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Abstract Since their discovery in the late 1980s,
neonicotinoid pesticides have become the most widely used
class of insecticides worldwide, with large-scale applications
ranging from plant protection (crops, vegetables, fruits),

veterinary products, and biocides to invertebrate pest control
in fish farming. In this review, we address the phenyl-pyrazole
fipronil together with neonicotinoids because of similarities in
their toxicity, physicochemical profiles, and presence in the
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environment. Neonicotinoids and fipronil currently account
for approximately one third of the world insecticide market;
the annual world production of the archetype neonicotinoid,
imidacloprid, was estimated to be ca. 20,000 tonnes active
substance in 2010. There were several reasons for the initial
success of neonicotinoids and fipronil: (1) there was no
known pesticide resistance in target pests, mainly because of
their recent development, (2) their physicochemical properties
included many advantages over previous generations of in-
secticides (i.e., organophosphates, carbamates, pyrethroids,
etc.), and (3) they shared an assumed reduced operator and
consumer risk. Due to their systemic nature, they are taken up
by the roots or leaves and translocated to all parts of the plant,
which, in turn, makes them effectively toxic to herbivorous
insects. The toxicity persists for a variable period of time—
depending on the plant, its growth stage, and the amount of
pesticide applied. Awide variety of applications are available,
including the most common prophylactic non-Good
Agricultural Practices (GAP) application by seed coating. As
a result of their extensive use and physicochemical properties,
these substances can be found in all environmental compart-
ments including soil, water, and air. Neonicotinoids and
fipronil operate by disrupting neural transmission in the cen-
tral nervous system of invertebrates. Neonicotinoids mimic
the action of neurotransmitters, while fipronil inhibits neuro-
nal receptors. In doing so, they continuously stimulate neu-
rons leading ultimately to death of target invertebrates. Like
virtually all insecticides, they can also have lethal and suble-
thal impacts on non-target organisms, including insect preda-
tors and vertebrates. Furthermore, a range of synergistic

effects with other stressors have been documented. Here, we
review extensively their metabolic pathways, showing how
they form both compound-specific and common metabolites
which can themselves be toxic. These may result in prolonged
toxicity. Considering their wide commercial expansion, mode
of action, the systemic properties in plants, persistence and
environmental fate, coupled with limited information about
the toxicity profiles of these compounds and their metabolites,
neonicotinoids and fipronil may entail significant risks to the
environment. A global evaluation of the potential collateral
effects of their use is therefore timely. The present paper and
subsequent chapters in this review of the global literature
explore these risks and show a growing body of evidence that
persistent, low concentrations of these insecticides pose seri-
ous risks of undesirable environmental impacts.

Keywords Neonicotinoid . Fipronil . Trends .Mechanism of
action . Agriculture . Seed treatment . Systemic insecticides .

Metabolites

Introduction

Neonicotinoids and the phenyl-pyrazole fipronil are insecti-
cides with systemic properties. Their physicochemical char-
acteristics, mainly assessed in terms of their octanol water
partition coefficient (Kow) and dissociation constant (pKa),
enable their entrance into plant tissues and their translocation
to all its parts (Bromilow and Chamberlain 1995; Bonmatin
et al. 2014). Regardless of the manner of application and route
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of entry to the plant, they translocate throughout all plant
tissues making them toxic to any insects (and potentially other
organisms) that feed upon the plant. This protects the plant
from direct damage by herbivorous (mainly sap feeding)
insects and indirectly from damage by plant viruses that are
transmitted by insects. The discovery of imidacloprid by
Shinzo Kagabu, and its subsequent market introduction in
1991, started the era of the neonicotinoid class of insecticides
(Tomizawa and Casida 2011). Imidacloprid was followed in
1999 by thiamethoxam (Maienfisch et al. 2001a) and
clothianidin, which is a metabolite of thiamethoxam
(Meredith et al. 2002). Over the following two decades,
neonicotinoids have become the most widely used insecti-
cides of the five major chemical classes (the others being
organophosphates, carbamates, phenyl-pyrazoles, and
pyrethroids) on the global market (Jeschke and Nauen 2008;
Jeschke et al. 2011; Casida and Durkin 2013).

The French company Rhône-Poulenc Agro (now Bayer
CropScience) discovered and developed fipronil between
1985 and 1987 (Tingle et al. 2003), reaching the market in
1993 (Tomlin 2000). It is noteworthy that substances belong-
ing to the phenyl-pyrazole family have in principal herbicidal
effects, whereas fipronil is a potent insecticide.

By the 1980s, many pest insects had developed resistance
to the organophosphates, carbamates, and pyrethroids then on
the market (Georghiou and Mellon 1983; Denholm et al.
1998; Alyokhin et al. 2008). Set against this background of
increased resistance to existing insecticides, the neonicotinoid
and fipronil were presented as having several key attributes
that led to their rapid adoption in both agricultural and urban
environments. These included the following: lower binding
efficiencies to vertebrate compared to invertebrate receptors,
indicating selective toxicity to arthropods, high persistence,
systemic nature, versatility in application (especially as seed
treatments), high water solubility, and assumed lower impacts
on fish and other vertebrates.

The binding sites of neonicotinoids to nicotinic acetylcho-
line receptors (nAChRs) and fipronil to γ-aminobutiric acid
(GABA) receptors in the nervous systems of vertebrates are
different from those in insects. In general, vertebrates have
lower numbers of nicotinic receptors with high affinity to
neonicotinoids, which is why neonicotinoids generally show
a priori higher toxicity to invertebrates than vertebrates (in-
cluding human, e.g., USEPA 2003a; Tomizawa and Casida
2003; Tomizawa and Casida 2005; Liu et al. 2010; Van der
Sluijs et al. 2013). Similarly, the binding of fipronil to insect
GABA receptors is tighter than that observed for vertebrate
receptors (Cole et al. 1993; Grant et al. 1998; Hainzl et al.
1998; Ratra and Casida 2001; Ratra et al. 2001; Narahashi
et al. 2010). This, combined with the frequent use on
neonicotinoids and fipronil in seed/soil treatments rather than
sprays, is supposed to make them comparatively safe for
agricultural workers. This is in contrast to some of the

alternatives that they have replaced, such as organophosphates
and carbamates (Marrs 1993). Neonicotinoids and fipronil are
also relatively persistent, offering the potential for long-term
crop protection activity. The half-lives of these compounds in
aerobic soil conditions can vary widely, but are measured in
months or longer (e.g., 148–6,931 days for clothianidin;
USEPA 2003a; Gunasekara et al. 2007; Goulson 2013;
Sánchez-Bayo and Hyne 2014). Extensive information about
the physicochemical characteristics of neonicotinoids and
fipronil can be found in Bonmatin et al. (2014), together with
information about their environmental fate.

