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Abstract Nuclear power reactors are operating in 31 coun-
tries around the world. Along with reactor operations, activi-
ties like mining, fuel fabrication, fuel reprocessing and mili-
tary operations are the major contributors to the nuclear waste.
The presence of a large number of fission products along with
multiple oxidation state long-lived radionuclides such as nep-
tunium (237Np), plutonium (239Pu), americium (241/243Am)
and curium (245Cm) make the waste streams a potential radio-
logical threat to the environment. Commonly high concentra-
tions of cesium (137Cs) and strontium (90Sr) are found in a
nuclear waste. These radionuclides are capable enough to
produce potential health threat due to their long half-lives
and effortless translocation into the human body. Besides the
radionuclides, heavy metal contamination is also a serious
issue. Heavy metals occur naturally in the earth crust and in
low concentration, are also essential for the metabolism of
living beings. Bioaccumulation of these heavy metals causes
hazardous effects. These pollutants enter the human body
directly via contaminated drinking water or through the food
chain. This issue has drawn the attention of scientists through-
out the world to device eco-friendly treatments to remediate
the soil and water resources. Various physical and chemical
treatments are being applied to clean the waste, but these

techniques are quite expensive, complicated and comprise
various side effects. One of the promising techniques, which
has been pursued vigorously to overcome these demerits, is
phytoremediation. The process is very effective, eco-friendly,
easy and affordable. This technique utilizes the plants and its
associated microbes to decontaminate the low and moderately
contaminated sites efficiently. Many plant species are success-
fully used for remediation of contaminated soil and water
systems. Remediation of these systems turns into a serious
problem due to various anthropogenic activities that have
significantly raised the amount of heavy metals and
radionuclides in it. Also, these activities are continuous-
ly increasing the area of the contaminated sites. In this
context, an attempt has been made to review different modes
of the phytoremediation and various terrestrial and aquatic
plants which are being used to remediate the heavy metals
and radionuclide-contaminated soil and aquatic systems.
Natural and synthetic enhancers, those hasten the process of
metal adsorption/absorption by plants, are also discussed. The
article includes 216 references.
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Introduction

Phytoremediation is a promising phenomenon where green
plants are used to decontaminate the polluted sites. Many
plants are efficiently used in this process. Plants show differ-
ent potential for the remediation of contaminants. Growth of
plants and their survival in the contaminated sites are the main
factors responsible for their efficiency in phytoremediation.
The soil microbe interactions (Muratova et al. 2003; Wenzel
2009), addition of chelators (Liu et al. 2008; Doumett et al.
2008) and agronomic practices (Olson et al. 2008) are also
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applied to enhance the plant efficiency and the rate of
phytoremediation. Thus, phytoremediation in an elaborated
form can be defined as the use of green plants and their
associated microbes, soil amendments and agronomic prac-
tices to remove, contain and render the environment harmless
from contaminants.

This technique offers a green chemistry-based route to
remediate contaminated sites containing radionuclides
(Eapen et al. 2006; Kanter et al. 2010), heavy metals
(Dahmani-Muller et al. 2000), polycyclic aromatic hydrocar-
bons (PAH) (Huang et al. 2004), petroleum (Sun et al. 2004;
Euliss et al. 2008) and diesel (Lin and Mendelssohn 2009)
efficiently. It could be potentially applied for the organic as
well as inorganic contaminants (Efroymson et al. 2001;
Susarla et al. 2002; Shaw and Burns 2003; Reichenauer and
Germida 2008). Some plants have high potential for the
metabolism and degradation of recalcitrant xenobiotics
and can be considered as ‘green livers’ which act as an
important sink for the chemicals that destroy the environment
(Sandermann 1992). Some woody plant species are also used
for the remediation of heavy metal-contaminated biosolids
(Mok et al. 2012).

The plant used for the phytoremediation should have some
specific features. It should (a) be fast growing, (b) have high
metal tolerance, (c) be resistant to diseases, pest, etc., (d) be
having dense root and shoot system (Couselo et al. 2012) and
(e) be unattractive to animals so that there should be minimum
transfer of metals to higher tropic levels of terrestrial food
chain (Bruce et al. 2003). The plant should not be metal
specific so that maximum pollutants can be remediated simul-
taneously (Miretzky et al. 2004).

Plants are beneficial for the remediation of contaminated
aquatic as well as terrestrial systems. The aquatic and terres-
trial systems are principally contaminated due to heavy metals
and the radionuclides. The radionuclides are continuously
added on to the environment by bombardment of a stable
nucleus, natural cosmic radiation and through the anthropo-
genic activities such as nuclear testing, military operations,
mill tailings, disposal of radioactive waste and radiological
events such as Chernobyl accident and Fukushima natural
disaster. Similarly, human activities such as mining, smelting,
atmospheric dispersion and metal extraction from ore, etc.
raise the heavy metal concentration to the contamination level.
Human beings are getting exposure to these pollutants present
in soil and waste streams directly or indirectly by different
pathways such as through the consumption of contaminated
food crops (Muchuweti et al. 2006; Arora et al. 2008), through
the food chain (Fowler et al. 1987) or by contaminated
water (Ruttenber et al. 1984). Therefore, there is a strong
need to develop such green technique like phytoremediation
that would provide an easy, affordable and eco-friendly
route for the cleansing of soil and water resources. In
this direction, literature study has been conducted to compile

the contamination of soil and water caused due to the
addition of heavy metals and radionuclides. Modes of
phytoremediation and flora involved in the removal of heavy
metal and radionuclide contamination are also compiled in the
review along with the synthetic and natural chelators that
has been proved to be effective to hasten the process of
phytoremediation. This compilation might be helpful in
dealing with phytoremediation of the heavy metal- and
redionuclide-contaminated water and soil resources.

Radionuclide and heavy metal contamination

Radionuclide contamination

Radionuclide pollution is of great concern. Most of the radio-
active wastes are generated during the operation of nuclear
reactors, fuel fabrication units, fuel reprocessing plants, re-
search laboratories working with radionuclide production and
applications of radioisotopes in medicine and industry, acci-
dents and disasters. Even coal-fired power plants generate
huge amounts of fly ash containing radionuclides.

During mining and milling operations of uranium (U),
radium (Ra) and their fission products are mainly produced.
Ra is a highly radioactive metal which has four most com-
monly occurring isotopes in nature (223Ra, 224Ra, 226Ra and
228Ra) of which 226Ra has longest half-life period i.e.
1,601 years. This radioactive metal has been reported for
causing leukemia in human beings. According to a survey of
groundwater samples collected from different countries,
cases of the mentioned disease were higher in the countries
having high concentration of Ra in groundwater (Lyman
et al. 1985).

