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Abstract Poor water quality is a serious problem in the world
which threatens human health, ecosystems, and plant/animal
life. Prediction of surface water quality is a main concern in
water resource and environmental systems. In this research,
the support vector machine and two methods of artificial
neural networks (ANNs), namely feed forward back propaga-
tion (FFBP) and radial basis function (RBF), were used to
predict the water quality index (WQI) in a free constructed
wetland. Seventeen points of the wetland were monitored
twice a month over a period of 14 months, and an extensive
dataset was collected for 11 water quality variables. A detailed
comparison of the overall performance showed that prediction
of the support vector machine (SVM) model with coefficient
of correlation (R2)=0.9984 and mean absolute error (MAE)=
0.0052 was either better or comparable with neural networks.
This research highlights that the SVM and FFBP can be
successfully employed for the prediction of water quality in
a free surface constructed wetland environment. These
methods simplify the calculation of the WQI and reduce
substantial efforts and time by optimizing the computations.
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Introduction

Municipal and industrial wastewaters from human activities
are the major factors that contribute to the deterioration of
water quality in urban areas. Water quality (WQ) can be used
to assess the water properties in reference to human health and
natural quality effects. The poor quality of surface water
is a serious problem in the world which threatens hu-
man health, ecosystems, and plant/animal life.
Consequently, water quality analysis has become a main
concern in water resource and environmental systems
(Espejo et al. 2012; Vanlandeghem et al. 2012; Zhang
et al. 2013a, b; Wang et al. 2012). In terms of environ-
mental and ecological problems, the number of water
quality parameters is quite extensive. Hence, a robust
mathematical technique is required to combine the phys-
icochemical characterization of water into a single var-
iable which describes the water quality. A water quality
index (WQI) is a single number which uses a set of
physicochemical water parameters to express the quality
of water at a certain place and time.

In 1974, the Department of Environment of Malaysia
(DoE) recommended the WQI parameter for categorizing
and estimating water quality. Based on this parameter, the
water quality was classified into five different classes accord-
ing to the water’s suitability for various uses such as water
supplies, irrigation, and fish culture. The conventional method
suggested by DoE requires lengthy transformations to esti-
mate subindices. In addition, the subindices required the in-
clusion of different equations, which need lengthy effort and
time to calculate the final WQI. Therefore, estimation of
such a WQI is cumbersome and can lead to occasional
mistakes. However, the support vector machine (SVM)
and artificial neural networks (ANNs) can be suggested
as alternatives for estimation of WQI, as both employ
the raw data instead of subindices.
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The performance of free surface wetlands to enhance water
quality and reduce a wide range of wastewater was reported in
several studies (Zedler and Kercher 2005; Vymazal 2011;
Zhang et al. 2012; Wang et al. 2012; Shih et al. 2013;
Mohammadpour et al. 2014). Wetlands have high ability to
absorb and reduce agriculture and municipal wastewater and
can also highly decrease various nutrients (Mitsch and
Gosselink 2007; Kadlec and Wallace 2008). To remove pol-
lutants and nutrients associated with fine particulates, several
processes occur in the constructed wetlands such as settling,
filtration, absorption, and biological uptake (Guardo 1999).
Generally, three parts can be recognized in the free surface
wetlands such as inlet, macrophyte, and open water area
(Zakaria et al. 2003). The macrophyte area (wetland plants)
has a high effect on the wetland ecosystem and water quality
(Brix 1997; Kadlec and Wallace 2008). Since the number of
variables which affect water quality is too high, the SVM can
be proposed as a robust technique for prediction of water
quality in a free constructed wetland environment.

Recently, soft computing techniques such as SVM, genetic
programming (GP), and ANNs have been successfully
employed to solve the problems related to engineering
(Mohammadpour et al. 2011; Tabari et al. 2012; Kakaei
Lafdani et al. 2013; Mohammadpour et al. 2013b; Ghani
and Azamathulla 2014; He et al. 2014). The SVM is proposed
as a leading technique which can be used for regression and
classification purposes (Noori et al. 2011; Singh et al. 2011a,
b). The SVM has high ability for generalization and is less
prone to overfitting. Furthermore, it simultaneously mini-
mizes the estimation of error and model dimensions (Singh
et al. 2011a, b; Li et al. 2013). Sivapragasam and Muttil
(2005) applied the SVM for prediction of water level in rivers
by extension of rating curves. Khan and Coulibaly (2006)
recommended the SVM as the appropriate tool to fore-
cast lake water levels and obtained quite acceptable
results. Singh et al. (2011a, b) employed the SVM for
classification and regression of water quality. The SVM
was applied as a classification tool for some studies
related to wetlands (Dronova et al. 2012; Betbeder
et al. 2013; Zhang and Xie 2013). Sadeghi et al.
(2012) predicted the distribution pattern of Azolla
filiculoides (Lam.) in wetlands using the SVM.