Arguably, however, it is the systemic nature of these insec-
ticides that has made them so successful. Irrespective of their
mode of application, neonicotinoids become distributed
throughout the plant, including the apices of new vegetation
growth, making them particularly effective against sucking
pests, both above ground and below. Although it is not a
neonicotinoid, fipronil also acts systemically mainly when it
is co-formulated with polymers to increase its systemic activ-
ity (Dieckmann et al. 2010a; Dieckmann et al. 2010b;
Dieckmann et al. 2010c). Neonicotinoids and fipronil belong
to a wide family of substances jointly referred to as the
“systemic insecticides” due to their systemic properties, some
carbamate and organophosphorus substances, however, can
also act systemically (Sanchez-Bayo et al. 2013).
Neonicotinoid and fipronil should theoretically not target
organisms lacking nervous systems, such as protists, prokary-
otes, and plants. Very little research has been done on these
non-target organisms and the ecosystem functions they are
responsible for. Nevertheless, some studies have revealed
negative effects: for example, a negative effect of fipronil on
soil microorganisms was suggested as a possible cause for the
slower (ca. four-fold) degradation of this pesticide at high vs.
low application in Australian soils (Ying and Kookana 2006).

Seven separate neonicotinoid compounds are available
commercially worldwide (Jeschke et al. 2011). These are
imidacloprid and thiacloprid (developed by Bayer
CropScience), clothianidin (Bayer CropScience and
Sumitomo), thiamethoxam (Syngenta), acetamiprid (Nippon
Soda), nitenpyram (Sumitomo), and dinotefuran (Mitsui
Chemicals). An eighth compound, sulfoxaflor (Zhu et al.
2010), has recently come onto the market in China (Shao
et al. 2013b) and the USA (Dow Agro Sciences 2013;
USEPA 2013) and has been reviewed by the European Food
Safety Authority (EFSA) for approval in the European Union
(EFSA 2014). In China, new neonicotinoid compounds are
being developed and tested (e.g., guadipyr and huanyanglin),
and are nearing market release (Shao et al. 2013b; Shao et al.
2013b). Some of these novel neonicotinoids are the cis-
neonicotinoids, which are isomers of neonicotinoids in which
the nitro or cyano group are in the cis, rather than trans,
orientation. It is well known that trans and cis isomers can
differ markedly in their toxicity. More than 600 cis-
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neonicotinoid compounds have already been synthesized, two
of which, paichongding and cycloxaprid (Shao et al. 2013a),
might also soon be available on the Chinese market; both are
highly effective against Homoptera and Lepidoptera. Through
hydrolysis, cycloxaprid forms imidacloprid within the plant,
thereby acting as a time-released imidacloprid source,
prolonging the protection of the crop. The molecular struc-
tures of these systemic pesticides are reported in Fig. 1.

Neonicotinoids are active against a broad spectrum of
economically important crop pests, including Aphidae
(aphids), Aleyrodidae (whitefly), Cicadellidae (leafhoppers),
Chrysomelidae (among others western corn rootworm),
Elateridae (wireworms), Fulgoroidea (planthoppers),
Pseudococcidae (mealybugs), and phytophagous mites
(Elbert et al. 2008; Jeschke et al. 2011). Some of these groups
(e.g., aphids) can also transmit viruses, so neonicotinoids can
also contribute to the control of insect vectors of crop viral
diseases. However, their broad spectrum leads to undesirable
effects on non-target insects (Balança and de Visscher 1997;
Sánchez-Bayo and Goka 2006; Maini et al. 2010; Lanzoni
et al. 2012; Hayasaka et al. 2012a, b; Lu et al. 2012; Fogel

et al. 2013; Goulson 2013; Matsumoto 2013; Sanchez-Bayo
et al. 2013; Van der Sluijs et al. 2013; Lu et al. 2014; Feltham
et al. 2014; Bonmatin et al. 2014; Pisa et al. 2014). Pisa et al.
(2014) focus specifically on the undesirable effects of
neonicotinoids and fipronil on non-target invertebrates.

Global growth in the insecticide market

In 1990, the global insecticide market was dominated by
carbamates, organophosphates, and pyrethroids. By 2008,
one quarter of the insecticide market was neonicotinoid (rising
to 27 % in 2010; Casida and Durkin 2013), and nearly 30 %
was neonicotinoid and fipronil combined, with the other clas-
ses correspondingly reduced (Jeschke et al. 2011). In the same
year, imidacloprid became the world’s largest selling insecti-
cide, and second largest selling pesticide (glyphosate was the
largest; Pollack 2011) with registered uses for over 140 crops
in 120 countries (Jeschke et al. 2011). Neonicotinoids are now
in widespread use for a wide variety of crops worldwide.

Fig. 1 Common names and
molecular structures of the
systemic insecticides
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By 2009, the global neonicotinoid market was worth US
$2.63 billion (Jeschke et al. 2011). Imidacloprid accounted for
the greatest proportion (41.5 %) of this, and was worth US
$1.09 billion, with—in decreasing order of market share—
thiamethoxam, clothianidin, acetamiprid, thiacloprid,
dinotefuran, and nitenpyram worth US $0.63, 0.44, 0.28,
0.11, 0.08, and 0.008 billion, respectively. Over the period
2003–2009, sales of individual neonicotinoid products (with
the single exception of nitenpyram) rose by between 1.6- and
14.6-fold, with total sales across all products rising 2.45-fold
(Table 1).

According to one estimate, ca. 5,450 tonnes of
imidacloprid were sold worldwide in 2008 (Pollack 2011).
A separate study estimated that ca. 20,000 tonnes of
imidacloprid were produced globally in 2010 (CCM
International 2011). This difference may reflect real growth,
but may also be because imidacloprid became generic (off-
patent) in 2006 (Jeschke et al. 2011), and/or because the
estimates differ in the way they were measured, and what they
include (e.g., agrochemicals and/or veterinary products,
etc.; whether seed treatment is considered as insecticidal
or not). Of the estimated 20,000 tonnes, 13,620 tonnes
were produced in China (CCM International 2011).
Shao et al. (2013b) similarly estimate that China cur-
rently produces 14,000 tonnes of imidacloprid annually,
exporting 8,000 tonnes. Considering these figures, the
estimation of CCM International 2011 seems realistic.

More recently, imidacloprid has been replaced by
thiamethoxam and clothianidin in some parts of the world.
Consequently, the worldwide sales of thiamethoxam reached
US $1 billion in 2011 (Syngenta 2012), and US $1.1 billion in
2012 (Syngenta 2013). In the USA, clothianidin is now reg-
istered for use on 146 agricultural crops, and between 2009
and 2011 was applied to about 46 million acres (18.6 million
ha) of these crops annually, of which 45 million (18.2 million
ha) was corn (maize), Zea mays (Brassard 2012). In the USA,
the use of clothianidin in 2011 is estimated to be 818 tonnes
with corn accounting for 95 % of that use; imidacloprid
811 tonnes (2011) with soybeans and cotton accounting for

60 % of that use; and thiamethoxam 578 tonnes (2011) with
soybeans, corn, and cotton accounting for 85 % of that use
(US Geological Survey 2014).

