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Abstract The neurological damages resulted by endosulfan
poisoning is not completely elucidated, especially in cellular
organelles such as mitochondria. In the present study, the pro-
oxidant effect of endosulfan on brain mitochondria was first
investigated. Gavages of endosulfan into rats at the dose of
2 mg/kg induced oxidative stress in this organelle since it
provokes a significant reduction of catalase (CAT), superoxide
dismutase (SOD), and glutathione (GSH) level. In addition, a
significant increase in mitochondria swelling and
malondialdehyde (MDA) levels were observed in neuronal
mitochondria, indicating clearly an intense peroxidation with-
in mitochondria. Second, the protective effect of quercetin
(QE) (10 mg/kg) against endosulfan-induced oxidative stress
in mitochondria was also assessed. Indeed, the pretreatment of
rats with QE protects brain mitochondria from oxidative
stress, lipid peroxidation, and mitochondria swelling induced
by endosulfan. The activities of antioxidant enzymes and the
mitochondrial content of GSH and MDA were returned to
control values. Thus, although endosulfan can have neurotox-
ic effects in brain rats, this toxicity can be prevented by
quercetin.
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Introduction

Endosulfan (END) is an organochlorine insecticide belonging
to the cyclodiene subgroup. This compound has been widely
used for its broad spectrum insecticide/acaricide since its
introduction in the 1950s. Exposure to endosulfan mainly
occurs through ingestion of contaminated food, but also hap-
pens via inhalation or dermal contact (WHO 2002; Silva and
Gammon 2009). This xenobiotic induces neurotoxicity in
insects by binding and blocking the Cl− channel linked to
the γ-amino-butyric acid (GABAA) receptor at synapses,
resulting in uncontrolled excitation (Silva and Beauvais
2010). Subsequently, END is a persistent organic pollutant
and has shown a large environmental ubiquity, persistence,
and toxicity (ATSDR. 2013; Sunitha et al. 2012). As a result, it
is now banned for sale and use in Europe and has been
proposed to be listed for a global ban under the Stockholm
Convention on Persistent Organic Pollutants (POPRC-4
2008). Nevertheless, endosulfan is still in use in several coun-
tries, including North Africa, where it is detected in fruits and
vegetables at 1.20 mg/kg (Zerouali et al. 2005). However,
higher levels have also been found, reaching 4 mg/kg in
tomatoes harvested in Jijel (Algeria, unpublished results).

Human organism produces oxygen free radicals and other
reactive oxygen species (ROS), as by-products through nu-
merous physiological and biochemical processes, such as
cellular metabolism (respiratory burst and enzyme reactions)
which confers free radicals to the cellular environment.
Adding to that is the human exposure to pollutants such as
polycyclic aromatic hydrocarbons and pesticides. The most
common reported cellular free radicals are superoxide (O2

·),
hydroxyl (OH·), and nitric monoxide (NO·). Even some other
molecules like hydrogen peroxide (H2O2) and peroxynitrite
(ONOO−) are not free radicals; they are reported to generate
free radicals through various chemical reactions (Halliwell
2006; Uttara et al. 2009; Kebieche et al. 2009).
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Overproduction of free radicals can cause an imbalance in
cellular redox status producing oxidative damage to biomole-
cules (lipids, proteins, and DNA). At the same time, antioxi-
dants, such as glutathione, arginine, citrulline, taurine, crea-
tine, selenium, zinc, vitamin E, vitamin C, vitamin A, and
polyphenols, help to regulate the generated ROS. The antirad-
ical system is further supported with antioxidant enzymes,
superoxide dismutase, catalase, glutathione reductase, and
glutathione peroxidase, that exert synergistic actions in re-
moving free radicals (Mytilineou et al. 2002; Uttara et al.
2009).

The brain is particularly susceptible to oxidative
stress because of its high O2 consumption, its lipid-
rich constitution, and its limited amount of antioxidant
capacity (Halliwell 2006; Ng et al. 2009). There is
substantial evidence that oxidative damage and mito-
chondrial dysfunction play a central role in different
cell death pathways, leading to either apoptosis or ne-
crosis which is the origin of neurodegenerative diseases
such as Alzheimer’s and Parkinson’s diseases (Cassarino
and Bennett 1999; Emerit et al. 2004; Uttara et al.
2009). This report describes the impact of endosulfan
on the brain mitochondria redox status and mitochon-
drial permeability transition pore (MPTP) and deter-
mines also if lipid-soluble antioxidants, such as querce-
tin (QE), are useful to protect endosulfan toxicity in
rats.