The ANNs have been recommended as an effective tool for
the prediction of water pollution and water quality in the
wetlands (Schmid and Koskiaho 2006; Wang et al. 2012;
Dong et al. 2012; Dadaser-Celik and Cengiz 2013; Li et al.
2013; Song et al. 2013). The ANNs were employed to model
the constructed wetlands in different fields (Tomenko et al.
2007; Singh et al. 2011a, b; Zhang et al. 2013a, b). The ANNs
are a useful technique that was used to speed up the calcula-
tion of water quality index in rivers (Khuan et al. 2002; Juahir
et al. 2004; Gazzaz et al. 2012). Mohammadpour et al.
(2013a) examined two kinds of ANNs, feed forward back

propagation (FFBP) and radial basis function (RBF), for the
prediction of time variation of local scour in rivers. Nourani
et al. (2013) applied the FFBP network to determine the
quality of treated water. Diamantopoulou et al. (2005) used
the neural networks to predict water quality in a river in
Greece. Khalil et al. (2011) estimated water quality character-
istics at ungauged sites using ANN and ensemble ANN
(EANN). The results showed that the EANN provides better
prediction than the ANN.

In this research, both SVM and ANNs were used as
robust techniques for rapid and direct prediction of the
WQI in the constructed wetlands which can be used as
another alternative for some long-lasting conventional
methods. Seventeen points in the wetland were moni-
tored twice a month over a period of 14 months and an
extensive dataset was collected for 11 water quality
variables. A sensitivity analysis was conducted to find
more significant variables on WQI. Finally, the SVM
result was compared with two models of neural net-
works, namely the FFBP and RBF.

Materials and methods

Study area

The free surface constructed wetland in the Universiti Sains
Malaysia (USM) was chosen as a case study in this research.
The wetland is covered by different kinds of plant species
where the Hanguana malayana was the dominant species.
The volume of wetland is 16,312 m3 with a water depth
between 0.25 and 2.54 m from inlet to outlet of the wetland
(Table 1). The wetland is located at latitude 5° 9′ 7.8294″
North and longitude 100° 29′ 53.1672″ East. It was designed
based on the Stormwater Management Manual for Malaysia
to improve water quality and provide better wildlife habitat
(Zakaria et al. 2003; Shaharuddin et al. 2013). Seventeen
sampling points with different plant species and water depths
were chosen to monitor the water quality. As shown in Fig. 1,
these points included the inlet, six stations in macrophyte area
(W1 toW6), nine points in micropool (MA1 toMC3), and the
outlet.

The data collection was carried out twice a month over a
period of 14 months (from October 2010 to December
2011). Totally, 11 water quality variables (WQVs) were
collected in the wetland, including temperature, pH,
dissolved oxygen (DO), conductivity, suspended solid
(SS), nitrite, nitrate, ammoniacal nitrogen (AN), bio-
chemical oxygen demand (BOD), chemical oxygen de-
mand (COD), and phosphate. The final dataset consisted
of 442 samples and 11 WQVs. Table 2 indicates the
statistical parameters of WQVs in the wetland.
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The local water quality index

To determine the WQI, six physicochemical parameters
were proposed by Department of Environment (DoE
2005), namely DO, BOD, COD, AN, SS, and pH. The
WQI was recognized as a unitless variable with a value
from 0 to 100, where a high value of WQI represents
high water quality. As shown in Table 2, the mentioned

WQVs should be converted into nondimensional vari-
ables using subindex functions (SI). Finally, the WQI
can be estimated using the following equation (DoE
2005; Khuan et al. 2002):

WQI ¼ 0:22SIDO þ 0:19SIBOD þ 0:16SICOD

þ 0:15SIAN þ 0:16SISS þ 0:12SIpH ð1Þ

Table 1 Plant species and the water depth in the USM wetland

Site Wetland plant species Water depth (m)