Even low-level radioactive waste contains high concentra-
tion of Cs and Sr along with the other radionuclides as shown
in Fig. 1 (Balarama Krishna et al. 2004).

137Cs and 90Sr having t1/2 of 30.17 and 28.8 years, respec-
tively, are amongst the most abundant radionuclides in the
nuclear fission products and considered as hazardous
radiotoxic elements for the environment due to their long
lives. Their environmental hazardous nature is partially due
to the mobility in aquatic system. Due to solubility in water,
they can easily enter the food chain and ultimately in the
human beings. The metabolic resemblance of Cs and Sr with
potassium (K) and calcium (Ca), respectively, helps them to
get allocated easily in the whole human body (Volkle et al.
1989). Preferentially, Cs is deposited in the muscles, and Sr
finds its place in the bones and teeth.

Apart from the anthropogenic activities, natural disasters
such as earthquakes and tsunamis also promote the leakage of
a considerable amount of radioactivity in the environment
(Yoshida and Kanda 2012). For instance, various Cs isotopes
(134Cs, 136Cs and 137Cs) along with the others (tellurium
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(129mTe, 129Te, 132Te), iodine (131I, 132I), barium (140Ba) and
lanthanum (140La)) were released during the Fukushima
Daiichi nuclear power plant accident at Japan (Endo et al.
2012). No acute radiation injuries have been reported in the
accident. However, possibilities of tumoregenesis due to the
low dose exposure will be increased in the coming future.

Besides these radionuclides, alpha emitters such as 239Pu,
237Np, 241/243Am and 245Cm and beta emitters such as tech-
netium (99Tc) and 129I are particularly hazardous due to their
long half-lives in the range of hundreds of year to millions of
year.

Heavy metal contamination

Heavy metal pollution could arise naturally as well as by
human activities. Volcanic explosion, forest fire and rock
seepage are the natural sources of the heavy metal contami-
nation. Human activities such as mining, smelting operations
and many other industries such as thermal power plants and
battery industries contribute majorly towards the heavy metal
contamination. Disposal of the coal combustion residues in
terrestrial systems also pollutes the land with heavy metals
(Dellantonio et al. 2010). Atmospheric deposition, municipal
wastes, use of sewage water as fertilizers and phosphate
fertilizers used in agriculture play an important role in the
heavy metal contamination in soil as well as in crop plants
(Dong et al. 2001).

Human beings require some heavy metals such as copper
(Cu), manganese (Mn) and zinc (Zn) in definite amounts for
their body growth and metabolism. But, some heavy metals
like mercury (Hg) and lead (Pb) prove to cause very danger-
ous effects due to bioaccumulation and biomagnifications.

Heavy metals get introduced in the human body mainly
through the water and food. A mild heavy metal contamina-
tion in drinking water may lead to potential health risks in the
long-run (Pandey et al. 2010). Sometimes, inhalation of heavy
metal-contaminated air can also increase its concentration in
the body. Vegetables grown in the vicinity of metal smelters
have potential health risk due to high cadmium (Cd), Pb and
Zn contents (Kachenko and Singh 2006). There is no
obvious contamination in crops growing in a low heavy
metal contaminated soil but in long-term accumulation
of heavy metals in soil may lead to increase in nickel (Ni),
arsenic (As), Hg and Pb contents in the eatables (Jia et al.
2010). The heavy metal accumulation in the crops is greatly
influenced by total metal concentration in soil and pH of the
soil (Jung and Thornton 1996). Extraction potential of metal
accumulator plants increases up to a certain level, and after
that, the increase in metal concentration decreases the bioac-
cumulation coefficient (phytoextraction rate of metal)
(Hamadouche et al. 2012).

Types of phytoremediation

Phytoremediation can be classified broadly in two categories:
direct phytoremediation and explanta phytoremediation
(Alkorta and Garbisu 2001). Direct phytoremediation in-
volves the uptake/absorption of the pollutants through
roots and translocation to the upper part of the plant.
In explanta phytoremediation, pollutants are confined to
the rhizosphere only. The explanta remediation is also
called as rhizoremediation as the pollutants are retained
or degraded in the rhizosphere only (Kuiper et al. 2004;
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Fig. 1 Composition of low level
radioactive waste solution
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Wu et al. 2006; Gerhardt et al. 2009). In this type of remedi-
ation, plants release the various enzymes (Wang et al. 2004;
Reboreda and Cacador 2008) and enhance the microbe growth
(Chekol et al. 2004) in the rhizosphere for accumulation or co-
precipitation of the pollutants.

In higher plants, about 20 % of total carbon content assim-
ilated by photosynthesis is released as root exudates. Root
exudates contain sugars, polysaccharides, organic, amino
acids, peptides and proteins. The carboxylates exuded in the
rhizosphere have their implications in the complexation of
metals in the rhizosphere (Hinsinger et al. 2006). The heavy
metal-contaminated soil may be better remediated by using
higher plant density, a managed practice that would narrow
the distance between individual plant rhizosphere (Gonzaga
et al. 2006). The plants change the redox conditions, pH and
organic content of soil which affect the mobility of the pollut-
ants (Jacob and Otte 2003) in soil.

In direct phytoremediation, the endophytes (organ-
isms that inhabit the plant organs) facilitate the rate of
the phytoremediation. Some endophytic bacteria and
endophytic fungi are known for increasing the rate of
phytoremediation. These microbes enter in the plants via
root and get disperse in the whole system (Li et al. 2012).
These are resistant to the pollutants and decrease the toxicity
of pollutants to plant and increase their degradation (Newman
and Reynolds 2005). Microbes help the plant to grow in a
contaminated soil (Jankong and Visoottiviseth 2008;
Venkatesan et al. 2011) and facilitate the remediation of pol-
lutants via their precipitation (Essa et al. 2012; Yadav et al.
2011) and stabilization in the rhizosphere as well as in the
plants (Javaid 2011; Khandare et al. 2012). The microbes
enhance both direct as well as explanta phytoremediation.