Materials and methods

Chemicals

The majority of chemicals were procured from Sigma-
Aldrich, Germany. Assay kits for enzymes were purchased
from Biomerieux, and endosulfan was purchased from
Pharmacia, St. Quentin in Yvelines, France.

Animal maintenance

Male albino Wistar rats (body weight 220–280 g), originally
from the Pasteur Institute in Algiers, Algeria, were used in
these experiments. Rats were bred in our animal facility in
stainless metallic cages. The room housing the rats was tem-
perature controlled (average of 22 1 C, 50–60 % relative
humidity) and kept under a daily 12 h light/dark cycle. Rats
were fed food and water ad libitum. Fasted rats were deprived
of food for at least 16 h, but were allowed free access to water.
Rats were adapted for 1 week before the indicated treatments.
All experimental assays were carried out in conformity with
international guidelines for the care and use of laboratory
animals.

Animal treatment protocol

The animals were grouped as follows: Group 1, control rats:
Rats were administered 1 ml of olive oil per os (p.o.) daily for
6 days. Group 2, endosulfan-treated: Rats were administered
1 ml of endosulfan at 2 mg/kg in olive oil per os (p. o.) daily
for 6 days. Group 3, preventative group: Rats were adminis-
tered 1 ml of QE (10 mg/kg)+endosulfan (2 mg/kg) in olive
oil p.o. daily for 6 days.

Preparation of mitochondria matrix fraction

Mitochondrial matrix (stroma) was prepared by applying the
method described by Fan et al. (2005) and Rustin et al. (1994).
Briefly, brains were quickly removed and washed with 0.86%
cold saline to completely drain all the red blood cells, chopped
into small pieces, and placed into ice-cold isolation buffer for
mitochondria (10 mM Tris–HCl, pH 7.4, 250 mM sucrose,
0.5 m methylene diamine tetra-acetic acid (EDTA), and 0.5 %
bovine serum albumin). After being homogenized, the ho-
mogenate was centrifuged at 750 g for 10 min. Next, the
supernatant was centrifuged at 10,000 rpm for 10 min at
4 °C. Mitochondrial pellets were washed twice with isolation
buffer and then resuspended in the same buffer solution. The
mitochondrial matrix was extracted from freshly prepared
mitochondria by freezing and defrosting with repeated ho-
mogenization in order to burst mitochondria. After centrifu-
gation at 10,000 rpm for 10 min, the supernatant was the
source of catalase (CAT), superoxide dismutase (SOD), glu-
tathione (GSH), and malondialdehyde (MDA). Protein esti-
mation was performed by the method of Lowry et al. (1951).

Biochemical evaluation of MDA, GSH, CAT, and SOD in rat
brain mitochondria

MDA levels in the mitochondria were evaluated using
the method of Ohkawa et al. (1979). MDA amounts are
expressed as nanomoles per gram of brain and were
calculated using a standard curve prepared under the
same conditions with a solution of 1, 1, 3, 3-
tetraethoxypropane that produces MDA after hydrolysis.
Levels of GSH were assessed using Ellman assay
(1959). The GSH amounts were calculated using a
standard curve of GSH and were expressed in milli-
moles per gram. Mitochondrial CAT assessment was
performed by using the method of Clairborne (1985).
This assay is based on the disappearance of H2O2 at
25 °C in the presence of mitochondrial enzyme source.
Mitochondrial Mn-SOD assessment was performed by
Beauchamp and Fridovich (1971) technique. The enzy-
matic activity was calculated in terms of international
unit per milligram of protein.
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In vitro mitochondria swelling essay

The assessment of mitochondria swelling is realized upon
mitochondrial suspension according to the method of Kristal
et al. (1996), with modification. Briefly, a mitochondrial sus-
pension is used at 1 mg/ml and incubated in total volume of
1.8 ml of breathing buffer added to 10.8 μl of succinate
(6 mM). After 1 min of incubation, 18 μl of different concen-
trations of endosulfan (0–200 to 300–400 μM), associated or
not with QE (200 μM), is added to induce mitochondria
swelling. A decrease of the absorbance at 540 nm ismonitored
by spectrophotometry (UV–vis mini 1240 spectrophotometer
SHIMADZU, China) every minute during 5 min.