Obtaining country or state-specific information on annual
trends in quantities used of neonicotinoid insecticides and
fipronil is challenging. Such information is rare in the peer-
reviewed literature. Furthermore, in those countries/states in
which information is available (e.g., Great Britain, Sweden,
Japan, and California), quantities are measured in different
ways (sold, used, shipped, etc.) and comparisons of absolute
amounts are not straightforward, though trends can be deter-
mined. For each of these countries and states, the overall use
of neonicotinoids and fipronil has risen markedly since their
first introduction in the early 1990s (Figs. 2a–d). There is little
suggestion that the quantities sold, used, or shipped are
reaching an asymptote (Fig. 3), which concords with the
growth in their annual global sales (Table 1).

The quantities of neonicotinoid insecticides produced,
sold, and applied may well continue to grow. This will be
aided by the increases in the acreage of crops where they are
heavily used, development of combined formulations (e.g.,
neonicotinoids combined with pyrethroids or fungicides), for-
mulation technologies (e.g., Bayer CropScience’s Q-TEQ
technology, which facilitates leaf penetration), the rise of
generic (off-patent) products (Elbert et al. 2008; Jeschke
et al. 2011), or possible development of molecules with prop-
erties of multiple pesticide classes (e.g., combinations of
herbicidal and insecticidal properties).

Many insect pests have developed resistance to conven-
tional insecticides such as organophosphates, carbamates, py-
rethroids, chlorinated hydrocarbons, and insect growth regu-
lators. Similarly, after nearly two decades of use, several target
pests of neonicotinoids have begun to develop resistance
(Jeschke et al. 2011). Examples are the greenhouse whitefly,
Trialeurodes vaporariorum (Karatolos et al. 2010), the white-
fly, Bemisia tabaci (Prabhakar et al. 1997; Cahill et al. 1996),
and the Colorado potato beetle, Leptinotarsa decemlineata
(Nauen and Denholm 2005; Szendrei et al. 2012; Alyokhin
et al. 2007).

Table 1 Growth in global annual turnover (US $ million) of
neonicotinoid insecticides. Sales figures for 2003, 2005 & 2007 taken
from http://www.agropages.com/BuyersGuide/category/ Neonicotinoid-

Insecticide-Insight.html. Sales figures for 2009, and number of crop uses
taken from (Jeschke et al. 2011). Products sorted by rank of sales in 2009

Product Crop uses Company 2003 2005 2007 2009

imidacloprid 140 Bayer CropScience 665 830 840 1091

thiamethoxam 115 Syngenta 215 359 455 627

clothianidin 40 Sumitomo//Bayer CS <30 162 365 439

acetamiprid 60 Nippon Soda 60 95 130 276

thiacloprid 50 Bayer CropScience <30 55 80 112

dinotefuran 35 Mitsui Chemicals <30 40 60 79

nitenpyram 12 Sumitomo 45 <10 <10 8
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Wang et al. (2007) demonstrated a relationship between
imidacloprid and acetamiprid resistance in cotton aphids
(Aphis gossypii). An increase in the frequency of resistance
to three neonicotinoids (acetamiprid, clothianidin, and
thiamethoxam) has also been reported for A. gossypii by
Herron and Wilson (2011). Shi et al. (2011) noted no cross-
resistance between imidacloprid and two other neonicotinoids
(thiamethoxam and clothianidin), but did find a 3.68–5.79-
fold cross-resistance for acetamiprid, nitenpyram, and
thiacloprid. These researchers concluded that resistance to

acetamiprid and thiacloprid should be avoided on
imidacloprid-resistant populations of A. gossypii.

Bioassays performed by Elbert and Nauen (2000) revealed
a high degree of cross-resistance for the tobacco white fly
(B. tabaci) to acetamiprid and thiamethoxam. Cross-resistance
between imidacloprid and thiamethoxam was also confirmed
under field conditions although Elbert and Nauen (2000)
suggest that such problems are sometimes quite localized
and that generalizations regarding resistance to imidacloprid
or other neonicotinoids based on a few monitoring results

Fig. 2 A Trend in the agricultural use of neonicotinoid insecticides in
Britain from 1990, measured in tonnes of active ingredient applied per
year. Data from http://pusstats.csl.gov.uk/index.cfm. B Trend in the
quantities of neonicotinoid insecticides sold in Sweden from 1998,
measured in tonnes of active ingredient per year. Data from Swedish
Chemicals Agency, KEMI, quoted in (Bergkvist 2011). C Trend in the
domestic shipment of neonicotinoid insecticides and fipronil in Japan

from 1990, measured in tonnes of active ingredient per year. Data from
Japan’s National Institute for Environmental Studies database, provided
by Mizuno, R. in litt., 2012. D Trend in the quantity of neonicotinoid
insecticides and fipronil used in California from 1990, measured in tonnes
of active ingredient applied per year. Data taken from http://www.cdpr.ca.
gov/docs/pur/purmain.htm. Also shown are the total quantities sold, from
http://www.cdpr.ca.gov/docs/mill/nopdsold.htm
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should be avoided. Cross-resistance also appeared between
imidacloprid, thiamethoxam, and clothianidin in the Colorado
potato beetle, L. decemlineata (Alyokhin et al. 2007).

A recent study by Kavi et al. (2014) shows that resistance
alleles to imidacloprid are present in the genetics of house flies
(Musca domestica) in Florida. Imidacloprid selection resulted
in a highly resistant strain of housefly, although the resistance
was not stable and decreased over the course of several
months. Incompletely dominant resistance of house flies to
fipronil was found by Abbas et al. (2014).

The development of insecticide resistance against
neonicotinoids in the brown planthopper (Nilaparvata lugens)
was first observed in Thailand in 2003 and has since been
found in other Asian countries such as Vietnam, China, and
Japan. This problem has exacerbated yield losses in rice
production in eastern China. Matsumura et al. (2008) found
positive cross-resistance between imidacloprid and
thiamethoxam in whitebacked planthopper, Sogatella
furcifera, and also indicated that insecticide resistance of this
crop pest against fipronil occurred widely in East and
Southeast Asia. Planthopper resistance to imidacloprid has
been reconfirmed following studies by Wang et al.
(2008) and Azzam et al. (2011). According to
Matsumura and Sanada-Morimura (2010) resistance to
neonicotinoids is increasing. More recently, Zhang et al.
(2014) studied nine field populations of the brown
planthopper (N. lugens) from Central, East, and South
China, and resistance to two neonicotinoids was moni-
tored from 2009 to 2012. All nine field populations
collected in 2012 had developed extremely high resis-
tance to imidacloprid. Resistance to imidacloprid was
much higher in 2012 than in 2009. Of the nine field

populations, six populations showed higher resistance to
nitenpyram in 2012 than in 2011.