Modes of phytoremediation applied for the removal of heavy
metals and radionuclides

Different modes of phytoremediation are employed for the
remediation of soil and water contaminated with the metal and
radionuclides. Plants respond to high metal toxicity either by
stabilization in root zone that prevents metal translocation to
the above ground parts of the plant or by extracting a high
amount of metals and store them in stems and leaves
(Jagatheeswari et al. 2013). The plant (hyperaccumulator or
excluder) used for the phytoremediation also decides the
route/type of remediation. Hyperaccumulator plant species
accumulate metal mostly in the shoot as compared to the root,
and in the case of excluder plants, the contaminants are
confined to the root as compared to the shoot system (Singh
et al. 2010; Coinchelin et al. 2012; Mohebbi et al. 2012).
Hyperaccumulators have capacity to accumulate excessive
amount of metals from the contaminations. Heavy metal tol-
erance in hyperaccumulators is so high that could cause tox-
icity in normal plants. The leaves of such plants may tolerate

concentrations >100 mg/kg of Cd, >1,000 mg/kg of Ni and
Cu, or >10,000mg/kg of Zn andMn (dryweight) when grown
in a metal-rich medium (Ucer et al. 2013).

The different modes of phytoremediation provide an eco-
nomically feasible and environmentally viable route for the
cleaning of contaminated soil and water sources. Types of
phytoremediation used for the remediation of heavy metal
and radionuclide contaminations are discussed below.

Phytostabilization/phytosequestration

Phytostabilization/phytosequestration refers to the transfor-
mation of pollutants to a static complex. Due to the complex
formation, there is precipitation within the root system zone.
Microbes immobilize the pollutants by releasing chelating
substances such as organic acids which form complex with
the metals and prevent their entry in the plant. In the root,
absorption, adsorption and accumulation take place by vacu-
ole sequestration or cell wall binding that prevents the pollut-
ants especially metal ions leaching into the groundwater, and
there is no further translocation of pollutants to the shoot
system. Arbuscular mycorrhizal symbiosis contributes posi-
tively in heavy metal immobilization (Gohre and Paszkowski
2006). The fungus works like the plant itself for the stabiliza-
tion of metals in the soil. The processes involved are precip-
itation of metals in the polyphosphate granules, adsorption of
pollutants on the fungus cell wall, chelation of the pollutants
by the secretion of ligand molecules inside the fungus, etc.
Some plants like signal grass (Brachiaria decumbens), when
grown in heavy metal-contaminated soil, showed con-
siderable growth and high metal accumulation in roots
that are very important characteristics for a plant being
used in phytostabilization (Andreazza et al. 2013). Further,
plant should be a poor translocator of metals to the aerial parts
to prevent its entry in living beings and must have dense root
system that quickly grows to cover the contaminated site to
accelerate the remediation (Yang et al. 2014). The process of
phytostabilization can be hastened by organic as well as
synthetic modifications. The effects were more accentuated
in organically amended soil than in synthetically amended
soils (Epelde et al. 2009). However, attention should be paid
to metal leaching when organic additions are considered for
the phytostabilization (Ruttens et al. 2006).

Phytoaccumulation/phytoextraction

The phytoaccumulation involves the extraction of the pollut-
ants from soil via roots and translocates them to the upper part
of the plant (Boonyapookana et al. 2005). The plant is further
harvested and disposed off safely. Plants having high metal
tolerance and can accumulate high concentration of pollutants
(hyperaccumulator plant species) are used in this technique.
The plants that produce high biomass can accumulate the high
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concentrations of the pollutants than other plants (Zhuang
et al. 2007). Due to the dilution factor of the plant parts, trees
accumulate higher amount of heavy metals as compared to the
bushes and grasses (Irshad et al. 2014). To assess the capabil-
ity of terrestrial plants for metal extraction, soil-specific
screening should be performed. According to Ramaswami
et al. (2001), terrestrial plants showed greater extraction ca-
pacity for U in sandy soil as compared to the organic soil. In
organic soil, organic matter appears to seize the metal and
reduces its availability to the plant. Addition of synthetic
chelating agents to soil increases the bioavailability of metals
to the plant and sometimes induces hyperaccumulation in
normal plants (Mcgrath and Zhao 2003). For instance,
EDTA amendment in soil increases 134Cs availability twice
for the root uptake in Indian mustard (Tjahaja et al. 2013).
Even sewage sludge when amended with contaminated soil
produces fertilizing effects and accelerates the biomass pro-
duction accompanied by increased phytoaccumulation (Zaier
et al. 2010). Type of soil amendment with respect to the metal
to be remediated considerably affects the phytoextraction
capacity of the plant (Brunetti et al. 2011). Rhizosphere mi-
crobes also enhance the process by increasing the roots sur-
face area and also increase the availability of toxic metals in
the rhizosphere (Souza et al. 1999a, b).

Phytovolatilization

Phytovolatilization, mainly concerned with the remediation of
organic acids, is also helpful for the volatilization of heavy
metals from the contaminated sites. Plants uptake pollutants
from the soil and release them into the atmosphere by evap-
oration. The plant roots take up the metals by phytoextraction,
and xylem helps in translocation to the shoot system. There is
a biological conversion of metals into gaseous forms. The
different parts of the shoot, especially leaves, release the
metals into the atmosphere in gaseous forms. Plants such as
Chinese brake (Pteris vittata) extract As from soil in the
elemental form. Further, absorbed metal get converted into
gaseous form by the biological processes within these plants
and finally released in the atmosphere (Sakakibara et al.
2007).

In soil, As exists in four oxidative forms i.e. −3, 0, +3
and +5, but commonly found species are As+3 and As+5

(arsenite and arsenate, respectively). According to the
earlier reports, microorganisms and enzymes help in the re-
duction and methylation of these forms within the plants.
Trimethylated and dimethylated As species get readily evap-
orated from the foliages surface (Zhao et al. 2010). But re-
cently, it has been proved that the plants do not involve in the
methylation of neither inorganic As nor the mono and
dimethylated As species to volatile trimethylated As species
instead of which these volatile species are taken up by root
from the soil itself (Jia et al. 2012).

Similarly, selenium (79Se) which is of concern because of
its long half-life (327,000 years) can be removed from radio-
active waste by phytovolatilization. Se exists in five oxidation
states (−2, 0, +2, +4 and +6) of which selenate species (+6) is
majorly found in terrestrial sources and taken up from the soil
by sulphate transporters of the plant. Plant enzymes convert
the inorganic Se to the volatile form, dimethyl selenide
(DMSe) through the various biochemical processes.
Other volatile forms of Se that are released by the plants
are dimethyl diselenide (DMDSe), dimethyl selenone, di-
methyl selenylsulfide and methaneselenol (Terry et al. 2000).

