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Abstract A study of benthic foraminifera was carried out in
sediment samples collected from the central Adriatic coast of
Italy, near the Ancona harbour and the FalconaraMarittima oil
refinery, in order to validate and support their use as
bioindicators of ecosystem quality. On the basis of a principal
component analysis (PCA), three biotopes (following the
bathymetric gradient) have been documented, showing that
the distribution pattern of benthic foraminifera is principally
related to riverine inputs, organic matter contents at the sea-
floor, and sediment grain size. We observed higher abun-
dances of opportunistic, low-oxygen tolerant taxa along the
coastline, thus being representative of polluted environmental
conditions. Near the Falconara Marittima oil refinery, the
microfaunal assemblages is characterized by the absence of
living specimens and by a low diversity associated with the
dominance of opportunistic species. At this site, aberrant tests
were also found. The data point out that Ammonia
parkinsoniana and Quinqueloculina seem to be the most
sensitive taxa and can be considered as good bioindicators
of environmental stress in this area. This study confirms that

faunal composition and morphology of benthic foraminifera
respond to human-induced environmental perturbations, mak-
ing their study potentially useful for biomonitoring in coastal-
marine areas.
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Introduction

In 2000, the EU’s Member States, Norway, and the European
Commission agreed on theWater FrameworkDirective (WFD
2000) with the aims to better manage, preserve, and protect
European water environments. This directive established a
framework for long-term protection of all water resources
(i.e., rivers, lakes, and coastal waters) and was later
complemented by the Marine Strategy Framework Directive
(MSFD 2008).

In the framework of these directives, the scientific commu-
nity is involved on monitoring the status of coastal-marine
environments, and in particular, on describing the impact of
pollutants on living organisms by selecting sensitive key
groups or species (Borja et al. 2009) and by utilizing biolog-
ical indicators (bioindicators). Benthic foraminifera (protist),
marine unicellular organisms with a calcareous or agglutinat-
ed shell, are among the most abundant microorganisms found
in the surface sediments in shallow and marginal-marine
environments; they are very sensitive to changing environ-
mental conditions, thus potentially providing information on
the quality of the ecosystem where they live (Schönfeld et al.
2012). Recently, Barras et al. (2014) developed a foraminiferal
index of ecosystem quality for the coastal Mediterranean Sea,
based on different faunal parameters, to be tested at other
stations in the contest of the MSFD.
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Previous work largely demonstrates that foraminifera pro-
vide one of the most sensitive and inexpensive bioindicator of
the deterioration of coastal environment. They present several
advantages in comparison to the more commonly used mac-
rofaunal organisms (e.g., Alve 1995; Mojtahid et al. 2006;
Bouchet et al. 2007; Alve et al. 2009; Jorissen et al. 2009).
They can be easily collected in great numbers, providing a
highly reliable database for statistical analysis, even when
small sample volumes are available. In addition, they are
characterized by fast turnover rates; different species require
species-specific habitats and can be maintained in culture,
which allows determining the responses of individual taxa to
selected pollutants or stresses (e.g., de Nooijer et al. 2007;
Munsel et al. 2010).

Benthic foraminifera have been successfully used as prox-
ies for studying the impact of different kinds of pollutants such
as heavy metals and hydrocarbons, in a wide range of marine
and transitional marine environments (for reviews, see Alve
1991, 1995; Yanko et al. 1994, 1999; Martin 2000; Martínez-
Colón et al. 2009; Armynot du Châtelet and Debenay 2010;
Frontalini and Coccioni 2011). These investigations docu-
mented that they generally respond to adverse ecological
conditions by adopting different strategies: decrease of faunal
density and diversity, local disappearance, increase of oppor-
tunistic taxa, development of test abnormalities, among others
(e.g., Alve 1991; Yanko et al. 1998; Geslin et al. 1998; Ferraro
et al. 2006; Di Leonardo et al. 2007; Cherchi et al. 2009;
Martins et al. 2010; Armynot du Châtelet and Debenay 2010;
Frontalini and Coccioni 2011). Furthermore, polluted areas
are often naturally stressed as well, thus making it difficult to
separate the respective influence of natural and anthropogenic
stresses, since they are both reflected in assemblage composi-
tion and faunal parameters.

Using an integrated approach (micropaleontological and
geochemical analyses), this study aims at investigating the
relationship between benthic foraminiferal assemblages and
environmental conditions in the central Adriatic Sea. Previous
studies conducted near this area (Frontalini and Coccioni
2008, 2011; Coccioni et al. 2003, 2005) provided information
on the possible influence of heavy metals on the taxonomic
composition of the benthic foraminiferal microfauna. Here,
we focus on (i) assemblages and biotopes and their spatial
distribution within the study area and (ii) the relationship
between environmental factors and pollution and benthic fo-
raminiferal distribution and characteristics.

Study area

Geographical and environmental setting

The investigated area is located in the central-northern part of
the Marche region (Italy), and extends from Falconara to the

Musone river estuary (south of Ancona) along the Adriatic
Sea coast (Fig. 1).

The Adriatic Sea is an elongated NW/SE-oriented basin,
with a low axial topographic gradient in the north and a
narrower steeper shelf further south. The late Quaternary
sedimentary setting is the result of significant and recurring
changes in response to global sea level excursions driven by
glacial-interglacial cycles (Cattaneo et al. 2007).

Sedimentation along the central Adriatic coastline of
Italy results from a series of small, distributed fluvial
sources (i.e., a line source), draining the Apennine Moun-
tains. These rivers deliver ∼3×107 t/year of sediment,
contributing to the formation of a shore-parallel shelf
clinoform that has developed throughout the Holocene
(Palinkas and Nittrouer 2006).