Neonicotinoids are of enormous economic importance
globally, especially in the control of pests that have previously
developed resistance to other classes of insecticides (Jeschke
et al. 2011). However, as for many pest control products,
resistance to neonicotinoids may become a barrier to market
growth if not managed appropriately. The systemic properties
of neonicotinoid pesticides and fipronil, combined with pro-
phylactic applications, create strong selection pressure on pest
populations, thus expediting evolution of resistance and caus-
ing control failure. There is clearly a need to be judicious in
our patterns of neonicotinoid use, given that the emergence of
insecticide resistance can pose threats to crop production and
food security.

Uses

The use of neonicotinoids and fipronil covers four major
domains: plant protection of crops and ornamentals against
herbivorous insects and mites, urban pest control to target
harmful organisms such as cockroaches, ants, termites, wasps,
flies, etc., veterinary applications (against fleas, ticks, etc. on
pets and cattle, and fleas in cattle stables) and fish farming (to
control rice water weevil (Lissorhoptrus oryzophilus Kuscel)
infestations in rice-crayfish (Procambarus clarkii) rotation
(Barbee and Stout 2009; Chagnon et al. 2014)). Figures on
the relative economic importance of these four domains of
application are scarce, but to give an indicative example, the
2010 imidacloprid sales of Bayer CropScience (covering plant
protection and biocide uses) amounted to 597 million Euro
(Bayer CropScience 2011), while the 2010 imidacloprid sales
of Bayer Healthcare (veterinary applications) amounted to
408million Euro (Bayer Healthcare 2011). Overall, the largest
use seems to be protection of crops, ornamentals, and trees in
agriculture, horticulture, tree nursery, and forestry.

In agriculture, horticulture, tree nursery and forestry,
neonicotinoids and fipronil can be applied in many different
ways such as (foliar) spraying, seed dressing, seed pilling, soil
treatment, granular application, dipping of seedlings,
chemigation, (soil) drenching, furrow application, trunk injec-
tions in trees, mixing with irrigation water, drenching of
flower bulbs and application with a brush on the stems of fruit
trees. Seed and soil applications represent approx. 60 % of
their uses worldwide (Jeschke et al. 2011). In Europe for
instance, more than 200 plant protection products containing
imidacloprid, thiamethoxam, clothianidin, acetamiprid, or
thiacloprid are on the market. In 2012, these products had
more than 1,000 allowed uses for the treatments of a wide
range of crops and ornamentals including potato, rice, maize,
sugar beets, cereals (incl. maize), oilseed rape, sunflower,
fruit, vegetables, soy, ornamental plants, tree nursery, seeds

Fig. 3 Trend in the sales (Sweden), domestic shipment (Japan), use
(California) and agricultural use (Britain) of all neonicotinoid insecticides
and fipronil. See Figs. 2a–d for further details. All measured in tonnes of
active ingredient per year. Note the separate vertical axes for California//
Japan, and Britain//Sweden
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for export, and cotton (EFSA 2012). In 2012, imidacloprid
and thiamethoxam accounted for the largest share of autho-
rized uses in Europe, with >30 and >25 %, respectively.
Thiacloprid and acetamiprid accounted for >15 %, while
clothianidin accounts for <5 %. These uses include field,
greenhouse, and indoor applications. The largest share is field
uses representing >60 % (EFSA 2012). Approximately 70 %
of the number of allowed field uses in Europe were spray
applications in 2012, while less than 20%were seed treatment
and less than 20 % were other methods of application such as
drip irrigation, soil treatment. However, it is worthwhile not-
ing here that “percentage of number of allowed uses” is not the
same as “percentage of the total volume of active substance,”
nor is it representative of the extent of treated area. Thiacloprid
and acetamiprid are authorized in the EU as spray or soil
treatments. In Europe, no uses as seed treatment were noted
for acetamiprid, and a single use was noted for thiacloprid
(maize) (EFSA 2012). In Asia, major large-scale applications
of neonicotinoids include spraying of rice fields and other
crops (Taniguchi et al. 2012), as well as granular applications
(Thuyet et al. 2011, 2012) and seed coatings.

By far, the largest and most popular application in crop
protection is the prophylactic seed coating. It is an a priori
treatment against target pests that may decrease production
yields. During germination and growing, the active substance
in the seed coating is taken up by the roots and translocated to
all parts of the crop, making the crop toxic to insects that
attempt to feed upon it (Van der Sluijs et al. 2013). The global
market for coating crop seeds with insecticides grew dramat-
ically (more than six-fold) between 1990 and 2008, when its
total value approached a billion Euros (Jeschke et al. 2011).
This growth was almost entirely due to seeds being treated
with neonicotinoids, which are well suited to this form of
application (Elbert et al. 2008). In Britain, for example, of
the 87.2 tonnes of neonicotinoid applied in 2012, 75.6 tonnes
was as a seed treatment. In fact, 93 % by weight of all
insecticidal seed treatment was with neonicotinoids (Fig. 4).

Similarly, the largest use of these compounds in North
America is via application to seed in many annual row crop
systems. Corn (maize) is the largest single use—in fact, pro-
duction of corn for food, feed, and bioethanol production
represents the largest single use of arable land in North
America. Pest management of seed and seedling disease and
insect pests in corn is achieved almost exclusively using
prophylactic applications of pesticide “cocktails” that routine-
ly include neonicotinoid seed treatments for insect control.
One coated maize seed typically is coated with between 1,500
and 4,500 ppm of insecticide (or 0.5–1.5 mg per seed).
Systemic and long-lasting high concentrations allow not only
the protection of the seedling from soil-bound insects but also
offer some suppression of western corn rootworm, Diabrotica
virgifera virgifera, whose attacks usually start one or more
weeks after the sowing (van Rozen and Ester 2010).

Maize planting reached unprecedented levels in the USA in
2013 at 96 million acres, or 38.8 million ha (USDA-NASS
2013). This level of production is expected to increase in 2014
and beyond. Virtually all of the seeds planted in North
America (the lone exception being organic production=
0.2 % of total acreage, USDA –NASS 2013) are coated with
neonicotinoid insecticides. The two major compounds used
are clothianidin and thiamethoxam; the latter is metabolized to
clothianidin in insects, other animals, plants, and soil (Nauen
et al. 2003). Although maize is the largest single use, seed
treatments in other large acreage crops, including soybeans
(31.4 million ha), wheat (23 million ha), and cotton (4.2
million ha) combine to make this class of insecticides the most
widely used in the USA in history, when measured by area of
application (USDA-NASS 2013).

