2.1), Cu
(×2.2), Pb (×2.0), and Zn (×2.4) (see SI). The addition of
SSBC (all doses) significantly (P≤0.01) decreased the accu-
mulation of As, Cu, Pb, and Zn (but not Cd) in tomato (Fig. 3).
SSBC10 decreased PTE accumulation by the following

factors: As (×2.5), Cd (×1.3), Cu (×3.9), Pb (2.1), and Zn
(×3.0) (see SI).

The decreases in PTE bioaccumulation in tomato grown in
SSBC-amended soil, while increases in SS-amended soil
(Fig. 3) correspond to their availability in the respective soil
solutions (Table 2). Strong linear relationships between avail-
able metal concentrations and their bioaccumulation into to-
mato were observed for As (r2=0.915), Cu (r2=0.980), Pb
(r2=0.875), and Zn (r2=0.947) while Cd showed a weaker
relationship (r2=0.407) (Fig. 4).

Bioaccumulation factors (available PTE: accumulated
PTE) were observed to be high for As (6.3) and Cd (5.9) but
much lower for Cu (0.008), Pb (0.003), and Zn (0.002). The
smaller pore size, higher pore volume, and higher surface area
of the SSBC materials helped to reduce the mobility/
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bioavailability of PTEs. SSBC addition decreased the avail-
ability and bioaccumulation of PTEs which could be linked
with increasing pH of soil; higher availability of DOC, P, and
S; and complexion of metals and oxygen functional groups
(Lehmann and Joseph 2009; Lu et al. 2014).

PTE and regulatory limits

Cu and Pb concentrations in soil were below their MPLs
(Table 1) (SEPA 1995), and tomato Cu and Pb concentrations
never exceed food MPLs regardless of treatment (Fig. 3).
Although soil Zn concentration exceeded its MPL (Table 1)
(SEPA 2005), tomato Zn concentrations never exceed its food
MPLs (Fig. 3). The Cd concentration in soil exceeded its
MPLs, while As soil concentration did not (Table 1) (SEPA
1995). However, both As (328 μg kg−1) and Cd (260 μg kg−1

(d.w)) in tomato grown in control soil exceeded their food
MPLs (50 μg kg−1 dw and 200 μg kg−1 dw, respectively).
Increasing SS application significantly (P<0.05) increased
all PTE concentrations in tomato. In contrast, increasing
SSBC application significantly (P<0.05) decreased PTE

concentrations in tomato (Fig. 3). SS10 treatments greatly
elevated As and Cd concentrations in tomato, these concen-
trations exceeding their MPLs by factors of×100 and 2.7,
respectively. In contrast, SSBC10 treatments markedly re-
duced As and Cd concentrations in tomato, As to within a
factor of 2.5 of its food MPL and Cd to meet its food MPL
(Fig. 3).

Conclusion

In conclusion, the application of SSBC to contaminated urban
soil represented a promising means to decrease risks associat-
ed with SS application to soil, while increasing crop yield and
improving food safety.
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