Statistical analysis

The numerical and graphical results are presented as mean±
standard error (SE). The significance of the difference be-
tween two treatment groups was verified by the Student’s t
test. The degree of statistical significance was set at a level of
P<0.05. Statistical calculations were carried out using the
Statviews 4.5 statistical package (Abacus Concept, Int.) and
the Excel 6.0 (Microsoft, Inc.).

Results

Assessment of in vivo lipid peroxidation in brain
mitochondria

Levels of MDA, the last product of lipid peroxidation caused
by oxidative stress, were assessed in brain mitochondria of
different groups of rats. MDA values were significantly in-
creased (P<0.01) in brain mitochondria (0.185±0.015 nM/g)

in the endosulfan-treated group compared to the normal con-
trol (0.109±0.009 nM/g). However, no significant difference
was recorded between the normal group and the preventive
group (0.113±0.010 nM/g) (Fig. 1).

Assessment of antioxidant enzymes in brain mitochondria,
CAT, and Cu/Zn-SOD

The administration of endosulfan caused a highly significant
(P<0.001) decrease of CAT and Cu/Zn-SOD (1.270±0.66
and 140.637±19.184 IU/mg), respectively, in rats when com-
pared to the control group (2.018±0.083 and 335.307±
19.184 IU/mg) successively. On the other hand, the protective
treatment of animals with QE (10 mg/kg) and endosulfan
normalized clearly the cellular content of these antioxidant
enzymes in brain mitochondria (1.819±0.015 and 290.835±
18.998 IU/mg) in order compared to the levels contained in
normal controls (Figs. 2 and 3).

GSH evaluation

The GSH-reduced levels were significantly decreased
(P<0.01) in brain mitochondria (0.088±0.09 mM/g) com-
pared to the control group (0.475±0.029 mM/g). At the same
time, there was no different between normal group and pre-
ventive group (0.433±0.074 mM/g) (Fig. 4).

Mitochondria swelling essay

This in vivo essay showed a proportional relationship between
elevation of mitochondria swelling and endosulfan concentra-
tions (Fig. 5) with strong correlation (r=0.98). By contrast,
when endosulfan (200 μM) is associated with quercetin

Fig. 1 Effect of endosulfan
treatment on brain
mitochondria level of MDA in
rats and protective role of QE.
Values are mean±SE (n=5).
**P<0.01 as compared to
normal control
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(200 μM) in the same tube, mitochondria swelling was very
low and reduced by half (56 %) (Fig. 6).

Discussion

The objective of the current study was planned with an aim to
investigate the effect of acute endosulfan exposure on homeo-
stasis redox in rat brain mitochondria, oxidative stress gener-
ation, and its implication in lipid peroxidation and mitochon-
drial swelling. GSH depletion can enhance oxidative stress
and may also increase the levels of excitotoxic molecules;
both types of action can initiate cell death in distinct neuronal
populations (Jaswinder and Christopher 1997; Uttara et al.
2009). In the present study, the mitochondrial preparation
from the rat brain treated with endosulfan demonstrated sig-
nificant decrease in mitochondria GSH uptake, and on the

other hand, mitochondrial GSH was increased when the ani-
mals were treated preventatively with QE. This result may be
due to de novo GSH synthesis or GSH regeneration following
ROS neutralization by the phenolic compound. In this study,
because of their high reactivity and short life, the ROS has
been analyzed indirectly in vivo by measuring the changes in
antioxidases including SOD and CAT. Reduced activity of
SOD and CAT was observed in mitochondria when endosul-
fan was administered to rats. This abnormality in the rate of
different antioxidants might be the result of intense ROS
generation induced by endosulfan administration in brain
mitochondria, which in turn might cause an increase in
malondialdehyde, as a result of enhanced lipid peroxidation
(Silva and Beauvais 2009). Thus, environmental toxicants can
directly attack the mitochondria, inducing the generation of
ROS, which can further induce the depletion of antioxidant
defenses and mediate other oxido-reduction reactions that
promote mitochondrial damage, ROS formation, and