Hg, known to cause various neurodegenerative diseases, is
also remediated by phytovolatilization. Among all forms of
Hg, methylated form (MeHg) of Hg is of main concern due to
its biomagnification in the food chain (Kumar et al. 2014).
Plants uptake the metal through roots and translocate them via
vascular system to the upper plant parts and finally get
transpirated. Enzymes within the plant transform the metal
to the volatile form (Hg0). Reports are also available for the
volatilization of Hg through the root system of transgenic
plants (Ke et al. 2001).

Phytofiltration

Phytofiltration may be defined as the use of plant roots to
absorb, concentrate and/or precipitate harmful pollutants or
metals from aqueous streams. The contaminants either get
adsorbed onto the root surface or absorbed in the roots. This
phenomenon is associated to the wastewater treatment. The
plants having dense root system are used in phytofiltration
which helps the plant to concentrate the maximum amount of
pollutants. In phytofiltration, plants are grown hydroponically,
and after the development of a dense root system, they are
relocated to polluted aqueous stream. Various plants have
shown their potentiality for phytofiltration. Some aquatic
plants (floating and rootless macrophytes) have high capacity
for the phytofiltration of heavy metals from the aqueous
streams (Zhang et al. 2011; Xie et al. 2013). Besides the
macrophytes, terrestrial plants are also used to remediate the
aqueous streams. The roots of many hydroponically grown
terrestrial plants are proved to be effective for the removal of
toxic heavy metals from aqueous solution (Dushenkov et al.
1995) and also for radionuclide removal from groundwater
(Lee and Yang 2010). As water moves to the roots,
metals dissolved in it are also carried to the root surface
and get adsorbed there. The entry of pollutants into root
cells is prohibited by the barriers of cell membranes
which immobilized the pollutants to root cell surfaces
(Yadav et al. 2011). Biotic and abiotic factors of aqueous
system such as pH and temperature ionic populations greatly
influence the metal bioaccumulation (Xing et al. 2013). Some
ornamental plants such as pearl grass (Micranthemum
umbrosum) proved to be very effective in accumulation of
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heavy metals from the polluted water stream. The men-
tioned plant bio-concentration factors for As and Cd are
found to be very high as compared to the other As and Cd
phytoremediator plant species (Islam et al. 2013).

Hydraulic barriers

Hydraulic barriers involve the use of hydrophilic plants which
uptake a large volume of water. The underground water re-
sources may get contamination by soil leaching or through the
surface water. To prevent such type of pollution, generally tall
trees are allowed to grow on contaminated land. These plants
control the migration of contaminants by rapid uptake of large
volume of the contaminated surface water. Such plants have
deep root system which helps the plant to prevent the under-
ground water pollution. Vegetative caps and riparian buffer
strips are such hydraulic barriers which control the migration
of pollutants.

Vegetative caps are the long-term, self supporting cover of
plants growing in and over materials that pose environmental
risk. These caps help in preventing leaching of contaminants,
soil erosion and migration of contaminants to the under-
ground water. Riparian buffer strips are the linear band
of vegetation along the bank of water resources. These
bands involve grasses as well as trees. These buffer strips
are helpful in increasing the water quality by removing pol-
lutants. Rehabilitation of polluted streams is only possible if
riparian zones start from headwaters and continuous with the
catchment (Parkyn et al. 2003).

Terrestrial plants and aquatic macrophytes used
for the phytoremediation of radionuclides and heavy
metals

Plants have potential to accumulate essential and non-essential
metals in their tissues. They are not capable of distinguishing
the metals with the same physiochemical properties or be-
tween the two isotopes of the same metal. Along with the
essential metals, they also accumulate their radioisotopes and
toxic metals (Dushenkov et al. 1997). Due to this characteris-
tic, various plants are extensively used for the remediation
purpose. This approach is gaining more and more attention
over the other conventional techniques of cleansing such as
leaching (Mason et al. 1997; Lu et al. 1998; Santos and
Ladeira 2011), reverse osmosis (Huikuri et al. 1998), use of
ion exchange resins (Brings 2010) and many other physical
and chemical treatments as it is eco-friendly and cheap and
can be efficiently applied for the removal of contaminants
from terrestrial as well as from aquatic systems (Zhu and
Shaw 2000; Balarama Krishna et al. 2004; Lewandowski
et al. 2006; Fulekar et al. 2010; Luksiene et al. 2013).

A number of plant species are successfully applied for the
remediation of terrestrial and aquatic systems contaminated
with radionuclides. Some plants such as grass (Polygonum
sp.), reeds (Phragmites australis) and bulrush (Typha latifolia)
are proved to be very effective in reducing the radioactivity of
U polluted water. Wetlands with these plants species have
been used to improve the water quality of streams receiving
discharge from the U mines (Carvalho et al. 2011). Like
aquatic system, soil contaminated with radionuclides could
also be remediated by the use of plants (Rauret et al. 1995). A
comparatively greater number of remediation cases have been
studied for 137Cs and 90Sr in different plants relative to the
other radionuclides (Entry et al. 1997; Zhu and Shaw 2000;
Fuhrmann et al. 2002; Eapen et al. 2006). These radioisotopes
are abundantly found in nuclear waste and are of main con-
cern. Various plant species involved in the remediation of Cs
and Sr are given in Tables 1 and 2. Few reports on remediation
of cobalt (60Co) are also available (Malik et al. 2000).

Terrestrial plants play a vital role in the phytoremediation
of heavy metals and radionuclides in contaminated soil and
aqueous resources. Some higher plants have developed such
strategies which facilitate their survival and reproduction in
the highly heavy metal contaminated soil (Dahmani-Muller
et al. 2000). For example, willow (Salix) species proved to be
very promising for the heavy metal phytoremediation of soil
and water (Mleczek et al. 2010). These plants accumulate
considerable amount of toxic metals in different parts. High
metal tolerance in plants is due to the metal detoxification
which is promoted by various antioxidant enzymes and other
cellular antioxidants such as cysteine and thiols. These anti-
oxidants are considered to be an important defence system
against metal toxicity. Hyperactivity of enzymes overcomes
the heavy metal toxicity by detoxification and helps the plants
in hyperaccumulation (Ali et al. 2003).