Previous estimates of sediment accumulation in this area
have indicated that rates increase southward along-shelf,
reaching a maximum >1 cm/year near the Gargano Peninsula
(Cattaneo et al. 2003; Frignani et al. 2005). Across-shelf rates
are generally highest on the foreset of the clinoform but can
vary depending on local morphologic features (e.g., seafloor
crenulations, where accumulation rates range from 0.4 to
1.6 cm/year on the dipping and flat surfaces, respectively;
Correggiari et al. 2001). Sediment deposition is affected by
the circulation patterns characterized by a cyclonic gyre, driv-
en by thermohaline circulation, and by a high seasonal vari-
ability (Artegiani et al. 1997).

The fine materials carried to the sea by the rivers accumu-
late along the coast in belts that are hydraulically sorted in
grain size, in accordance with the classic model of modern
sedimentation on continental shelves: coastal sands, mud, and
shelf relict sand further offshore (Frignani et al. 2005 and
references therein).

The sampled stations mainly consist of silty sands in the
coastal area and a mud belt moving seawards (Colantoni et al.
2003); the sediment accumulation rates in this area range
between 0.01 and 0.62 cm/year (Orsini 2006).

Although the area is characterized by low primary produc-
tivity (Zavatarelli et al. 2000), the local contribution of Apen-
nine rivers and nutrient-rich shore current coming from the
northern basin sustain nutrient availability (Artegiani et al.
1997). The organic carbon content in surface sediments spans
from 0.5 wt.% in coastal area to 0.8 wt.% in the offshore
stations (Tesi et al. 2013).

The main contaminant sources are the Ancona harbour and
the Falconara Marittima oil refinery. The Ancona harbour is
one of the most important in the Adriatic Sea for touristic,
commercial, and fishing activities, and it had its major expan-
sion after WorldWar II. The Falconara Marittima refinery was
founded in 1939 as a fuel repository to become active only by
the end of 1950, with a significant expansion since the mid-
eighties. The refinery area is one of the “contaminated sites of
national relevance” as defined by the Italian Ministry of the
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Environment and Protection of Land and Sea. Other pollutant
sources may be related to several other anthropogenic activi-
ties such as tourism, which peaks in the summer, and sewage
outfalls.

Hydrological features

The mean sea temperature in the study area, during the
sampling period (26 February–3 March 1997), ranged
between 11 and 12 °C, while salinity at the bottom varied
from 37 to 38 psu (Artegiani et al. 2003). The pH of the
sediments varied from 7.01 to 7.63 (Colantoni et al.
2003).

Materials and methods

Sampling and sample preparation

Sixteen box cores were collected on February 1997 in the
central Adriatic Sea on board the oceanographic vessel Thetis
in the frame of the PRISMA II Project. The samples were
subdivided into five bathymetric transects, covering the area
between 43° 26–43° 47 N latitudes and 13° 24–13° 55 E
longitudes at a water depths ranging between 11 and 64 m
(Fig. 1, Table 1).

On board, box core samples were subsampled using a tube
(8-cm diameter), and the obtained cores were divided into 1-
cm-thick slice.

Sediment samples were stored in buffered ethanol stained
with rose Bengal (1 g of rose Bengal in 1000 ml of alcohol)
immediately after sampling for at least 48 h, following the
procedure of von Daniels (1970) in order to distinguish bio-
cenosis from tanatocenosis.

Foraminiferal analysis

Samples were dried at 50 °C and weighed. They were then
gently washed with water through a 63-μm sieve following
the method described by Donnici and Serandrei Barbero
(2002) and Alve and Murray (2001). Accordingly, quantita-
tive analyses on living and dead foraminifera were performed
on the size fraction >63 μm in order to consider also small
species such as taxa tolerant to low-oxygen contents (Thomas
et al. 2000). In agreement with Schröder et al. (1987), the
lower size limit of 63 μm provides a more reliable statistical
basis for paleoenvironmental studies.

Only specimens containing dense, brightly red-stained pro-
toplasm were considered as living at the moment of sampling,

Fig. 1 Location map of the study
area with sampling stations (map
of lands retrieved from Google
Maps). Stars indicate the location
of the main contaminant sources

Table 1 Geographical position and water depth of the sampling stations

Station Latitude Longitude Water depth (m) % mud

27b 43°44,846' 13°24,311' 20.0 97.5

29b 43°46,789' 13°26,005' 28.0 98.8

35 43°45,588' 13°35,303' 48.0 99.2

37 43°41,934' 13°31,273' 21.0 97.1

40 43°38,346' 13°27,354' 12.0 33.9

41 43°36,900' 13°33,314' 12.0 9.7

43 43°39,433' 13°35,581' 20.5 95.7

45 43°41,848' 13°38,301' 36.0 99.2

47 43°45,763' 13°42,267' 64.0 96.4

57 43°33,275' 13°38,432' 13.0 49.5

59 43°34,484' 13°41,776' 18.0 75.4

61 43°35,925' 13°45,551' 29.0 99.0

63 43°37,681' 13°48,936' 50.0 99.6

76 43°26,810' 13°41,348' 11.0 41.3

80 43°28,526' 13°48,506' 19.0 98.2

83 43°30,141' 13°54,172' 43.0 99.6

Mud contents (%) of the bottom sediments are from Colantoni et al.
(2003)
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in agreement with the literature (Barmawidjaja et al. 1992;
De Stigter et al. 1998; Bernhard 2000; Duijnstee et al.
2004).