Neonicotinoid seed treatments are routinely applied to the
vast majority of grain and oilseed crops in developed coun-
tries, regardless of pest pressures or field histories. Untreated
seeds are often unavailable for purchase. In fact, in many of
the most important crops grown in North America (notably
maize), there are no non-neonicotinoid seed alternatives read-
ily available to producers in the marketplace. Because any
subsequent crop insurance claims by producers must docu-
ment that accepted standard practices were used during plant-
ing, there is an inherent risk in requesting seed that is mark-
edly different from the standard. This may present a disincen-
tive for producers that would otherwise attempt growing
untreated seeds in some fields. Several efficacy studies have
demonstrated that applications of neonicotinoids can reduce
pest population densities, defoliation, and crop damage (e.g.,

Fig. 4 Trend in the agricultural use of neonicotinoid insecticides as seed
treatments in Britain from 1990, measured in tonnes of active ingredient
per year (bars). The total usage of all insecticidal seed treaments (solid
line) is also shown. Data from http://pusstats.csl.gov.uk/index.cfm
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Maienfisch et al. 2001b; Kuhar et al. 2002; Nault et al. 2004;
Koch et al. 2005). This can result in increased crop yields
compared to crops with no pest management (see review by
Jeschke et al. 2013).

However, because the pests targeted by neonicotinoids are
generally occasional, sporadic, and secondary pests, these
benefits are not routinely found: a review of literature by
Stevens and Jenkins (2014) found inconsistent benefits in 11
of 19 peer-reviewed papers examined, and no benefit in the
remaining 8 articles. Considering the nature of the pests
targeted, this is not altogether surprising. By definition, these
secondary pests are often not present or present in
subeconomic levels. However, they do occur and it is crucial
that crop producers have options for management. These
resources do exist: there is a significant base of knowledge
for managing these secondary pests, and agricultural practices
such as crop rotation drastically reduce the need for control
through neonicotinoids in many cases (Apenet 2009, 2010,
2011). Indeed, the cost-effectiveness of the prophylactic use of
neonicotinoids has in the past and recently been questioned
(Maini et al. 2010; Stevens and Jenkins 2014). Several studies
have shown that the use of neonicotinoids does not necessarily
result in increased yield or economic benefit, thereby bringing
into question the advisability of a widespread and prophylac-
tic use of neonicotinoid insecticides (Apenet 2011; Mole et al.
2013; Stokstad 2013). Macfadyen et al. (2014) showed that
imidacloprid-treated seeds tended to increase yields of canola,
but no such benefit was found for wheat. Similarly, Royer
et al. (2005) found that imidacloprid-treated seeds sometimes
increased yields of wheat but did not always result in a
positive economic return. Neonicotinoid insecticidal seed
treatments provided no yield benefits over a 2-year study in
experimental soybean applications (Seagraves and Lundgren
2012). De Freitas Bueno et al. (2011) also found that the
prophylactic use of neonicotinoids on soybeans did not sig-
nificantly increase production in comparison to other pest
management approaches. Johnson et al. (2009) found that
although imidacloprid treatments increased the yield of soy-
beans, the economic return from imidacloprid-treated crops
was not as high as those from crops under an integrated pest
management program. In citrus orchards of California,
imidacloprid treatments were ineffective or marginally effec-
tive at controlling damage from scales or mites and the insec-
ticides suppressed natural enemies such that overall benefits to
citrus crops were less than from other pest management op-
tions including growth regulators (Grafton-Cardwell et al.
2008). Taken as a whole, these data reflect that use levels for
neonicotinoid seed treatments are dramatically out of step
with the actual need; in most cases, pests are absent or present
at such low numbers that seed treatments cannot demonstrate
any benefit.

Alternatives to this prophylactic use of neonicotinoids in-
cluding those presented by Furlan and Kreutzweiser (2014)

may help to minimize the risk of insect and other arthropod
resistance (see above) to neonicotinoids and reduce overall
operational costs.

Mode of action on invertebrates

Neonicotinoids can be considered substances acting as ago-
nists on nAChRs opening cation channels (Casida and Durkin
2013). Voltage-gated calcium channels are also involved
(Jepson et al. 2006) in their insecticidal activity (Liu et al.
1995; Orr et al. 1997; Nishimura et al. 1998; Tomizawa and
Casida 2001, 2003, 2005). Differences in properties and
structure of the subunits between insects and mammalian
nAChRs explain in part the high selectivity of neonicotinoids
to arthropods and the supposed relatively low toxicity to
vertebrates (Nauen et al. 1999; Lansdell and Millar 2000;
Matsuda et al. 2001; Tomizawa and Casida 2003, 2005).
Electrophysiological studies have shown that the binding
potency of neonicotinoids to brain membranes is well and
positively correlated with their agonistic and insecticidal ac-
tivity. This suggests that the channel opening of nAChRs
induced by the binding of neonicotinoids to receptors leads
to insecticidal activity (Nishimura et al. 1998; Nishiwaki et al.
2003). As a result, their agonistic action induces continuous
excitation of the neuronal membranes, producing discharges
leading to paralyses and cell energy exhaustion. This binding
potency is conferred by a unique molecular conformation
(Tomizawa and Casida 2011). However, the interaction of this
conformation with the receptor may vary depending on their
different chemical substituents and on the species considered
(Honda et al. 2006). In addition, the sensitivity of insect
nAChRs to neonicotinoids may be modulated by phosphory-
lation mechanisms, as shown for imidacloprid (Salgado and
Saar 2004), leading to variation in the insecticidal activity.
Thus, imidacloprid selectively inhibits desensitizing nicotinic
currents, while displaying a selective desensitization toward
certain nAChR subtypes (Oliveira et al. 2011). This indicates
that selective desensitization of certain nAChR subtypes can
account for the insecticidal actions of imidacloprid.

The characterization of the binding sites, the recognition
subsites, and the toxicophores of neonicotinoids have been
studied in depth (Hasegawa et al. 1999; Kagabu et al. 2002;
Kanne et al. 2005; Matsuda et al. 2005; Kagabu 2008; Kagabu
et al. 2008; Kagabu et al. 2009). Photoaffinity labelling has
enabled identification of the amino acids involved in the
molecular interaction between neonicotinoids and nAChRs
or the acetylcholine binding protein (AChBP) (Tomizawa
and Casida 1997; Kagabu et al. 2000; Tomizawa et al.
2001a; Tomizawa et al. 2001b; Zhang et al. 2002, 2003;
Tomizawa et al. 2007; Tomizawa et al. 2008; Tomizawa and
Casida 2009). It appears that, in the same binding pocket, two
very different interactions drive the recognition of
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neonicotinoids. The electronegative toxicophore of
neonicotinoids and the cationic toxicophore of nicotinoids
(nicotine, epibatidine, and desnitro-imidacloprid) lead to them
docking in opposite directions at the binding sites (Tomizawa
et al. 2003; Tomizawa and Casida 2009).