Wetland 1 Dominant: Hanguana malayana, Lepironia articulata 0.25–0.3

Wetland 2 Dominant: Hanguana malayana, Typha angustifolia
Less dominant: Scirpus grossus

0.27–0.32

Wetland 3 Dominant: Lepironia articulata, Eleocharis variegata
Less dominant: Eriocaulon longifolium

0.51–0.62

Wetland 4 Dominant: Hanguana malayana, Lepironia articulata,
Eleocharis variegata

0.47–0.54

Wetland 5 Dominant: Lepironia articulata 0.51–0.64

Wetland 6 Dominant: Lepironia articulata
Less dominant: Typha angustifolia

0.31–0.54

Micropool (MA, MB, and MC) Without plant 2.48–2.54

Fig. 1 Seventeen sample points in the constructed wetland of USM
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The subindices equations were provided in Table 3,
where X is the concentration parameter in terms of mg/l,
except for pH and DO. For DO, the X refers to the
percentage of saturation, and for pH, it refers to the pH
value. According to the calculated WQI, the water can
be classified into one of five classes. Table 4 shows the
water quality classes suggested by the DoE.

Support vector machine technique

The SVM proposed by Vapnik (1995, 1998) was developed
based on the statistical learning theory. The SVM is a novel
classification technique which uses the principle of structural

risk minimization (SRM) and transforms it into quadratic
programming.

The SVM uses suitable kernel function to map the original
data into a high-dimensional feature space where a maximal
separating plane (SP) is constructed. To separate the data, two
parallel hyperplanes can be developed on each side of the SP.
The SVM simultaneously maximizes the geometric margin
and minimizes the empirical classification error (Singh et al.
2011a, b). The SVM was extended to solve the regression
problems with the introduction of ε-insensitive loss function
(Pan et al. 2008). In this case, the SVM attempts to determine
the optimal hyperplane which minimizes the distance of all
data points (Qu and Zuo 2010; Lin et al. 2008).

A detailed expression of the SVMmay be found elsewhere
(Vapnik 1995; Smola and Scholkopf 2004). However, a brief
discussion of this technique is mentioned here. For a set of
training data {xi,yi}, the objective of SVM is to determine a
function f(x) with high deviation (ε) from targets (yi) and it
should be flat as possible at the same time. If f(x) is introduced
as a linear discriminant function, then the SVM can be pre-
sented as (Smola and Scholkopf 2004):

f xð Þ ¼ w; xð Þ þ b ð2Þ

wherew is the weight vector (w∈Rn), and b is the bias. The f(x)
function is flatted by minimizing the values of w. Using a
convex optimization problem, minimization can be expressed
as (Singh et al. 2011a, b):

Minimize
1

2
wk k2

subject to
yi− w; xið Þ−b≤ε
w; xið Þ þ b−yi≤ε

�
8><
>: ð3Þ

The last equation in some cases with more errors can be
introduced with slack variables ξi, then minimization formula
changes as follows: (Vapnik 1995):

Table 2 Descriptive statistics of
wetland parameters (number of
data=442)

WQV Min Max Mean Mean standard error Std. deviation

Temperature (°C) 27.30 35.15 31.12 0.07 1.52

pH 6.11 9.19 7.73 0.03 0.69

DO (mg/l) 4.96 11.06 8.24 0.04 0.87

Conductivity (μs/cm) 94.00 206.00 136.59 1.21 25.49

Nitrite (mg/l) 0.00 0.06 0.02 0.00 0.01

Nitrate (mg/l) 0.20 4.90 2.15 0.04 0.91

Phosphate (mg/l) 0.11 0.58 0.25 0.00 0.10

AN (mg/l) 0.10 0.47 0.22 0.00 0.07

BOD (mg/l) 1.32 4.12 2.53 0.02 0.47

COD (mg/l) 9.00 44.00 21.96 0.27 5.60

SS (mg/l) 2.00 39.00 17.75 0.37 7.79

Table 3 The subindex equation for WQI in Malaysia (DoE 2005)