A range of flowering plant families are being used for the
phytoremediation purpose. The plants of Asteraceae family
could accumulate comparatively a higher concentration of
radionuclides and heavy metals than the other flowering spe-
cies (Turnau and Mesjasz-Przybylowicz 2003; Tang and
Willey 2003). The higher accumulation capacity for heavy
metals and radionuclides in this family is due to the high
transfer factor (ratio of contaminant concentration in plant
and in the soil on a dry weight basis) and the occur-
rence of arbuscular mycorrhiza (AM) colonies with the
abundant arbuscules which catalyze the process. When
two or more heavy metals are present together, there is
a competition for the binding sites in root zone, and
bioaccumulation coefficients for each metal get reduced as
compared to the single metal contamination (Keeling et al.
2003). In the case of some plants such as dahlia (Georgina
wild), increase in the heavy metal concentration adversely
affects the plant i.e. it decreases the growth of the plants
(Shivhare and Sharma 2012).
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Many crops also have efficiency to remove metals from the
contaminated land. Field pumpkin (Cucurbita), maize (Zea
mays), red beet (Beta vulgaris), cabbage (Brassica oleracea
var. capitata), barley (Hordeum vulgare), white lupine
(Lupinus albus), lentil (Lens culinaris), chickpea (Cicer
arietinum) and many other crops that produce high biomass
are efficiently used for phytoremediation (Rodriguez et al.
2007; Poniedzialek et al. 2010). The plants of Brassicaceae
family proved their remediation potential against the heavy
metals as well as the radionuclides. Awell-known heavymetal

hyperaccumulator plant species belong to this family that
accumulates a high level of heavy metals is alpine pennygrass
(Thlaspi caerulescens). The enhanced metal tolerance and
phytoremediation potential of plant is possibly due to the
presence of metal-binding peptides (Papoyan and Kochian
2004). The hyperaccumulator plants may have higher density
of these metal transporters on the plasma membrane of root
cells as compared to the non-hyperaccumulator species which
enhance their accumulation capacity (Zhao et al. 2003). In this
family, genus Brassica is more efficiently used for the

Table 1 Plants effective in
phytoremediation of 137Cs
contaminated sites

Scientific name Common name References

Lycopersicon esculentum Mill.

Beta vulgaris var. cicla L.

Catharanthus roseus L.

Amaranthus chlorostachysWilld.

Calendula Alata L.

Chenopodium album L.

Brassica campestris L. perkinensis

Funaria hygrometrica Hedw.

Hordeum vulgare L.

Amaranthus retroflexus L.

Brassica juncea L. Czern.

Phaseolus acutifolius A. Gray

Calotropis gigantea R.Br.

Chromolaena odorata L.

Cannabis sativa L.

Agropyron spicatum (Pursh) Scribn & Smith

Leymus cinereus Scribn & Merr.

Bromus tectorum L.

Agropyron cristatum L. Gaertn.

Vetiveria zizanioides L. Roberty.

Tomato

Swiss chard

Madagascar periwinkle

Ringelblume

lamb's quarters

Cabbage

Moss

Barley

Redroot pigweed

Indian mustard

Tepary bean

Giant milky weed

Christmas Bush

Hemp

Blue bunch wheatgrass

Great Basin wild rye

Cheat grass

Crested wheatgrass

Khus

(Brambilla et al. 2002)

(Schuller et al. 2004)

(Fulekar et al. 2010)

(Moogouei et al. 2011)

(Moogouei et al. 2011)

(Moogouei et al. 2011)

(Chiang et al. 2005)

(Balarama krishna et al. 2004)

(Bange and Overstreet 1960)

(Fuhrmann et al. 2002)

(Fuhrmann et al. 2002)

(Fuhrmann et al. 2002)

(Eapen et al. 2006)

(Singh et al. 2009)

(Hoseini et al. 2012)

(Cook et al. 2009)

(Cook et al. 2009)

(Cook et al. 2009)

(Cook et al. 2009)

(Singh et al. 2008)

Table 2 Plants effective in
phytoremediation of 90Sr
contaminated sites

Scientific name Common name References

Calotropis gigantea R.Br.

Broussonetia papyrifera L. Vent.

Parthenocissus quinquefolia L. Planch.

Cannabis sativa L.

Euphorbia macroclada Bioss.

Verbascum cheiranthifolium Bioss.

Astragalus gummifer L.

Vetiveria zizanioides L. Roberty.

Funaria hygrometrica Hedw.

Calotropis gigantea R.Br.

Amaranthus retroflexus L.

Brassica juncea L. Czern.

Phaseolus acutifolius A. Gray

Giant milky weed

Paper mulberry

Virginia creeper

Hemp

Spurge

Mullein

Tragant

Khus

Moss

Giant milky weed

Redroot pigweed

Indian mustard

Tepary bean

(Eapen et al. 2006)

(Li et al. 2011)

(Li et al. 2011)

(Hoseini et al. 2012)

(Sasmaz and Sasmaz 2009)

(Sasmaz and Sasmaz 2009)

(Sasmaz and Sasmaz 2009)

(Singh et al. 2008)

(Balarama krishna et al. 2004)

(Eapen et al. 2006)

(Fuhrmann et al. 2002)

(Fuhrmann et al. 2002)

(Fuhrmann et al. 2002)
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remediation purpose than the other genus of the family.
Various Brassica species produce a high amount of
biomass and are adaptable to a range of environmental
conditions which help them to accumulate pollutants
rapidly (Palmer et al. 2001). Brassica species (Indian
mustard (Brassica juncea), spinach mustard (Brassica
narinosa) and Chinese cabbage (Brassica chinensis)) are
very effectual for phytoextraction of U. The acid amendment,
citric acid in particular, enhances the hyperaccumulation of U
in shoots, whereas reverse effect is observed in the case of
sunflower (Helianthus annuus) (Huang et al. 1998; Huhle
et al. 2008). Another Brassica species, field mustard
(Brassica campestris), is reported for its phytostabilizing ca-
pacity against the varied concentration of cadmium (Cd)
(Anjum et al. 2014). On an agricultural land, accumulation
of toxic metals in crop plants could be prohibited by using co-
cropping method. When crop is co-cropped with the known
hyperaccumulator species, metal accumulation reduced in that
crop without affecting its growth (Xiaomei et al. 2005).

Members of Fabaceae or Leguminosae family have immense
power for the extraction of heavymetals and radionuclides from
polluted site. Leguminous woody species of this family have
high potential and phytoremediation capability of removing the
heavy metals. In these plants, maximum concentration of pol-
lutants is confined to root only, whereas under stressed condi-
tions, toxicity is also observed in the form of reduced chloro-
phyll and carotenoid contents. An increase in heavy metal
concentration in the soil decreases the nodule formation which
affects the nitrogenase activity (Ribeiro de Souza et al. 2012).
Phytotoxicity observed depends upon the plant used for
phytoremediation and the heavy metals to be remediated. For
instance, in castor bean (Ricinus communis), adverse effects are
observed due to Cd (De Souza Costa et al. 2012), whereas in
Brazilian leguminous tree species, Pb is responsible for
imparting toxicity (Ribeiro de Souza et al. 2012).