Neonicotinoids appear to bind to multiple sites on mem-
branes of neural tissues in various insect species. The
American cockroach, Periplaneta americana, expresses two
types of receptors resistant to α-bungarotoxin (α-BgTx), an
antagonist of nicotinic receptors: nAChR1, which is sensitive
to imidacloprid, and nAChR2, which is not (Courjaret and
Lapied 2001; Courjaret et al. 2003; Tan et al. 2007; Thany
et al. 2008). As a result, while imidacloprid acts on nAChR1
and not on nAChR2, nicotine, acetamiprid, and clothianidin
act as agonists of nAChR2 (Bordereau-Dubois et al. 2012;
Calas-List et al. 2013).

The first generation of neonicotinoids included
nitenpyram, imidacloprid, acetamiprid, and thiacloprid.
Imidacloprid and its metabolites are highly toxic to bees
(Suchail et al. 2000, 2001). It behaves like a partial agonist
of the nicotinic nAChRs in Kenyon cells of the honey bee
(Apis mellifera) mushroom body, which are involved in higher
order neuronal processes in the brain such as olfactory learn-
ing (Déglise et al. 2002). However, the pharmacological prop-
erties and the molecular composition of nAChRs differ in
Kenyon cells and in neurons from antennal lobes (Barbara
et al. 2008; Dupuis et al. 2011). In antennal lobe neurons, the
characterization of type I nAChR currents, which exhibit slow
desensitization, and type II currents, which exhibit fast desen-
sitization, strongly suggest the presence of at least two differ-
ent types of nAChRs. The presence of two types of receptors
displaying different affinities for imidacloprid and its metab-
olites was proposed on the basis of the complex toxicity
profile after acute and chronic exposures in the honey bee
(Suchail et al. 2001). Such complex profiles can be shown
both on mortality rates and on sublethal effects on reproduc-
tion. This has been recently exemplified for common fruit fly,
Drosophila melanogaster, after chronic exposure to
imidacloprid, at concentrations far below the levels found in
the field (Charpentier et al. 2014). A study designed to dem-
onstrate the absence of different biological targets of
imidacloprid and its metabolites (Nauen et al. 2001) proved
inconclusive for several reasons: (1) a binding of [3H]-
imidacloprid occurs at nanomolar concentrations, whereas
ionic currents are induced at micromolar concentrations
(30 μM here), (2) the pharmacology of the current induced
by imidacloprid, 5-OH-imidacloprid and olefin (two impor-
tant metabolites of imidacloprid, see metabolites section for
details) has not been investigated, (3) no Scatchard analysis is
presented, therefore no analysis for receptor binding interac-
tions is provided, and (4) displacement experiments have been
performed at nanomolar concentrations instead of micromolar
concentrations, which prevent the dual characterization of

high and low-affinity targets. Studies on the effects of
imidacloprid and two of its metabolites, 5-OH-imidacloprid
and olefin-imidacloprid, on the habituation phenomenon have
enabled the characterization of two receptors differentially
expressed during honey bee development (Guez et al. 2001;
Guez et al. 2003).

The occurrence of two types of imidacloprid targets, which
could explain the differential toxicity of imidacloprid at low
and very low doses observed in bees, has been demonstrated
in the green peach aphid (Myzus persicae). Saturable binding
of [3H]-imidacloprid has revealed a high-affinity binding site,
with a dissociation constant (Kd) of 0.14 nM, and a low-
affinity binding site, with Kd of 12.6 nM, whose pharmacol-
ogy resembles that of nAChR (Lind et al. 1998). Another
study confirming these results presented similar dissociation
constants of 0.6 and 7.2 nM (Wiesner and Kayser 2000). In
addition, the pharmacology of the high-affinity binding site is
similar to that of α-BgTx binding sites in the honey bee and
the hawk moth (Manduca sexta) (Lind et al. 1999). The
existence of two imidacloprid binding sites has been con-
firmed in the brown planthopper (N. lugens) (Li et al. 2010).
Two [3H]-imidacloprid binding sites have been identified with
different affinities (Kd=3.5 pM and Kd=1.5 nM) and subunit
co-assemblies (α1, α2, and β1 for the low-affinity nAChR
and α3, α8, and β1 for the high-affinity nAChR). In fact, the
existence of multiple binding sites in insects seems to appear
as a relatively common feature of neonicotinoids, since it has
also been observed in the aphid (Aphis craccivora) and in the
locust (Locusta migratoria) (Wiesner and Kayser 2000).

Contrary to acetylcholine, acetylcholinesterase does not act
on nicotine nor imidacloprid, and possibly on the other
neonicotinoids, leading to their prolonged action on the
nAChRs (Thany 2010). Furthermore, poor neuronal detoxifi-
cation mechanisms may contribute to a prolonged action at
this level (Casida and Durkin 2013). 6-chloronicotinic acid (6-
CNA) is a metabolite common to chloropyridinyl
neonicotinoids (Ford and Casida 2008; Casida 2011). Some
of these metabolites have proved to be highly toxic to bees
leading to significant mortalities by chronic exposure (Suchail
et al. 2001). Thus, the risk posed by 6-CNA to the honey bee
might be common to the use of imidacloprid, thiacloprid,
acetamiprid, and nitenpyram. These features may contribute
to the delayed and chronic lethality observed with some
neonicotinoids, e.g., thiacloprid, imidacloprid (Suchail et al.
2001; Beketov and Liess 2008; Tennekes and Sánchez-Bayo
2011; Roessink et al. 2013).

Imidacloprid has been shown to stimulate plant growth of
genetically modified stress tolerant plants, even in the absence
of damaging pest species, leading to increase in crop yield. As
a result, treated plants respond better to the effects of abiotic
stressors such as drought (Thielert et al. 2006). The metabolite
6-CNA has been suggested to be responsible for the physio-
logical plant changes as it is known to induce a plant’s own
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defenses against plant disease. Consequently, imidacloprid
together with acetamiprid, thiacloprid, and nitenpyram are
included within the so-called Stress ShieldTM technology
(Bayer 2006).