Our foraminiferal analyses were performed prior to the
establishment of the methodological recommendations of the
FOBIMO group (Schönfeld et al. 2012); however, in our
study, we considered the 0–1-cm interval for the recent ben-
thic fauna distribution, as suggested by the authors. We ana-
lyzed the top centimeter of the sediment since Colantoni et al.
(2003) documented, in this area, negative values of the redox
potential from the water-sediment interface down to 2 cm
within the sediment, which typically cause the migration of
infaunal specimens toward the better oxygenated sediment-
water interface (Jorissen et al. 1995; De Stigter et al. 1998).
Moreover, some authors consider that more than >80 % of the
standing stock of benthic foraminifers lives in the top centi-
meter of the sediment (inter alias, Van der Zwaan et al. 1999;
Frontalini and Coccioni 2008; Armynot du Châtelet et al.
2009), so their study is sufficient to obtain relevant informa-
tion for biomonitoring purposes (e.g., Barras et al. 2014).
Furthermore, the sedimentation rate in the entire surveyed
area is no lower than 0.1 cm/year, with the exception of station
76 where 210Pb values suggest a sedimentation rate of
0.01 cm/year (Orsini 2006). On this basis, the entire first
centimeter at virtually all stations corresponds to a time inter-
val that goes back no longer than 10 years preceding the
sampling, which largely falls in the time interval when the
refinery has been active.

Where possible, 300 specimens were picked from each
subsample, divided by using an Otto microsplitter, and iden-
tified largely following AGIP Atlas (1982), Cimerman and
Langer (1991), Loeblich and Tappan (1987), and Sgarrella
and Moncharmont Zei (1993).

For the genus Ammonia, we referred to Debenay et al.
(1998), Buzas-Stephens et al. (2002), and Hayward et al.
(2004), while for Textularia and Elphidium genera, we
adopted the taxonomy proposed by Fiorini and Vaiani
(2001). As Elphidium gr., we considered together Elphidium
advenum, Elphidium crispum, Elphidium decipiens,
Elphidium granosum, Elphidium poyeanum, and Elphidium
jenseni.

Eggerella scabra and Eggerella advena are counted to-
gether as Eggerella spp. because of their similar ecological
requirements, while Bolivina seminuda, Bolivina spathulata,
and Bolivina dilatata are grouped in Bolivina spp. in agree-
ment with Duijnstee et al. (2003). Quinqueloculina
longirostra and Quinqueloculina padana are grouped as
Quinqueloculina gr. 1 while Quinqueloculina seminulum
and Quinqueloculina oblonga as Quinqueloculina gr. 2.
Bulimina spp. includes Bulimina fusiformis, Bulimina
elongata, Bulimina elegans, and Bulimina inflata.

Nonionella turgida and Nonionella opima are considered
together as Nonionella spp.

In each sample, deformed benthic foraminifera were count-
ed to verify whether a relationship between pollutants and
morphological deformations in foraminiferal assemblages
exists.

Deformed specimens belonging to Ammonia parkinsoniana,
E. crispum, and Quinqueloculina were recognized, separately
counted, and reported as total deformed foraminifera (TDF,
Appendix A).

Foraminiferal data were reported as relative abundance
(%). Shannon-Weaver index or information function (H)
(Shannon and Weaver 1963) was calculated using the Paleon-
tological Statistics Data Analysis (PAST) software (Hammer
et al. 2001) (Appendix A).

Statistical analysis

All statistical analyses were performed on the relative abun-
dances of benthic foraminiferal species.

A principal component analysis (PCA) was performed
using the MVSP program (Kovach 1993). In order to reduce
the background noise, only species with abundance greater
than 2 % in at least one sample were considered for statistical
treatment. Prior to statistical analysis, an additive logarithmic
transformation to base 10 was performed on abundances of
individual taxa to remove the effects of orders of magnitude
difference between variables. The PCA was then used to
determine the community’s relationship to individual sam-
pling stations. PCA reduces large data matrices composed of
several variables to a smaller number of components
representing the main modes of variation and helps
interpreting large volume of data.

Additionally, a Q-mode cluster analysis was carried out for
ordering the sampling stations based on the relative abun-
dance of species calculated by adopting the Ward’s linkage
method and given in terms of the Euclidean distance. Maps
were created with RockWorks.

Trace metals analysis on foraminiferal shells

Trace metals content was investigated in the most abundant
taxa (Quinqueloculina, A. parkinsoniana, and Hopkinsina
pacifica) of all coastal stations 40, 41, 57, and 76, and of
offshore stations 37 and 29b, which are near to the main
contaminant sources. About 0.2 to 0.5 mg of foraminifera
were picked from the top centimeter considering both bioce-
nosis and tanatocenosis (Table 3). The foraminiferal tests were
next cleaned using a multistep trace metal protocol including
reductive cleaning with buffered hydrazine (Boyle and
Keigwin 1985). Chemical analyses were performed by ICP-
AES and ICP-MS at the geochemistry laboratory of IAMC-
CNR of Naples (Italy). Particularly, simultaneous analyses of
V, Cu, Co, Zn, Mn, Cd, and Pb concentrations were carried
out using a Varian ICP-MS, whereas Ca was determined by a
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Varian Vista MPXICP-AES. In detail, the tests were gently
crushed and then cleaned following procedures modified from
Lea and Boyle (1993). Samples were ultrasonically cleaned
four times with ultrapure water (>18 MΩ) and twice with
methanol. Metal oxide coatings were reduced in a solution
consisting of anhydrous-hydrazine, citric acid, and ammoni-
um hydroxide, and organic matter was oxidized in a solution
of hydrogen peroxide and sodium hydroxide. All the water
samples were treated under a laminar air flow clean bench to
minimize contamination risks, and the sampling materials
were cleaned with high purity grade reagents. The remaining
tests material was then dissolved in 0.1 N nitric acid and
simultaneously analyzed for magnesium with the Varian
ICP-MS inductively coupled plasma-mass spectrometer. A
multi-element standard was prepared with ICP-MS grade
High-Purity Standards. Based on repeated analyses of the
standard and samples over several runs, on different days,
the 2σ error in the ICP analyses is estimated at ±5%. Replicate
analyses on five samples yielded an average external precision
(1σ) of about 5 %. Metal to calcium ratios (Me/Ca) were
determined from intensity ratios with an external matrix-
matched standard using the method developed by Rosenthal
et al. (1999).