WQVs Value Subindex

DO (% saturation) X≤8 SIDO=0

8<X<92 SIDO=−0.395+0.03X2−0.0002X3

X≥92 SIDO=100

BOD X≤5 SIBOD=100.4−4.23X
X>5 SIBOD=(108e

−0.055X)−0.1X
COD X≤20 SICOD=99.1−1.33X

X>20 SICOD=(103e
−0.0157X)−0.04X

AN X≤0.3 SIAN=100.5−105X
0.3<X<4 SIAN=(94e

−0.573X)−5|X−2|
X≥4 SIAN=0

SS X≤100 SISS=(97.5e
−0.00676X)+0.05X

100<X≤1000 SISS=(71e
−0.0016X)+0.015

X≥1000 SISS=0

pH X<5.5 SIpH=17.2−17.2X+5.02X2

5.5≤X<7 SIpH=−242+95.5X−6.67X2

7≤X<8.75 SIpH=−181+82.4X−6.05X2

X≥8.75 SIpH=536−77X+2.76X2
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Minimize
1

2
wk k2 þ C

X
i¼1

m

ξi þ ξ�i
� �

subject to
yi− wi; xið Þ−b≤εþ ξi
w; xið Þ þ b−yi≤εþ ξ�i
ξi; ξ

�
i ≥0

8<
:

8<
:

ð4Þ

The C is a penalty parameter, and it should be defined by
the user. This parameter determines the trade-off between the
tolerable amount larger than ε and flatness of f(x). The
Lagrangian form of minimization formula can be express as:

L ¼ 1

2
wk k2 þ C

X
i¼1

m

ξi þ ξ�i
� �

−
X
i¼1

m

ηiξi þ η�i ξ
�
i

� �
−
X
i¼1

m

αi εi þ ξi−yi þ w; xið Þ þ bð Þ−
X
i¼1

m

α�
i εi þ ξi−yi þ w; xið Þ þ bð Þ; αi; ηi≥0

α�
i ; η

�
i ≥0

�

ð5Þ

where are αi, ηi, αi
*, and ηi

* are Lagrangian parameters. The
saddle points of Eq. (5) can be estimated as:
∂L
∂b

¼ 0 then
X
i¼1

m

α�
i −αi

� � ¼ 0 ð6Þ

∂L
∂w

¼ 0 then w−
X
i¼1

m

α�
i −αi

� �
xi ¼ 0 ð7Þ

∂L
∂ξ�i

¼ 0 then C−α�
i −η

�
i ¼ 0 ð8Þ

Dual maximization problem is determined by substituting
Eqs. (6) to (8) into Eq. (5) as (Smola and Scholkopf 2004):

Maximize −;
1

2
;
X
i¼1

m

α�
i −αi

� �
α j−α�

j

� �
xi; x j
� �

;−; ε;
X
i¼1

m

α j þ α�
j

� �
þ
X
i¼1

m

yi α j−α�
j

� �(

subject to
X
i¼1

m

α j−α�
j

� �
¼ 0 and αi;α

�
i ∈ 0;C½ �

ð9Þ

Finally the SVM function can be expressed as:

f xð Þ ¼
X
i¼1

m

αi−α�
i

� �
xi; x j
� �þ b ð10Þ

The kernel function was used to solve the nonlinear prob-
lem in the support vector regression. This function maps the
data into higher dimension feature space (Vapnik 1995). The
support vector regression problem in the feature space was

expressed using K(xi, xj) instead of (xi, xj), then the SVM can
be written as:

f xð Þ ¼
X
i¼1

m

αi−α�
i

� �
K xi; x j
� �þ b ð11Þ

Four possible choices for the kernel function are suggested,
namely linear, polynomial, sigmoid, and radial Gaussian. The

Table 4 Water quality classes, WQI, and water status (DoE 2005)

Parameters Unit Classes

I II III IV V

AN mg/l <0.1 0.1–0.3 0.3–0.9 0.9–2.7 >2.7

BOD mg/l <1 1–3 3–6 6–12 >12

COD mg/l <10 10–25 25–50 50–100 >100

DO mg/l >7 5–7 3–5 1–3 <1

pH – >7 6–7 5–6 <5 >5

SS mg/l <25 25–50 50–150 150–300 >300

Water quality index – >92.7 76.5–92.7 51.9–76.5 31.0–51.9 <31.0

Water status – Very good Good Average Polluted Very Polluted
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most common kernel functions are polynomial and Gaussian
or RBF which were expressed as:

K xi; x j
� � ¼ 1þ xi:x j

� �p
Polynomialkernel function ð12Þ

K xi; x j
� � ¼ exp −γ xi:x j

�� ��2� �
Gaussiankernel function ð13Þ

where p and γ are adjustable kernel parameters. The per-
formance of SVM depends on the combination of several
parameters, such as the type of kernel function and its adjust-
able parameters, penalty parameter, C, and ε-insensitive loss
function. The selection of kernel function depends on the
distribution of the data and generally can be selected through
the trial and error approach (Widodo and Yang 2007). Since
the RBF is employed in most of the applications (Xie et al.
2008), then in this study, the RBF (Gaussian kernel function)
was chosen as kernel function for the prediction of WQI.