Thiamethoxam, a second-generation neonicotinoid
(Maienfisch et al. 2001a), acts differently to first-generation
neonicotinoids. Thiamethoxam is a poor agonist of insect
nAChRs (Nauen et al. 2003; Tan et al. 2007; Benzidane
et al. 2010). However, it is a full agonist at cercal afferent/
giant interneuron synapses (Thany 2011) where it induces a
strong depolarization that can be partially lowered by the
muscarinic antagonist atropine. This suggests that
thiamethoxam is able to bind to mixed nicotinic/muscarinic
receptors (Lapied et al. 1990). Metabolic N-desmethylation of
thiamethoxam (TMX-dm) results in an increase in the affinity
to the [3H]-imidacloprid binding site (Wiesner and Kayser
2000). However, although it does not occur in lepidopteran
larvae, TMX-dm can be produced in mammals and insects
(Nauen et al. 2003; Ford and Casida 2006b). It can interact
with insect nAChRs, but is about 25 times less potent than
thiamethoxam as an insecticide (Nauen et al. 2003), but is
nevertheless marketed in its own right. The thiamethoxam
metabolite, clothianidin, presents insecticidal activity
(Nauen et al. 2003). It can act on imidacloprid-
sensi t ive nAChR1 and imidacloprid-insensi t ive
nAChR2 subtypes (Thany 2009, 2011). Studies involv-
ing neurophysiology, behavioral experiments, and chem-
ical analysis have revealed that the effect of
thiamethoxam on cockroach locomotor activity is close-
ly associated with the appearance of its metabolite
clothianidin (Benzidane et al. 2010). These two mole-
cules are often presented together in environmental ma-
trices (Bonmatin et al. 2014), and their toxic action may
therefore be enhanced.

The third-generation neonicotinoid dinotefuran (Wakita
et al. 2003) can interact with insect nAChRs (Mori et al.
2002; Kiriyama et al. 2003). A high-affinity binding site,
exhibiting a dissociation constant of 13.7 nM, has been char-
acterized in the nerve cord membranes of the American cock-
roach (P. americana) (Miyagi et al. 2006). However,
Scatchard analysis suggests the occurrence of two binding
sites. Dinotefuran can exhibit a nerve-excitatory activity,
which is lower than that of imidacloprid and comparable to
that of clothianidin, and a nerve-blocking activity, which is
comparable to that of imidacloprid and slightly higher than
that of clothianidin (Kiriyama and Nishimura 2002). Such a
nerve-blocking action has also been described in cockroaches
with thiacloprid and its derivatives (Kagabu et al. 2008). The
insecticidal activity of dinotefuran and its derivatives is better
correlated to nerve-blocking activity than to nerve-excitatory
activity, a characteristic also observed with other
neonicotinoids (Kagabu et al. 2008). Both the nitroguanidine
and the terahydro-3-furylmethyl parts of the molecule are

important for the insecticidal activity of dinotefuran (Wakita
et al. 2004a; Wakita et al. 2004b; Wakita 2010). However,
compared to imidacloprid and acetamiprid, dinotefuran ap-
pears more effective in inducing depolarizing currents in terms
of current amplitude and concentration dependence (Le
Questel et al. 2011).

Sulfoxaflor is a fourth-generation neonicotinoid that ex-
hibits a high insecticidal activity against a broad range of sap-
feeding insects (Babcock et al. 2011). It can also act on
nAChRs and may be considered as a neonicotinoid. This
needs to be taken into account when considering possibilities
for insecticide rotation in order to manage resistance toward
neonicotinoids (Cutler et al. 2013). The nature of the interac-
tions with nAChRs differs between sulfoxaflor and the other
neonicotinoids (Sparks et al. 2013). Sulfoxaflor induces cur-
rents of high amplitude when tested on nAChR hybrids of
D. melanogaster α2 nAChR subunit and chicken β2 subunit
in the african clawed frog (Xenopus laevis) oocytes (Watson
et al. 2011). The maximum intensity (Imax) of sulfoxaflor-
induced currents is much higher than those of imidacloprid,
acetamiprid, thiacloprid, dinotefuran, and nitenpyram.
Conversely, sulfoxaflor presents a weak affinity to displace
[3H]-imidacloprid from green peach aphid (M. persicae)
membranes. In stick insect (Phasmatodea) neurons,
sulfoxaflor potently desensitizes fast-desensitizing currents,
IACh1H, and both slowly desensitizing components, IACh2H
and IACh2L (Oliveira et al. 2011). These studies clearly show
that the action of sulfoxaflor and other sulfoximines, similar to
that of imidacloprid, involves receptor desensitization, recep-
tor selectivity, a differential action at low and high doses
and, probably, receptor desensitization after a prolonged
exposure. Additionally, the use of D. melanogaster
strains presenting mutations at Dα1 and Dβ2 nAChR
subunits, or resistant silverleaf whitefly (B. tabaci)
strains revealed no cross-resistance between sulfoxaflor
and imidacloprid or spinosyns (family of compounds
with insecticidal activity produced from fermentation
of two species of Saccharopolyspora, including active
ingredients such as spinosad; Perry et al. 2012;
Longhurst et al. 2013), despite the fact that sulfoxaflor
shares nAChR as a common target with other
neonicotinoids.

The pharmacology of cycloxaprid, a cis-neonicotinoid also
belonging to the fourth generation, has been subjected to
fewer investigations due to its recent discovery. In the house-
fly, [3H]-cycloxaprid binds to head membranes with a Kd of
28 nM (Shao et al. 2013b). Displacement studies show that the
cycloxaprid metabolite, [3H]-nitromethylene imidazole
(NMI), is 19, 15, and 41-fold more potent than cycloxaprid
on housefly, honey bee, and mouse (Mus musculus) brain
membranes, respectively.

Neonicotinoids induce depolarizing currents in insects by
an agonist action on nAChRs. However, as seen above, they
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also exert a nerve-blocking activity that contrasts with their
agonist action and their nerve-excitatory activity, as shown for
thiacloprid and its derivatives (Kagabu et al. 2008; Toshima
et al. 2008). Studies carried out at chicken neuromuscular
junction strongly suggest that imidacloprid is an antagonist
at muscle cell nAChRs (Seifert and Stollberg 2005). In
N. lugens, the Y151S mutation in Nlα1 subunit is associated
with a resistance to imidacloprid, but has little effect on the
action of acetylcholine (Liu et al. 2005; Liu et al. 2006).
Replacement of tyrosine with methionine (Y151M mutation),
as found in Caenorhabditis elegans in the site equivalent to
Y151, instead of serine, results in Nlα1/β2 nAChR on which
imidacloprid acts as an antagonist (Zhang et al. 2008).
This shows that very subtle differences in subunit se-
quence can lead to nAChRs resistant to neonicotinoids
or to nAChRs on which neonicotinoids can act agonis-
tically or antagonistically.