Moreover, some specimens of blackened Miliolids were
observed with a scanning electron microscope (SEM, LEO
1530 FEG) to qualitatively characterize the occurrence of
trace element nanoparticles or foreign elements within the
foraminiferal test. The SEM, coupled with an energy disper-
sive spectrometer (EDS), is used to assess the chemical com-
position of particles within the foraminiferal test.

Results

Benthic foraminifera

For this study, we consider the biocenosis and tanatocenosis
together. All the studied samples contain well-preserved ben-
thic foraminifera. Living specimens represent a reduced
amount of the total assemblage with proportions ranging from
0% (station 40) to 19.1% (station 35), and their abundances are
particularly low in stations close to the coast (Table 2).

A total of 63 species were identified, dominated by calcar-
eous shells. The most common benthic foraminifera are
Elphidium (E. decipiens, E. granosum, E. poyeanum, and
E. advenum), Ammonia (A. parkinsoniana, Ammonia
perlucida, and Ammonia tepida), Nonionella (N. turgida and
N. opima), Bolivina spp. and Bulimina spp.

Among agglutinants, Textularia and Eggerella are the most
significant taxa. The Shannon-Weaver index varies between
1.6 (station 41) and 2.6 (station 61) (Fig. 2, Appendix A). The
highest values of diversity are commonly found in station

located between 10 and 20 m water depth, then the values
decrease at 40-m water depth, suggesting a nonlinear relation-
ship between diversity and water depth.

In Fig. 3, the map of distribution of the most abundant taxa
in the top centimeter is shown.

Statistics

The data matrix, consisting of 16 stations and 29 taxa/groups
(more abundant than 2 %), provided the basis for the cluster
analysis.

The PCA allowed us to distinguish two principal compo-
nents that together account for 56.8 % of the total data vari-
ance. Axis 1, which accounts for 41.9 % of the total variance,
is negatively correlated with depth. Axis 2, accounting for
only 14.9 % of the total variance, reflects lateral variations
probably related to the proximity of river outputs or circula-
tion patterns. A plot of the first two PCA axes scores (Fig. 4)
allows distinguishing three groups of sampling stations, basi-
cally based on scores on axis 1, thus reflecting a bathymetric
arrangement. The first group shows negative score on axis 1
due to its shallow depth, while the group IIa is positively
correlated with axis 1; group IIb is in an intermediate position
between groups I and IIa. The Q-mode cluster analysis con-
firms the results of the PCA by clearly separating two major
branches at an index value of ∼9.7 (Fig. 5). The first group
consists of six stations corresponding to group I identified by
the PCA. Within the second larger cluster, the cluster analysis
isolates two subgroups of samples corresponding to groups IIa
and IIb, discriminated by the cluster analysis.

Trace metals contents in foraminifera shells

Me/Ca ratios measured in foraminifera shells and expressed as
micromole per mole Ca are reported in Table 3.

Anomalously, high Mn/Ca ratios were not considered, as
attributed to an inadequate cleaning procedure of the benthic
foraminifera. V/Ca ratios measured in Quinqueloculina shells
span from 0.2 to 27, and the highest values were found in
stations 40 and 76. Co/Ca ratios show values ranging from
1.6 μmol/mol (St. 76, A. parkinsoniana) to 7.1 μmol/mol (St.
57, living specimens of A. parkinsoniana). Cu/Ca ratios pre-
sented high values in all stations, ranging between 0.9 μmol/
mol (A. parkinsoniana from St. 41) and 771 μmol/mol (living
specimens of H. pacifica from St. 29b). Zn/Ca ratios are high
in station 40 in both A. parkinsoniana (284.5 μmol/mol) and
Quinqueloculina (14.3 and 45.0 μmol/mol), whereas Pb/Ca
ratios ranged between 1.4μmol/mol (St. 76,A. parkinsoniana)
and 17.9 μmol/mol (St. 40, Quinqueloculina gr. 2). Cadmium
was detected only in A. parkinsoniana shells from St. 40
(0.39 μmol/mol).

Energy dispersal X-ray analyses of not-blackened test of
Q. oblonga collected in the study area (station 40) show that
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the test is made of calcite (Fig. 6a). In the blackened suture, the
test exhibits the occurrence of foreign elements including Fe,
Al, Si, and S (Fig. 6b).

Benthic foraminiferal abnormalities

Some benthic foraminifera taxa exhibit morphological defor-
mities (Appendix A and Fig. 7). The deformities were restrict-
ed mainly to the species E. crispum, A. parkinsoniana, and

Quinqueloculina. FollowingYanko et al. (1998) classification,
these abnormalities are indentified as aberrant chamber shape,
abnormal growth of last chamber, and compressed tests. In
several cases, some specimens presented more than one type
of deformation. Few foraminifera, belonging in particular to
the genus Quinqueloculina, were characterized by a blackened
test. The black material was primarily evident on test surface
or along suture lines of the porcelaneous shells. Both morpho-
logical abnormalities and blackened tests were mainly ob-
served in samples from station 40 where the deformed taxa
represent the 3.1 % of the total assemblage.