The γ is the most important parameter for the RBF kernel
function. The amplitude of the kernel can be controlled by this
parameter, and it can lead to overfitting and underfitting in
prediction. The best value of γ can be found by trial and error
(Noori et al. 2011). The C is a regularization parameter that
controls the trade-off between maximizing the margin and
minimizing the training error. For a low value of C, insuffi-
cient fitting will be placed on the training data, while the
algorithm will overfit for too large of C (Wang et al. 2007).
A well-performing and robust regression model is dependent
on a proper choice of C in combination with ε (Ustun et al.
2005). A range of 0.001–20,000 was chosen for the C param-
eter to investigate the optimal value (Fig. 3). Furthermore,
since the exact contribution of the noise in the training set is
usually unknown, the εwas optimized in the range of 0.00001
and 0.1 (Ustun et al. 2005). To achieve a good combination of
the two variables (C and ε), an internal cross-validation was
performed during the construction of the SVM model. In this
study, the SVM-base classification was performed using

Library for Support Vector Machines (LIBSVM) in
MATLAB (Chang and Lin 2011).

Artificial neural network methods

ANNs are a computational process which attempts to repre-
sent and compute a mapping from multivariate dataset as
inputs to another as outputs. A neuron is the smallest part of
the neural network; these artificial neurons are arranged in the
structure like a network. In this study, two models of neural
networks, FFBP and RBF, were presented and a brief descrip-
tion of these methods are given here.

Feed forward back propagation neural network

The network consists of a set of neurons in three, inputs,
hidden, and output, layers to approximate a multivariant func-
tion f(x). The number of neurons in hidden layers can be
detected by trial and error. The learning procedure includes
the best weight vector to achieve the best approximation of
f(x). Firstly, a set of input data (x1,x2,…xR) is fed to the input
layer, and the output of each neuron can be determined from
the following relation:

n ¼
X

wi jxi þ b
i

ð14Þ

where n is the neuron output, wij is the weight of the connec-
tion between the jth neuron in the present layer and ith neuron
in the previous layer, xi is the neuron value in the previous
layer, and bi is the bias. The sigmoid function can be used as a
transfer function to generate the output of each neuron (Bateni
et al. 2007) given by:

yi ¼
1

1þ e
−C1

X
wi jxiþbi

� � ;C1 > 0 ð15Þ

Fig. 2 Variation of gamma values in terms of RMSE in the SVM model

Table 5 Sensitivity
analysis using ANNs All variable without Ratio Rank

pH 1.226 1

COD 1.081 2

DO 1.048 3

AN 1.044 4

SS 1.020 5

BOD 1.019 6

Phosphate 1.000 7

Nitrate 1.000 8

Conductivity 0.999 9

Nitrite 0.998 10

Temperature 0.997 11
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The network error calculation uses a comparison between
the target value and the obtained results, while the back
propagation algorithm corrects the weight between neurons.
The back propagation (BP) method is a descent algorithm,
which tries to minimize the error at each iteration. The net-
work weights are set by the algorithm such that the network
error decreases along a descent direction (gradient descent).
Generally, two parameters, called momentum factor (MF) and
learning rate (LR), are used to control the weight adjustment
in the descent direction.

Radial basis function neural network

The RBF network is a general regression tool for approximate
function that uses a radial basis function as activation func-
tion. In this study, the Softmax transfer function is used to
estimate the ∅ value at each node.

ϕ j xð Þ ¼
exp −

x−μ j

�� ��2
2σ2

j

 !

X
exp −

x−μ j

�� ��2
2σ2

j

 ! ð16Þ

where x is the input dataset, μj is the center of the radial basis
function for the jth hidden node, σj is a radius of the radial
basis function for the jth hidden node, and ‖x−μj‖2 is the
Euclidean norm. The linear interconnectedness between net-
work outputs and hidden nodes can be explained by the
following equation:

yk ¼
X

wk jϕ j xð Þ ð17Þ

where yk is the kth component of the output layer, andwkj is the
weight between the jth hidden node and kth node of the output
layer.