Among pteridophytes, some ferns of Pteridaceae family are
documented for their potential of removing heavy metals and
radionuclides (Chen et al. 2006; Shoji et al. 2008). Ferns
preferentially accumulate higher metal concentration in
aboveground biomass as compared to the roots (Baldwin
and Butcher 2007). To evaluate the phytoremediation
potential of ferns, it is recommended that metal uptake
by fronds should be taken into consideration (Niazi et al.
2012). Pteris vittata (Chinese brake) is well known for arsenic
hyperaccumulation. This plant species has enough tolerance
for high concentration of As because of the presence of high
density of specific As transporters. Reports revealed that due
to the structural similarity of arsenic with phosphate, it is
easily extracted and transported by the plant from contami-
nated site via phosphate transport system (Lee et al. 2003).

Along with the soil remediation, terrestrial plants are also
applicable for the remediation of polluted aqueous streams.
Sunflower (Helianthus annuus), purple guinea grass

(Panicum maximum) and orange jewelweed (Impatiens
capensis) are very effective in removing the heavy metals
and radionuclides from contaminated water (Dushenkov
et al. 1997; Roongtanakiat et al. 2010). The terrestrial plants
accumulate higher metal concentration in their root when
applied to an aqueous system (Caldwell et al. 2012). The
phytofiltration of radionuclides by the roots of terrestrial
plants is very effective and of vital interest for pilot scale
experiments (Prasad 2007).

Besides the terrestrial plants, various aquatic macrophytes
are also reported for remediation of contaminated aquatic
ecosystems. Macrophytes are those plants which grow in or
near water and are categorized as merged, submerged and free-
floating plants. Duckweed (Lemna minor), water hyacinth
(Eichhornia crassipes), hydrilla (Hydrilla verticillata) and
water lettuce (Pistia stratiotes) are some of the aquatic macro-
phytes which are frequently used for the heavy metal remedi-
ation in aquatic system (Singh et al. 2012; Hua et al. 2012).
Some adverse effects of toxic metals have also seen in macro-
phytes during remediation. Toxic metal exposure inhibits the
chlorophyll synthesis in these plants. The sugar and protein
contents of the macrophytes also get affected. Reduction in
sugar level may be due to the increased sugar consumption by
plant in stressed condition, and complexation of plant peptides
with heavy metal reduces the total protein content of plant
(Mishra and Tripathi 2008). Some aquatic plants such as
duckweed (Lemna gibba) behave as bio-indicator for heavy
metals that transfer heavy metals from contaminated site to the
plant and could be used to monitor the transfer of metal from
lower to higher trophic levels (Mkandawire and Dudel 2005).

Some aquatic and terrestrial plants used for the
phytoremediation of soil and water contaminated with heavy
metals and radionuclides are listed in Tables 1, 2 and 3.

Role of chelating agents in phytoremediation

Various chelating molecules contribute positively towards the
phytoremediation. Various chelating agents synthesized by
plants and artificial chelating amendments play a vital role in
enhancing the metal phytoremediation. When plants are
grown in toxic environment, chelating molecules are automat-
ically synthesized by the plant in response to minimize toxic-
ity and released by the plants in root exudates. These mole-
cules help the plant in phytoremediation by accumulating,
stabilizing and degrading the pollutants. Both natural and
synthetic chelating molecules help the plant to survive and
maintain its growth in contaminated environment.

Natural chelating molecules

Natural chelating molecules are those molecules which are
synthesized by the plant itself in response to any type of
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Table 3 Terrestrial and aquatic plants showing appreciable uptake of heavy metals

Plant Heavy metal References

Alyssum bertolonii L.
Jatropha curcas L.
Azolla pinnata R.BR
Brassica juncea L.
Salix viminalis L.
Salix miyabeana Seemen.
Cannabis sativa L.
Cardaminopsis halleri L.
Ceratophyllum demersum L.
Lemna gibba L.
Eucalyptus globules
Eichhornia crassipes (Mart.) Solms
Helianthus annuus L.
Hydrocotyle umbellata L.
Lemna minor L.
Pteris vittata L.
Cynodon dactylon (L.) Pers.
Vigna radiata (L.) R. Wilczek
Commelina benghalensis L.
Pluchea indica (L.) Less.
Cynodon dactylon (L.) Pers.
Vetiveria zizanioides (L.) Roberty
Amaranthus spinosus L.
Phyla nodiflora (L.) Greene
Gentiana pennelliana L.
Typha latifolia L.
Lupinus species
Lolium italicum A. Braun
Festuca arundinaceae Schreb.
Anthyllis vulneraria L.
Festuca arvernensis
Koeleria vallesiana
Armeria arenaria Willd.
Stackhousia tryonii Sm.
Sebertia acuminata Pierre ex baill.
Berkheya coddii L.
Pistia stratiotes L.
Sesbania drummondii (Rydb.) Cory
Solanum nigrum L.
Arabis gemmifera Adans.
Sedum alfredii Hance
Zygophyllum fabago L.
Helichrysum decumbens Cambess.
Tamarix species L.
Poa pratensis L.
Genaphalium affine D. Don
Conyza canadensis (L.) Cronq.
Phytolacca acinosa Roxb.
Elsholtzia splendens Nakai F. Maek.
Trifolium repens L.
Lolium perenne L.
Raphanus sativus L.
Spinacia oleracea L.
Lepidum sativum L.
Lactuca sativa L.
Pisum sativum L.
Amaranthus Hybridus L.
Amaranthus dubius Mart. Ex Thell.
Mimosa caesalpiniaefolia Benth.
Erythrina speciosa Andrews
Schizolobium parahyba (Vell.) S.F.Blake
Sesbania drummondii
Ricinus communis cv. Guarany