Discussion

Foraminiferal distribution

With increasing worldwide consciousness of environmental
problems, ways to detect and monitor marine pollution over
time are the subjects of active research. The studied coastal
area is characterized by quite stable physicochemical condi-
tions and a low to high degree of heavy metal pollution, due
principally to the activity of the Ancona harbour and the API
refinery of Falconara Marittima.

Benthic foraminiferal assemblages are somewhat poorly
diversified as testified by relatively low values of the diversity
index. The H index exhibits values lower than 2 in coastal
areas and lower than 3 in offshore stations. The lowest values
are found in the north-western part of the study area, at St. 41

Table 2 Relative abundances of
living benthic foraminifera and
the most representative taxa

Station Living benthic foraminifera
(% of total assemblage)

Main taxa

27b 5.7 A. perlucida, Bolivina spp.

29b 12.7 E. advenum, Bulimina spp.

35 19.1 Bulimina spp.

37 4.9 A. perlucida

40 0.0 A. parkinsoniana

41 4.0 A. parkinsoniana

43 17.6 E. advenum, Bolivina spp., H. pacifica

45 5.7 Bolivina spp., Bulimina spp., E. vitrea

47 4.8 Bulimina spp., E. vitrea

57 14.5 A. tepida, A. parkinsoniana

59 3.6 A. perlucida, Bolivina spp.

61 15.7 Bolivina spp., Bulimina spp.

63 12.7 Bolivina spp., Bulimina spp., E. vitrea, H. pacifica

76 6.4 A. parkinsoniana

80 12.8 A. perlucida, Bolivina spp.

83 9.2 Bolivina spp., Bulimina spp., H. pacifica

Fig. 2 Diversity (Shannon Index) of benthic foraminiferal faunas in the
investigated stations
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and St. 40 (Fig. 2). Living specimens range from 0.7 (station
40) to 16.1 % (station 35) of the total population, and their
abundances are particularly low in the stations closest to the
coast (Table 2).

At stations located in the area between Ancona and
Falconara Marittima (St. 40 and St. 41), evident changes in
the abundance and composition of benthic foraminiferal asso-
ciation, both in terms of number of specimens and species,
were observed. This area is subject to local sources of pollu-
tion due to an intense industrial activity and is considered at
high risk for environmental crisis (data from the Region
Marche). The association is characterized by the almost total
lack of living specimens and is dominated by species sensitive

to oxygen changes and typical of areas subject to high human
impacts.

We can therefore presume a correlation between pollution
derived from the intense industrial activity in this part of the
coast (harbour and refinery) and the distribution of benthic
life.

The results of the cluster analysis enable us to recognize
three biotopes in the study area (Fig. 8) representing different
environments.

Biotope 1 corresponds to the near-shore stations. The fora-
miniferal assemblage is dominated by A. parkinsoniana with
the presence of Miliolids (Quinqueloculina, Triloculina
tricarinata, Pyrgo depressa), Elphidium gr., and A. tepida

Fig. 3 Pie charts showing the
distribution of the most abundant
taxa of benthic foraminifera in the
first centimeter of sediment for
each station. E. gran/dec/poye,
Elphidium granosum/decipiens/
poyeanum

Fig. 4 PCA ordination diagram
plotting sampling stations and
variables
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(Table 4). These taxa, very tolerant to large salinity variations,
are typical of environments characterized by sandy substrate
and high hydrodynamic energy, and they are also related to the
riverine inputs (Jorissen 1988; Van der Zwaan and Jorissen
1991; Barmawidjaja et al. 1995).

Biotope 2 includes stations characterized by high fre-
quencies of A. perlucida, Elphidium gr., Nonionella spp.,
and A. tepida (Table 4). In the study area, this microfauna
occurred in environments characterized by sandy to

muddy sediments and high content of organic matter. A
number of changes in the hydrological and sedimentolog-
ical features occurred at the boundary between biotope 1
and 2, which marks the transition between the coastal
area, characterized by a sandy substrate of Apennine
provenance and high hydrodynamic energy, and the off-
shore area dominated by a mud belt feed by the Po river
and deposited parallel to the coastline (Colantoni et al.
1979; Frignani et al. 2005).

Fig. 5 Dendrogram classification
of stations produced by Q-mode
cluster analysis using Euclidean
distance. Numbers and letters in-
dicate the recognized clusters

Table 3 Me/Ca ratios measured on carbonate shells of benthic foraminifera from stations 29b, 37, 40, 41, 57, and 76

St. Species# V/Ca
(μmol/mol)

Mn/Ca
(μmol/mol)

Co/Ca
(μmol/mol)

Cu/Ca
(μmol/mol)

Zn/Ca
(μmol/mol)

Cd/Ca
(μmol/mol)

Pb/Ca
(μmol/mol)

29b A. park <dl 167.7 3.7 581.8 <dl <dl <dl

29b H. paci° <dl <dl 3.2 771.0 <dl <dl <dl

37 A. park <dl 201.4 6.6 68.5 0.0 <dl <dl

40 Quinq.1 5.8 0.0 5.0 11.1 14.3 <dl 11.5

40 A. park <dl 266.3 1.7 6.7 284.5 0.39 2.7

41 A. park <dl 232.7 1.9 0.9 <dl <dl <dl

57 A. park° <dl 210.9 7.1 <dl <dl <dl <dl

76 Quinq. 1 0.2 0.0 2.9 37.7 <dl <dl 10.5

76 A. park <dl 270.5 1.6 12.9 <dl <dl 1.4

76 A. park° 13.5 202.1 1.7 <dl <dl <dl <dl

Mean Benthic
foram

0.112 1–500 n.a. 0.2 1.5–6 0.2–0.25 n.a.