In this study, the collected dataset was normalized within
the range of 0.1–0.9. Three common statistical measures,
namely the coefficient of correlation (R2), root mean square
error (RMSE), and mean absolute error (MAE), were used to
validate the provided results.

Results and discussion

Determining the main water quality variables

To determine the main WQVs in the prediction of the WQI, a
sensitivity analysis was carried out using ANN. The sensitiv-
ity analysis was conducted using the FFBP network with one
hidden layer. The number of neurons in the input layer was

Table 6 Sensitivity analysis using different variables

Variables Training Testing

R2 RMSE MAE R2 RMSE MAE

All 11 variables 0.9992 0.0047 0.0035 0.9981 0.0074 0.0055

pH-COD-DO-AN-SS-BOD-phosphate-nitrate-conductivity-nitrite 0.9992 0.0048 0.0037 0.9981 0.0074 0.0055

pH-COD-DO-AN-SS-BOD-phosphate-nitrate-conductivity 0.9991 0.0050 0.0039 0.9980 0.0073 0.0056

pH-COD-DO-AN-SS-BOD-phosphate-nitrate 0.9989 0.0055 0.0044 0.9974 0.0084 0.0062

pH-COD-DO-AN-SS-BOD-phosphate 0.9988 0.0059 0.0048 0.9970 0.0090 0.0068

pH-COD-DO-AN-SS-BOD 0.9988 0.0058 0.0047 0.9911 0.0155 0.0073

pH-COD-DO-AN-SS 0.9926 0.0144 0.0112 0.9882 0.0179 0.0136

pH-COD-DO-AN 0.9757 0.0261 0.0208 0.9636 0.0313 0.0255

pH-COD-DO 0.8835 0.0571 0.0443 0.8130 0.0710 0.0555

pH-COD 0.8235 0.0703 0.0530 0.7870 0.0758 0.0602

Table 7 Range of data used for training and testing

Parameters Training Testing

Min Max Min Max

pH 6.11 9.19 6.40 9.17

COD 9.00 44.00 11.00 44.00

DO 4.96 11.06 5.13 10.81

AN 0.10 0.47 0.10 0.42

SS 2.00 39.00 2.00 34.00

BOD 1.32 4.12 1.46 3.75

Phosphate 0.11 0.58 0.12 0.48

WQI 73.51 93.21 73.76 92.84
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determined based on the number of WQVs as input to ANN.
In the output, a layer with one neuron was chosen for WQI.
The leave-one-out technique was employed to assess the
effect of each variable on the WQI. By removing one variable
in the input at each time, two indicators were determined,
namely the ratio of ANN error and its rank (Ha and
Stenstrom 2003). The ratio of ANN error was found by
removing an individual variable to the error obtained using
all variables. The high value for this ratio can be interpreted as
high significance of individual variable and vice versa. The
result of this analysis is shown in Table 5. Generally, in the
environmental works, the simple equations with a few vari-
ables are more practical and useful in comparison with com-
plex equations. Therefore, another sensitivity analysis was
conducted to simplify the classification and reduce the number
of variables onWQI. Table 6 compares the ANNmodels with
one of the independent variables removed in each case. As
shown in this table, pH, COD, DO, AN, and SS are significant

variables, with a high performance of ANNs (R2=0.9882,
RMSE=0.0179, and MAE=0.0136). The performance of
ANNs decreases with removal of one of these variables in
the next rows. Therefore, these variables were chosen to
develop the SVM, FFBP, and ANNs-RBF models. It was
observed that removing more variables such as BOD, phos-
phate, nitrate, nitrite, and conductivity has no considerably
effect on the performance of ANNs. In light of these findings,
the pH with the highest rank in the sensitive analysis can be
considered as a main parameter (Table 5), while it is ranked as
the sixth variable in the conventional WQI equation (Eq. 1).
This equation is recommended for estimation of WQI in the
rivers, and the difference between ranking of pH in Eq. 1 and
the present study can be due to the discharge at the point
source and nonpoint pollution to rivers. However, the selected
wetland is discharged just by nonpoint source pollution due to
storm water. Same ranking results were observed by Gazzaz
et al. (2012). This point may be considered for re-

Fig. 3 The accuracy of SVM model in terms of C and ε: a coarse grid, b fine grid

Fig. 4 Architecture of neural network for free constructed wetland
Fig. 5 Variation of RMSE for testing data in terms of the number of
neurons

Environ Sci Pollut Res (2015) 22:6208–6219 6215



establishment of a new equation for WQI in the wetlands and
other water resource with nonpoint pollution discharge.