Ni
Pb and Cd
Cr, Hg and Cd
Cd, Cr, Cu and Pb
Cu, Pb and Zn
Cu, Pb and Zn
Cd, Cr and Ni
Zn, Cu, Sn, Fe and Al
Pb and Cr
Pb, Cr, Cd, Co and Zn
Cr and Zn
Zn, Cr, Cu, Cd, Pb, Ag and Ni
Cu, Zn, Pb, Hg, As, Cd and Ni
Cr, Zn, Na and Cu
As, Hg, Pb, Cr, Co and Zn
As, Cu and Cr
Pb, Co and Ni
Pb, Co and Ni
Pb, Cd and Zn
Cr
Cr
As, Cd, Cr, Cu, Hg, Ni, Pb, Se and Zn
Cu, Pb, Cd, Zn and Cr
Cu and Zn
Pb, Cu and Zn
Cu, Ni, Zn, Fe, Mn and Ca
Mn, Cd, Pb, Cr and Hg
Zn and Pb
Zn and Pb
Zn, Cd and Pb
Zn, Cd, Pb
Zn, Cd, Pb
Zn, Cd, Pb
Ni
Ni
Ni and Co
Ag, Cd, Cr, Cu, Hg, Ni, Pb and Zn
Pb
Cd and Pb
Cd and Zn
Cd and Zn
Zn
Pb
Co
Pb and Cd
Pb
Cd
Mn
Cu, Zn, Pb and Cd
Cd, Zn and Pb
Cd, Zn and Pb
Cd, Cr, Cu, Ni and Zn
Cd, Cr, Cu, Ni and Zn
Pb and As
Pb and As
Pb, Zn and Cu
Cd, Ni, Pb and Hg
Cd, Ni, Pb and Hg
Pb
Pb
Pb
Pb
Cd and Pb

(Robinson et al. 1997a, b)
(Mangkoedihardjo and Surahmaida 2008)
(Rai 2008, 2010)
(Seth et al. 2012)
(Pitre et al. 2010)
(Pitre et al. 2010)
(Citterio et al. 2003)
(Neumann and Nieden 2001)
(Abdallah 2012)
(Abdallah 2012; Megateli et al. 2009)
(Sarin and Pant 2006; Arriagada et al. 2010)
(Odjegba and Fasidi 2007)
(Jadia and Fulekar 2008)
(Khilji and Bareen 2008)
(Parra et al. 2012)
(Kumari et al. 2011)
(Rathi et al. 2011)
(Rathi et al. 2011)
(Sekabira et al. 2011)
(Sampanpanish et al. 2006)
(Sampanpanish et al. 2006)
(Danh et al. 2009)
( Chinmayee et al. 2012)
(Yoon et al. 2006)
(Yoon et al. 2006)
(Taylor and Crowder 1983)
(Ximenez-Embun et al. 2001)
(Rizzi et al. 2004)
(Rizzi et al. 2004)
(Mahieu et al. 2011)
(Frerot et al. 2006)
(Frerot et al. 2006)
(Frerot et al. 2006)
(Bhatia et al. 2005)
(Jaffre et al. 1976)
(Robinson et al. 1997a, b; 1999)
(Odjegba and Fasidi 2004)
(Sahi et al. 2002)
(Gao et al. 2012)
(Kubota and Takenaka 2003)
(Yang et al. 2004)
(Conesa et al. 2006)
(Conesa et al. 2006)
(Conesa et al. 2006)
(Liu et al. 2006)
(Liu et al. 2006)
(Liu et al. 2006)
(Liu et al. 2006)
(Wang et al. 2005)
(Bidar et al. 2007)
(Bidar et al. 2007)
(Pandey 2006)
(Pandey 2006)
(Gunduz et al. 2012)
(Gunduz et al. 2012)
(Kala and Khan 2009)
(Chunilall et al. 2005)
(Chunilall et al. 2005)
(Ribeiro de Souza et al. 2012)
(Ribeiro de Souza et al. 2012)
(Ribeiro de Souza et al. 2012)
(Barlow et al. 2000)
(De Souza Costa et al. 2012)
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deficiency in plant or toxicity in root zone environment. Some
plants release phytosidophores (PS) mainly under Fe and Zn
deficiencies which mobilize heavy metals such as Cd along
with the Fe and Zn in the rhizosphere and hence uptake of
which is also enhanced (Awad and Romheld 2000).

Organic acid anions such as citrate, oxalate, malate, succi-
nate, tartrate, phthalate, salicylate and acetate are produced by
the plant in response to the metal ion toxicity. These anions
released form complex with the suitable metal ions and pre-
vent the plant root toxicity. Citric acid is a well-known chela-
tor which enhances the heavy metal and radionuclide uptake
capacity of the plants. Comparing to its bound form like
potassium citrate, free acidic form, i.e. citric acid, is more
effective in triggering metal hyperaccumulation (Huang
et al. 1998). But at elevated level, citric acid may adversely
affect the plant growth and result in reduced accumulation
(Sinhal et al. 2010).

Various membrane-bounded transport proteins are present
on plasma membrane which transports a specific anion out of
the root cells to detoxify specific metal ion (Ma et al. 2001).
Organic acids released by the plants are also involved in the
processes like sequestration of metals in cell vacuole to in-
crease the tolerance of plant in excess of heavy metals toxic
environment. Different plant species depending on their ge-
notypes acquire different mechanism like release of
phytosidophores, precipitation and sequestration to reduce/
remove the toxicity of metals (Khan et al. 2000). Peptide
ligands, phytochelatins (PCs, enzymatically synthesized
cysteine-rich peptides) and metallothioneins (MTs, small
gene-encoded, cysteine-rich polypeptides) are also specifical-
ly synthesized by the plant in response to the heavy metal
toxicity (Cobbett 2000).

Earlier, it was hypothesized that aminal and fungi respond
to heavy metal stress by induction of MTs and plants by
induction of PCs (Grill et al. 1987; Gekeler et al. 1988).
Further, two MT genes and functional homologs of fungi
MTs have been isolated from plant Arabidopsis and were
involved in copper tolerance of the plant (Zhou and
Goldsbrough 1994). The detoxification mechanism of plant
MTs involves the reduction of reactive oxygen species in
heavy metal-treated plant cells instead of sequestration of
toxic metals into vacuoles or other organelles (Lee et al.
2004) and protect the plants from oxidative damage
(Lv et al. 2012).