# Abbreviations are A. park., Ammonia parkinsoniana; H. paci., Hopkinsina pacifica; Quinq. 1, Quinqueloculinagr. 1

° Living specimens

In the last row, mean value of Me/Ca ratios of benthic foraminifera living in unpolluted marine environments from Lea (1999) are shown. <dl indicates
Me/Ca ratios below the detectable levels

n.a. Not available

Environ Sci Pollut Res (2015) 22:6034–6049 6041



Biotope 3 represents the offshore stations (Fig. 8). The
foraminiferal microfauna differs from the one typical of the
biotope 2 for the higher percentage of Nonionella spp. and
infaunal species such as Bulimina spp. and Bolivina spp.
(Table 4). These two latter genera have very low oxygen
requirements and, in dysoxic conditions, are able to actively
migrate to the top centimeter of the sediments becoming
competitive next to epifaunal species, which are more nega-
tively affected by low oxygen concentrations (De Stigter et al.
1998; Barmawidjaja et al. 1992; Duijnstee et al. 2003).

In this area, we also observed several specimens of
N. turgida and Epistominella vitrea, epifaunal species typical
of environments characterized by high concentrations of or-
ganic matter, andH. pacifica. Nonionella turgida is described
by several authors as an opportunistic species well adapted to
live in low oxygen and high organic matter conditions
(Barmawidjaja et al. 1995; Van der Zwaan et al. 1999), where-
as E. vitrea is considered to be an indicator of high concen-
trations of fresh organic matter (Gooday 1994). These species
profit from an organic matter pulse, also at a seasonal level, as
documented by Saraswat et al. (2005) for E. vitrea, because
they possess the ability to reproduce rapidly and even imma-
turely, so that they reach extremely high numbers in a short

time, the so-called opportunistic model (Van der Zwaan et al.
1999). The same strategy in the Adriatic Sea is used by
H. pacifica that reaches extremely high abundances immedi-
ately following anoxic periods (Jorissen et al. 1992). The
presence of infaunal and opportunistic taxa in the mud belt
documents that this area is rich in organic matter both fresh
(E. vitrea) or degraded (N. turgida), and has a reduced dis-
solved oxygen content (H. pacifica). These species are char-
acteristic of the late Holocenemud deposits in the Adriatic Sea
and other continental shelves where sedimentation and faunal
distribution are affected by the strong predominance of fluvial
deposits and their deposition along the coast (Van der Zwaan
et al. 1999).

The adaptability of these species is also evident in the
characteristics of the biocenosis: the highest percentages of
living specimens were found in the stations characterized by
muddy sediments, where the association is dominated by
opportunistic species (Bulimina spp., Bolivina spp., E. vitrea,
H. pacifica) (Table 2) with a high reproductive rate. In the
stations close to the coast, the presence of living specimens is
lower and A. parkinsoniana dominates the biocenosis, show-
ing the highest degree of opportunism among the species that
constitute the coastal association.

Fig. 6 Energy dispersal X-ray
analyses show the elemental
composition as measured in not-
blackened test (a) and blackened
sutures (b) of a specimen of
Q. oblonga
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The distribution of the biotopes, following the bathy-
metric gradient, reflects the distribution of nutrients and
organic matter in the area, which, in turn, is strictly
correlated to the distribution of the finest sediments
(Colantoni et al. 2003; Tesi et al. 2013). Our data are
consistent with the cluster distribution of benthic forami-
nifera in bottom sediments from the Adriatic Sea previ-
ously reported by Jorissen (1987, 1988) and confirm that
the benthic microfauna in this area is strongly influenced
by inputs of large amounts of nutrients from river runoff
and by significant variations in sediment grain size.

Based on ecological requirements, we grouped some of the
most abundant species in oxygen/salinity sensitive (Fig. 9a),
opportunistic/river input (Fig. 9b), or indicative of polluted
areas (Fig. 9c), in order to evidence the relationship between
the distribution of meiofauna and environmental conditions.

According to the li terature, A. parkinsoniana ,
Quinqueloculina spp., and Elphidium gr. were grouped and
considered as sensitive to oxygen and/or salinity changes
(Fig. 9a). On the basis of observations made on culture exper-
iments, Moodley and Hess (1992) reported that some species
are able to tolerate anoxic conditions for long periods. In

Fig. 7 Light microscope (left) and SEM (right) images of some foraminiferal specimens bearing different morphological abnormalities: (1, 2) Ammonia
parkinsoniana, abnormal growth of last chamber; (3–5) Elphidium crispum, aberrant chamber shape; (6) Quinqueloculina oblonga, shell blackened.
Scale bar=100 μm; (3–4) scale bar=200 μm
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particular, Ammonia beccarii, Q. seminulum, and Elphidium
excavatum (the latter two typical of the coastal area in our
study) show signs of activity even after 24 h without oxygen.
In addition, this group tolerates rapid salinity variations
(Sgarrella andMoncharmont Zei 1993; Jorissen 1988; Murray
2006 and reference therein). Several authors have reported
that these three taxa are also sensitive to contamination by
heavy metals and can, therefore, be considered in biomonitor-
ing studies (e.g., Ferraro et al. 2006). Consequently, the asso-
ciation of these three taxa can be used as an index of sediments
oxygenation: their relative abundance varies considerably
within the studied area and the highest values are documented
in St. 41 (81.8 %) and St. 40 (75.8 %). Moreover, the occur-
rence at these stations of blackened tests, rich in finely partic-
ulate iron sulphides (pyrite) (see paragraph 5.2 for details),
supports the presence of low oxygen conditions. This data
reveals that the northern area is in general more subject to
oxygen deficit; this could be due either to its proximity to the
Po river delta and the resulting increased frequency of anoxic
events, or to the presence of industrial activity such as Ancona

harbour and Falconara refinery, or both. Moreover, the coastal
area where these taxa peak show largely changing values of
salinity particularly because of seasonal changes in riverine
input.