The SVM result

Based on the provided result by sensitivity analysis, all 11
water quality variables can be reduced to just six significant
variables including pH, COD, DO, AN, SS, and BOD. In the
present study, the selected dataset (442 samples×6 variables)
was randomly divided into training dataset (354 samples×7
variables) and testing subsets dataset (88 samples×7 vari-
ables). Thus, the training and validation (testing) dataset were
comprised of 80 and 20 % of samples, respectively. Table 7
summarizes the range of training and testing dataset.

The SVM models with different values of γ were devel-
oped to determine the best value for this parameter. The
RMSE was chosen to assess the accuracy of SVM models.
Figure 2 indicates that the minimum error was obtained for γ=
0.9, and this value was chosen to determineC and ε in the next
steps. Furthermore, a tenfold cross-validation and grid search
algorithmwere employed to find the optimal values ofC and ε
(Hsu et al. 2003).

In tenfold cross-validation, the collected data were random-
ly divided into ten equal groups, where eight groups were used
for training, and the rest of the groups were employed for
validation. The grid search algorithm takes different samples

from the space of the independent variables. In each step, the
prediction of the model was compared with the best value
provided from the previous iterations. If the newly found
values were better than the previous one, the new values were
used. The grid search algorithm is an unguided technique, and
it was developed based on trial and error (Hsu et al. 2003;
Noori et al. 2011). A two-step grid search with cross-
validation was employed to solve this problem and determine
the tune values of C and ε (Chen and Yu 2007). In the first
step, a coarse grid search was applied to determine the best
region of demanded parameters. In the next step, a finer grid
search was employed to recognize the optimal combination of
parameters. In Fig. 3, the accuracy of SVM was assessed
regarding C and ε values. Through a coarse grid search
(Fig. 3a), the optimum values of C and ε were determined

Table 8 List of statistical data for
training and testing Network No. of neurons Training Testing

R2 RMSE MAE R2 RMSE MAE

FFBP 1 0.9494 0.0377 0.0253 0.9573 0.0338 0.0265

2 0.9836 0.0214 0.0146 0.9778 0.0244 0.0162

3 0.9882 0.0182 0.0126 0.9864 0.0191 0.0141

4 0.9983 0.0069 0.0055 0.9985 0.0064 0.0052

5 0.9985 0.0065 0.0052 0.9983 0.0068 0.0055

6 0.9989 0.0057 0.0043 0.9988 0.0056 0.0044

7 0.9987 0.0061 0.0048 0.9988 0.0056 0.0044

8 0.9989 0.0054 0.0041 0.9981 0.0071 0.0052

9 0.9992 0.0048 0.0037 0.9986 0.0061 0.0047

RBF 1 0.8752 0.0666 0.0517 0.8460 0.0722 0.0553

2 0.9141 0.0552 0.0388 0.9247 0.0505 0.0395

3 0.9515 0.0415 0.0290 0.9626 0.0356 0.0293

4 0.9571 0.0390 0.0267 0.9668 0.0336 0.0247

5 0.9583 0.0385 0.0271 0.9645 0.0347 0.0253

10 0.9737 0.0306 0.0215 0.9742 0.0296 0.0221

20 0.9902 0.0166 0.0122 0.9879 0.0180 0.0129

30 0.9948 0.0121 0.0091 0.9932 0.0134 0.0104

40 0.9965 0.0099 0.0077 0.9960 0.0103 0.0080

50 0.9965 0.0099 0.0077 0.9960 0.0103 0.0080

Table 9 Comparison of three techniques to predict WQI in constructed
wetland

Method Training Testing

R2 RMSE MAE R2 RMSE MAE

FFBP-ANNs 0.9987 0.0061 0.0048 0.9988 0.0056 0.0044

SVM 0.9987 0.0061 0.0053 0.9984 0.0066 0.0052

RBF-ANNs 0.9965 0.0099 0.0077 0.9960 0.0103 0.0080
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over a space of 10–100 and 0.0001–0.01, respectively. Finally,
the best value of C and ε was found equal to 57 and 0.007
through the fine grid search (Fig. 3b).