Report shows that organic compounds in root exudates
significantly affect the growth of rhizosphere microflora, and
these interactions play a vital role in successful application of
plants in phytoremediation (Kozdroj and Elsas 2000). Among
the rhizosphere micro-organisms, role of bacteria and fungi in
phytoremediation is well-established. Arbuscular mycor-
rhizal fungi contribute to phytoremediation, particularly
by stabilization/immobilization of the metal (Simon et al.
2006). Fungi improve the resistance of plant by enhancing

the plant-soil interaction and by synthesizing various
phytochelators which detoxify the metals in the rhizosphere
(Barea et al. 2005). Inoculation with arbuscular mycorrhizal
fungi could also promote the growth of plant by decreasing the
metal uptake (Shivakumar et al. 2011). Similarly, bacteria
could also serve as an effective inoculation for plants which
help them in metal immobilization and their growth in a
contaminated site (Aboudrar et al. 2013). Some bacteria such
as Bacillus licheniformis BLMB1 strain when amended with
contaminated soil enhance the metal uptake especially Cr
extraction in plants (Brunetti et al. 2011).

Synthetic chelating molecules

Synthetic chelating molecules used in phytoremediation are
the different amendments that are artificially primed for the
excessive uptake of the metals by plants. These complexing
agents immobilize the metal ions in the rhizosphere and
increase their availability to the plant and hence contribute to
higher metal uptake.

Organic acid molecules such as ethylenediaminetetraacetic
acid (EDTA), N-(2-hydroxyethyl)ethylenediaminetriacetic acid
(HEDTA), ethylenediamine-N,N′-bis(2-hydroxyphenyl)acetic
acid (EDDHA), diethylenetriaminepentaacetic acid
(DTPA), nitrilotriacetic acid (NTA) and trans-1,2-
cyclohexylenedinitrilotetraacetic acid (CDTA) are frequent-
ly used to improve the phytoremediation potential of the
plants. Application of EDTA to the contaminated soil en-
hances the translocation of the heavy metal from roots to
shoots and then finally to the leaves. This chelating agent
keeps the bioaccumulation factors higher in stems and leaves
(Barren 2012). EDTA is a better chelating agent than the other
organic acids as it changes the adsorded metal to loosely
bound fraction which is easily bio-available (Chen et al.
2012). The uptake rate and selectivity of plants for metals
depend largely on cultivar and chelator used in the process
(Turgut et al. 2004). Chelating amendments help in maintain-
ing the soil environment suitable for phytoremediation and
increase the extractability of plants by transforming the metal
to the extractable form. These two factors, metal speciation
and the soil environment, greatly affect the extraction poten-
tial of the plant used in phytoremediation (Chiang et al. 2006).
For instance, Cd and Zn speciation is greatly responsible for
their uptake. Presence of the ligands in both the cases consid-
erably enhances their uptake in the plant as compared to the
free metals (McLaughlin et al. 1997).

Traditional organic materials for instance, rice straw, are
reported as soil amendment used in phytoremediation of con-
taminated soil. These materials proved to be more effective
and environment-friendly than the organic acids used in the
study (Wu et al. 2012). Biosludge and biofertilizers enhance
microbial activities that in return reclaim the heavy metal-
contaminated soil and wastelands (Nanda and Abraham
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2011). Municipal solid waste composts increase the metal
accumulation in plants and also increase plant resistance to
survive in highly toxic environment.

Although chelating agents are very proficient in metal
phytoremediation, they also include some negative aspects
that cannot be ignored. Excessive accumulation of metals
accomplished by the use of these molecules may cause metal
toxicity in plants, and the natural tactics of plant for metal
remediation may alter. Chelating molecules are also known to
affect the root to shoot metal translocation within the plants
and considerable decrease in growth of the plant. In the case of
some chelators, the considerable root and shoot weight drop
was observed along with the excessive micronutrients uptake
that adversely affect the plant metabolism (Farid et al. 2013).
Therefore, some parameters like plant growth, interaction of
chelator with the plant and environments and quantity of
chelators to be used should be taken in consideration while
using an artificial chelator in phytoremediation.

Disposal of phyto-biomass

There are some techniques reported in the literature for the
safe disposal of contaminated phyto-biomass produced after
the remediation of metals and radionuclides. Techniques such
as composting, compaction and pyrolysis are being used as
pretreatments to reduce the biomass and incineration, and
ashing, liquid extraction and direct disposal of phyto-
biomass are among the methods of final disposal (Sas-
Nowosielskaa et al. 2004). Among the pretreatments, pyroly-
sis is found to be more effective and beneficial as it ends to the
reduction of considerable volume of phytobiomass and leads
to the production of useful end product i.e. pyrolytic gas.
However, it costs almost double the amount used in the rest
of two. For the final disposition of contaminated phyto-
biomass, incineration or smelting is found to be promising.
These methods of final disposal end to the recovery of metals
from plant material and significant reduction in the waste
volume. Disadvantage includes the production of dioxins in
the treatment which promote the probability of cancer
(Shibamoto et al. 2007). Another mode of fate of contaminated
phyto-biomass is gasification. In this technique, valorization of
contaminated biomass is carried out to produce electricity and
heat (Vervaeke et al. 2006).

Conclusion

Phytoremediation is a green approach to decontaminate the
polluted sites. Available literature reveals that this technique is
an effective, economic, versatile and eco-friendly way of
cleaning the environment. Plants play significant role in

decontaminating aquatic and terrestrial sites polluted with
heavy metals and radionuclides. Terrestrial plants like trees,
grasses, flowering families and crops are used for the remedi-
ation of contaminated soil and water resources. Besides the
terrestrial plants, macrophytes (merged, submerged and float-
ing) have immense remediation potential to purify the water
resources. Within the plant, metal complexing agents (PCs,
MTs, organic acids) are synthesized in response to the toxicity.
Along with the natural chelating molecules, various synthetic
chelators are also supplemented in the contaminated site to
speed up the process of phytoremediation.

The process of phytoremediation is more advantageous
over the conventional methods due to various reasons. It is a
cost-effective technique and needs not to have costly equip-
ments. Further, special care is not required in growing the
plants on the contaminated sites. It is a natural way to decon-
taminate the environment. This technique of remediation also
has some weak aspects that includes a long time for the
removal of contaminants from the sites as compared to the
chemical methods of removal, and the scope is confined to the
low level nuclear waste only. It also produces a large amount
of contaminated phytomass, disposal of which is still a prob-
lem.With this, it also increases the possibility of toxin entry to
the food chain. But still, it is a better option of remediation
because of its eco-friendliness and cost effectiveness.

At present, phytoremediation is still considered as an
emerging technology (Prasad and Freitas 2003) with respect
to the metabolic pathways and growth behaviour of plants.
Significant experimental/laboratory work has been carried out
in this field, but commercialization of this technique is still
lacking. Hence, more experimental work is needed to under-
stand the phytoremediation process and its application at
commercial scale.
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