Nonionella turgida, Bulimina marginata, and Valvulineria
bradyana were considered as opportunistic taxa tolerant
to low oxygen and high nutrients concentrations (Van der
Zwaan and Jorissen 1991; Fig. 9b). Their presence is
therefore strongly linked to the influence of river runoff
(Van der Zwaan and Jorissen 1991). This association can
be correlated with the extent and distribution of the nutri-
ent derived from the Po river. These species constitute the
44.3 % of the association in St. 83 where the hydrological
condition favor the accumulation of the fine material and
nutrients derived from the Po river, whereas they are
completely absent in St. 41.

The distribution of Elphidium gr., Buccella granulata,
E. advena, and A. parkinsoniana—considered among the
most tolerant taxa to pollution/environmental stress (Yanko
et al. 1999; Fig. 9c)—shows high abundances of these species
along the coast. A similar association (E. excavatum clavatum,
B. frigida, E. advena, and A. beccarii), typical of marginal-
marine environments (Murray 1991), dominates also the
meiofauna of the Long Island Sound (LIS), a large bay located
in front of NewYork city and studied by Thomas et al. (2000).
This area is subject to strong inputs of nutrients, which cause
the development of episodic anoxia, and emissions of both
organic pollutants and heavy metals.

Effects of heavy metals on foraminiferal tests

The occurrence and abundance of deformed tests of benthic
foraminifera can be considered significant and inexpensive
indicators of the presence of different type of pollutants in-
cluding heavy metals (Alve 1991; Yanko et al. 1998; Coccioni
2000; Samir and El-Din 2001; Di Leonardo et al. 2007;
Frontalini and Coccioni 2008; Rumolo et al. 2009; Caruso
et al. 2011).

On the other hand, morphological deformation of benthic
foraminiferal tests is a common feature occurring indepen-
dently from latitude, taxonomy, or feeding strategy (Samir and
El-Din 2001). It can also be related to natural environmental
stresses such as rapidly changing salinity, pH, and organic
matter, among other controlling factors (Alve 1991; Almogi-
Labin et al. 1992; Geslin et al. 2000; Debenay et al. 2001;
Scott et al. 2005; Luciani 2007; Melis and Covelli 2013). In
moderately polluted areas, it is not easy to distinguish the
influence on environmental quality of natural factors from
anthropogenic ones (Thomas et al. 2000; Buzas-Stephens
and Buzas 2005).

For several decades, the Adriatic Sea has been subject to
large inputs of nutrients and organic matter, discharge from
urban, agricultural, and industrial activities located inland, that

Fig. 8 Benthic foraminiferal biotopes (B1, B2, and B3) identified on the
base of station scores on the first axis of the PCA and cluster analysis

Table 4 Biotopes and relative abundances of the most representative
taxa

Biotopes Representative taxa Relative abundances
(% of the total assemblages)

Biotope 1 Ammonia parkinsoniana 30.6

Miliolids 14

Elphidium gr. 12.5

Ammonia tepida 11.3

Biotope 2 Ammonia perlucida 17.1

Elphidium gr. 17.0

Nonionella spp. 12.2

Ammonia tepida 10.0

Biotope 3 Bulimina spp. 18.8

Nonionella spp. 17.5

Bolivina spp. 11.7
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led to periodic episodes of anoxia (Frignani and Turci 1981;
Justic 1987). Industrial settlements along the coast (harbour
and refinery) contribute to increase anthropogenic pressure
over the studied area.

The investigated area is characterized by higher concentra-
tion of heavy metal (Fe, Mn, Cu, Cd, and Pb) in coastal
stations (for details, see Table 5.4 in Frache et al. 2003),
although other authors defined the study area as a quite stable
environment, unpolluted to moderately polluted by heavy
metals (Frontalini and Coccioni 2008).

According to the literature (Alve 1995; Frontalini and
Coccioni 2008), we considered deformed tests as indicators
of stressed environmental conditions when their percentages
represent more than 1 % of the total fauna. We noticed an
increasing number of deformed tests (more than 3 %) and the
presence of some blackened ones in station 40 (Fig. 7, Ap-
pendix A), located near the Falconara refinery. This peculiar
feature supported our hypothesis that perturbed environmental
conditions, caused by discharges from coastal refineries, may
influence benthic foraminiferal morphologies, although it is
impossible to correlate the specific foraminiferal variations to
a specific type of pollutant.

Although the influence of high concentrations of hydrocar-
bons on the foraminiferal fauna is not yet fully understood,
many authors documented alterations in the distribution of
species, such as low species diversity and density (Buckley
et al. 1974; Armynot du Châtelet et al. 2004) or high percent-
ages of deformed tests (Vénec-Peyré 1984; Yanko et al. 1998;
Samir 2000; Di Leonardo et al. 2007) in areas contaminated
by hydrocarbons. Similar variations were observed also in
areas characterized by high concentrations of heavy metals
(Ellison et al. 1986; Alve 1991; Yanko et al. 1994; Cosentino
et al. 2013).