The neural network results

The ANN model was developed using the same dataset
employed for the SVM. Figure 4 indicates the architecture
of FFBPwith six neurons in the input layer forWQVs and one
neuron in the output layer for WQI. Two types of ANNs,
FFBP and RBF, were developed to investigate the best net-
work for the reliable prediction of WQI. Based on trial and
error, the FFBP network with 2000 epochs and the RBF
network with the spread constant of 1.1 provided better results
in comparison to the other networks.

Since the ANNs are sensitive to the number of neurons in
the hidden layer and these neurons were unknown in the first
step, then the ANNs were developed with different numbers
of neurons in the hidden layer. The RMSE was employed to
assess overfitting of network (low training error but high test
error). As shown in Fig. 5, the RMSE decreased dramatically
with increasing number of neurons in the hidden layer, espe-
cially in the FFBPmethod. An overfitting was observed in the
FFBP networks when the number of neurons was more than
16. The performance of both FFBP and RBF with different
neurons in the hidden layer is indicated in Table 8.

The testing data was assessed to find the optimum number
of neurons. The best performance for FFBP and RBF was
provided for networks with six and 40 neurons in the hidden
layer. For testing data, the FFBP with R2=0.9988, RMSE=
0.0056, and MAE=0.0044 predicts the WQI with high accu-
racy. As shown in this table, the accuracy of RBF (R2=0.9960,
RMSE=0.0103, and MAE=0.0080) is a little lower than the
FFBP method.

Comparison between SVM and ANNs

In Table 9, the performance of the SVM was compared with
both the FFBP and RBF models. The SVM with R2=0.9984,
RMSE=0.0066, and MAE=0.0052 forecasts the WQI in the
wetland better than the RBF (R2=0.9960, RMSE=0.0103,
and MAE=0.0080). Furthermore, statistical parameters and
scatter plot (Fig. 6) show that the prediction of SVM is
comparable with FFBP with R2=0.9988, RMSE=0.0056,
and MAE=0.0044.

In light of this research, it can be concluded that to predict
the WQI in free surface constructed wetland environment,
both the SVM and FFBP propose some advantages over the
conventional method. The method recommended by DoE
(2005) employs six subindices parameters, which need more
effort and a long time to convert the six raw data (DO, BOD,
COD, AN, SS, and pH) into its subindices (Table 3).
Furthermore, instead of using the original parameters, all
calculations are based on the subindices (Eq. 1) which are
obtained from rating curves. In contrast, both the SVM and
FFBP approaches use the raw WQVs for training and testing
rather than the subindices which led to a direct prediction of
the WQI. Therefore, the SVM and FFBP methods are more
direct, rapid, and convenient techniques than the conventional
method.

Accordingly, this research highlights that the SVM and
FFBP can be used as valuable methods for the prediction of
water quality in the constructed wetland as they simplify the
calculation of the WQI and reduce substantial efforts and time
by optimizing the computations. These approaches can be
commonly used for any aquatic system in the world. This
research should encourage the managers and authorities to use
the SVM and FFBP methods as more direct and highly
reliable alternatives to predict water quality in wetlands and
other water bodies.

Conclusions

In this study, the SVM and two methods of ANNs, namely
FFBP and RBF, were employed to investigate the WQI in the
free surface constructed wetland. Seventeen points of the
wetland were monitored twice a month over a period of
14months, and an extensive dataset was collected for 11 water
quality variables. A sensitivity analysis was carried out using
ANN and six significant variables that included pH, COD,
DO, AN, SS, and BOD to develop the SVM, FFBP, and
ANNs-RBF models. The results illustrate that the SVM tech-
nique was able to successfully predict the WQI with high
accuracy. The high value of the coefficient of correlation
(R2=0.9984) and low error (MAE=0.0052) indicated that
the SVM model provides better prediction compared to theFig. 6 Comparison between predicted and observed WQI
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RBF network with R2 = 0.9960 and MAE=0.0080.
Furthermore, the result provided by SVM was comparable
with that of the FFBP network (R2=0.9988 and MAE=
0.0044). This research highlights that the SVM and FFBP
can be successfully used as valuable methods for the predic-
tion of water quality in the wetlands. These methods simplify
the calculation of the WQI and decrease the substantial efforts
and time by optimizing the computations. The mentioned
approaches can be commonly used as more direct and highly
reliable techniques to predict water quality at any aquatic
system worldwide.
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