Fig. 3 Effect of endosulfan
treatment on brain mitochondria
level of SOD in rats and
preventive role of QE. Values are
mean±SE (n=5). ***P<0.001 as
compared to normal control

Fig. 2 Effect of endosulfan
treatment on brain mitochondria
level of CAT in rats and
preventive role of QE. Values are
mean±SE (n=5). **P<0.01,
*P<0.05 as compared to normal
control
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depletion of antioxidant molecules in the cell (Kaur et al.
2007; Ahmed et al. 2008; Franco et al. 2009). In mitochon-
dria, lipid peroxidation impairs its metabolism and causes
induction of the mitochondrial pore transition permeability
(MPTP). Indeed, the results of the present study showed
increase mitochondria swelling in rats that received endosul-
fan only, probably was induced by MPTP induction. Several
authors have reported that apoptosis induced by environmen-
tal toxicants is widely associated with alterations in homeo-
stasis redox which include both the depletion of antioxidant
defenses such as GSH, SOD, and CAT and the increase
accumulation of ROS which exerts a direct damage upon
brain mitochondria (Shi et al. 2004; Assefa et al. 2005).
Previous studies have showed that there is a link between
GSH level and oxygen radical production and mitochondrial
damage because of the scavenging activity of this tripeptide
against accumulation of ROS and its decrease in the brains of
parkinsonian patients (DiMonte et al. 1992; Sechi et al. 1996).
The results of other studies have also shown that depletion of
GSH contributes to neuronal degeneration (Merad-Boudia
et al. 1998; Franco et al. 2009). Furthermore, this study was

designed to elucidate whether quercetin can protect the brain
against oxidative stress and avoid deficits of brain mitochon-
dria. Indeed, the treatment of END-treated animals with QE
has maintained normal content of GSH, SOD, and MDA in
brain mitochondria and normalized lipid peroxidation that
keeps mitochondrial integrity intact despite the apparent neu-
rotoxicity in rats treated only with endosulfan. Previous stud-
ies have reported that QE has a powerful antioxidant and
cytoprotective effects when it is used to prevent endothelial
apoptosis caused by oxidants (Choi et al. 2003) and oxidative
stress induced by alloxan in rat pancreas (Kebieche et al.
2011). QE is a more effective antioxidant nutrient than other
antioxidants such as vitamin C, vitamin E, and β-carotene,
and it can chelate ions of transitionmetals, including iron, thus
preventing the Fenton reaction (Rice-Evans et al. 1995; Ferrali
et al. 2000).

In conclusion, this is in vivo experiment to demonstrate
that endosulfan has oxidative stress and mitochondria swell-
ing effect in experimental animals. Also, this study has
showed that QE can be cytoprotective agent against the dam-
age following endosulfan brain injury in rats. However,

Fig. 4 Effect of endosulfan
treatment on brain mitochondria
level of GSH in rats and
preventive role of QE. Values are
mean±SE (n=5). **P<0.01 as
compared to normal control

Fig. 5 Effect of endosulfan on brain mitochondria swelling according to
its concentration. Optical density values are the mean of three consecutive
measurements

Fig. 6 Preventive effect of quercetin (median tube) associated to
endosulfan treatment on brain mitochondria swelling in rats. Optical
density values are the mean of three consecutive measurements
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further investigations are essential to elucidate the precise
mechanisms of endosulfan injury upon brain cells and if there
is an obvious possibility to be excitotoxic molecule. Recently,
much attention has been focused on the protective biochem-
ical functions of naturally occurring antioxidants such as
flavonoids to prevent neurodegenerative diseases in men. It
would be interesting, thus, to determine the mechanism by
which QE protects brain mitochondria against ROS and nor-
malizes its swelling and regulates MPTP opening to prevent
the incidence of neurodegenerative diseases in the general
population.
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