The blackening observed in some porcelaneous specimens
is due to the presence of finely particulate iron sulphides
(pyrite) as documented by energy dispersal X-ray analyses
on foraminiferal test (Fig. 6). Similar features were reported
also by Romano et al. (2008) who found inclusions of Fe ions

in the crystalline reticulum of deformed specimens of
Miliolinella subrotunda from the Bagnoli industrial area. Al-
so, Madkour and Ali (2008) documented blackened forami-
niferal tests due to selective iron absorption from some coastal
lagoons located along the Egyptian Red Sea coast and strong-
ly influenced both by natural inputs and anthropogenic
activities.

Despite several investigations on pollution and its effects
on benthic microfauna (Yanko et al. 1998; Ferraro et al. 2006;
Di Leonardo et al. 2007; Romano et al. 2008; Cherchi et al.
2009; Caruso et al. 2011; Cosentino et al. 2013), little is
known about the response of benthic foraminifera to different
types and concentrations of pollutants. The relationship be-
tween pollution and the characteristics of the foraminiferal
fauna is rather difficult to understand, not only because of
the multiplicity of pollutants discharged into an environment,
but also because their effects can be species-specific. Since
studies concerning trace metal contents in foraminiferal tests
as proxies to monitor short-term changes on the marine envi-
ronment are promising (Morel and Hering 1993; Elderfield
et al. 1996; Samir and El-Din 2001; Madkour and Ali 2008;
Rumolo et al. 2009), we performed some geochemical analy-
ses in order to investigate trace metal ratios in benthic fora-
miniferal shells. It is known that foraminifera incorporate into
their shells a quantity of some trace elements proportionally to
their concentration in ambient sea water (Lea and Boyle
1989), even if the mechanisms of biogenic incorporation of
these elements are not yet completely understood (Rumolo
et al. 2009 and references therein).

Our results document a high variability of trace metal
contents in foraminiferal tests from the investigated area (Ta-
ble 3). Highest values of Me/Ca ratios are documented in the
coastal area, in particular from stations 40 and 41 (in front of
the Falconara refinery and the Ancona harbour). This area can
be considered as a receptor of industrial and domestic dis-
charges and is strongly influenced by the Ancona harbour
activities. In particular, Quinqueloculina seems to be most
susceptible to high concentrations of V and Pb. These metals

Fig. 9 Pie charts showing the distribution of taxa oxygen/salinity sensitive (a), opportunistic/river input influenced taxa (b), and opportunistic/stress
tolerant taxa (c) for each station
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are characteristic of areas affected by different anthropogenic
activities and also by the presence of hydrocarbons (Metwally
et al. 1997). It is noteworthy that the metal contents in
Quinqueloculina from station 40 are generally higher than
those recorded by the same group from station 76 suggesting
that the major sources of pollution are linked to the coastal
sites. Specimens of A. parkinsoniana show Zn, Co, and Cu
bioaccumulation in their shells. This species is described in
literature as a very sensitive bioindicator of pollution being
strongly affected by heavy metal content even at low concen-
trations (Frontalini and Coccioni 2008).

H. pacifica seems to be very sensitive to Cu concentrations
(Table 3). The effects of high levels of Cu on foraminiferal
communities’ structure have been documented by several
authors (Ellison et al. 1986; Samir and El-Din 2001; Hallock
et al. 2003; Armynot du Châtelet et al. 2004; Ruiz et al. 2004)
and also evidenced by culturing experiments (Reichart et al.
2003; de Nooijer et al. 2007). Our data show that H. pacifica
tends to accumulate this metal and can be considered as a
good indicator of Cu pollution over the studied area.

The restricted number of analyzed samples and taxa in this
study (Table 3) do not allow to precisely quantify the impact
of pollutants, specifically hydrocarbons, on the distribution of
benthic both dead and living foraminifera. However, our data
suggest that industrial and human activities affect the geo-
chemistry of benthic microfauna, and we are persuaded that
this kind of investigations can provide important information
about environmental pollutions due to anthropogenic
pressure.

Conclusion

Benthic assemblages were studied in 16 box cores along 5
transects perpendicular to the coast at a water depth ranging
between 11 and 64 m off Ancona (central Adriatic sea). PCA
allowed us to identify three biotopes following a bathymetric
gradient. The biotopes distribution documented that the mi-
crofaunal characteristics in this area cannot be strictly corre-
lated only with depth, but are also influenced by riverine
inputs (Po, Esino, andMusone rivers), organic matter contents
at the seafloor, and sediment grain size.

Higher abundances of opportunistic, low-oxygen tolerant
taxa and the almost total absence of living specimens were
observed along the coastline. This can be explained with the
influence of human activities along the coast in this part of the
Adriatic Sea.

A striking feature is the distribution and morphology of the
microfauna collected at station 40 (close to the Falconara
refinery). In this area, we observed the almost total absence
of living benthic foraminifera and a very low diversity accom-
panied by increasing proportions of opportunistic taxa. In

addi t ion , a t these s ta t ions , some specimens of
Quinqueloculina, Ammonia, and Elphidium show different
kinds of morphological abnormalities, which are likely imput-
able to the presence of heavy metals and/or hydrocarbons in
the sediments. This feature may support the correlation be-
tween quantitative and qualitative characteristics of the ben-
thic microfauna and the different types of anthropogenic
activities.

A. parkinsoniana and Quinqueloculina seem to be the most
sensitive taxa and can be considered as good bioindicators of
environmental stresses in this area, while H. pacifica tends to
accumulate Cu, which makes it a good indicator of pollution
derived from the presence of this metal in the sediments.

Our investigation provide additional information in the
frame of a sustainable coastal management, documenting that
benthic foraminifera represent a good tool for biomonitoring
the state of the marine environments.
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