As with carbamates and organophosphates, fipronil exerts
its insecticidal activity by acting on the inhibiting system of
the nervous system. It binds to GABA receptors (Tingle et al.
2003) and to glutamate receptors coupled to chloride channels
(Barbara et al. 2005). In doing so, fipronil blocks the
inhibiting receptors leading to an excitation of the nervous
system. It leads to neuronal hyperexcitation due to accumula-
tion of the neurotransmitter (GABA) at the synaptic junctions.
Its mode of action is, therefore, antagonistic, whereas that of
neonicotinoids is agonistic. Glutamate receptors are insect
specific, which is the reason why fipronil is more effective
on invertebrates than on vertebrates (Narahashi et al. 2007).
Furthermore, it seems to have low affinity to vertebrate recep-
tors (Grant et al. 1998). Fipronil shows a higher selectivity for
insects than for humans, with affinity constant (KI=IC50/(1+
[L]/Kd)) of 4 nM for the housefly GABAA receptors and
2,169 nM for human GABAA receptors (Ratra and Casida
2001). However, selectivity and sensitivity may vary with the
subunit composition of the human GABAA receptors.
C om p e t i t i o n w i t h t h e b i n d i n g o f 4 - [ 3 H ] -
ethylnylbicycloorthobenzoate ([3H]-EBOB) to GABA recep-
tors was performed to compare the relative affinity of fipronil
to GABA receptors of different subunit compositions (Ratra
et al. 2001). Fipronil is highly selective to the β3 receptors
(inhibitory concentration 50 % (IC50)=2.4±0.3 nM; KI=1.8
nM), but presents a lower selectivity to native GABAA recep-
tors (IC50=2,470±370 nM; KI=2,160 nM). The fact that
native receptors show a lesser affinity to fipronil than β3
receptors suggests that the other subunits of the human
GABAA receptors modulate the sensitivity of GABA recep-
tors to fipronil (Casida and Quistad 2004). Fipronil derivatives
show a higher affinity for native receptors than fipronil, with
IC50 values ranging between 237±45 and 343±49 nM for the
derivatives, and 2,470±370 nM for fipronil (Ratra et al. 2001).
Fipronil interacts with AChR receptors with lower affinity
than neonicotinoids (Barbara et al. 2005).

Metabolites

Metabolism of the seven major commercial neonicotinoids
can be divided into two phases. Phase I metabolism, largely
dependent on cytochrome P450, includes reactions such as
demethylation, nitro reduction, cyano hydrolysis, hydroxyl-
ation of imidazolidine and thiazolidine accompanied by olefin
formation, hydroxylation of oxadiazine accompanied by ring
opening, and chloropyridinyl and chlorothiazolyl dechlorina-
tion (Ford and Casida 2008; Casida 2011). For some
neonicotinoids, cytosolic aldehyde oxidase together with cy-
tochrome P450 is responsible for nitro reduction in mammals
(Dick et al. 2005; Casida 2011). Phase I metabolites have been
found in both small mammals and plants (Chen et al. 2005;
Casida 2011). Phase II metabolism is mainly responsible for
conjugate formation, which differ between plants and
animals (Ford and Casida 2008; Casida 2011). Several
metabolites are common to different neonicotinoids but
others are compound specific (Schulz-Jander and Casida
2002; Ford and Casida 2006a, 2008; Shi et al. 2009;
Casida 2011).

Neonicotinoids are subjected to intense metabolism in
plants leading to the appearance of different metabolites dur-
ing the plant life or, at least, up to the harvest of plants
consumed by humans or breeding animals (Laurent and
Rathahao 2003; Greatti et al. 2006; Ford and Casida 2008;
Karmakar et al. 2009; Karmakar and Kulshrestha 2009). As a
result, metabolites may induce a long-lasting action of
neonicotinoids against pests, particularly plant-sucking pests
such as aphids (Nauen et al. 1998). Tables 2 and 3 show the
metabolites of neonicotinoids and fipronil, respectively.

Thiamethoxam, clothianidin, and dinotefuran

Animals

The metabolism of thiamethoxam (hereafter also TMX) is close-
ly related to that of clothianidin (hereafter also CLO). As a result,
thiamethoxam produces both metabolites in common with
clothianidin as well as some specific metabolites (Ford and
Casida 2006a). The main metabolic pathways of thiamethoxam
involve hydroxylation at the oxadiazine part of the molecule,
accompanied by ring opening, leading to the production of
clothianidin, its principal intermediate in mammals, insects, and
plants (Nauen etl al. 2003; Ford and Casida 2006a; Karmakar
et al. 2009; Casida 2011). Other metabolic pathways of both
TMX and CLO are N-demethylation and/or nitro reduction
reactions (Ford and Casida 2006a; Casida 2011; Kim et al.
2012), leading to TMX-dm and CLO-dm or their N-nitroso- or
N-amino-guanidines derivatives. These are two metabolites with
toxicity comparable to those of the parent compounds, maintain-
ing almost unaltered binding affinity to the nAChR (Chen et al.
2005; Ford and Casida 2006a). In fact, N-desmethyl
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Table 2 Metabolites of neonicotinoids in various media and organisms. Metabolites known to be active toward invertebrates or mammals are
highlighted in bold

Parent compound Metabolites Formation medium Reference

Thiamethoxam
(TMX)

Clothianidin, CLO Soil, mice, mammals,
insects, plants

Ford and Casida 2006a; Nauen et al.
2003; PPDB 2013; FAO thiamethoxam

Thiamethoxam-dm, TMX-dm,
N-desmethyl thiamethoxam

Mice Ford and Casida 2006a

TMX-NNO Mice, soil bacteria
(Pseudomonas sp.)

Ford and Casida 2006a
Pandey et al. 2009

TMX-NNH2 Mice Ford and Casida 2006a

TMX-NH Mice, soil bacteria
(Pseudomonas sp.),
water
(photodegradation), soil

Ford and Casida 2006a; Pandey et al. 2009;
De Uderzo et al. 2007; FAO thiamethoxam

TMX-Urea Mice, soil bacteria
(Pseudomonas sp.),
water
(photodegradation), soil

Ford and Casida 2006a; Pandey et al. 2009;
Schwartz et al. 2000; FAO thiamethoxam

TMX-dm-NNO Mice Ford and Casida 2006a

TMX-dm-NH2 Mice Ford and Casida 2006a

TMX-dm-NH Mice Ford and Casida 2006a

TMX-dm-Urea Mice Ford and Casida 2006a

hydroxy thiazole urea derivative Plants (tomato) Karmakar et al. 2009

6-hydroxy oxadiazinon Plants (tomato) Karmakar et al. 2009

ether derivative Plants (tomato) Karmakar et al. 2009

NG-A Mammals Ford and Casida 2006a

NG-B Mammals Ford and Casida 2006a

NG-C Mammals Ford and Casida 2006a

NG-D Mammals Ford and Casida 2006a

5-methyl-2(3H)-thiazolone Water (photodegradation) De Uderzo et al. 2007

oxazine derivative Water (photodegradation) De Uderzo et al. 2007

acrylonitrile derivative Water (photodegradation) De Uderzo et al. 2007

carbonyl sulfide Water (photodegradation) De Uderzo et al. 2007; Schwartz et al. 2000

isocyanic acid Water (photodegradation) De Uderzo et al. 2007; Schwartz et al. 2000

Clothianidin/
Thiamethoxam

TZNG, CLO-dm
N-(2-chlorothiazol-5- ylmethyl)-N′-
nitroguanidine

Soil, plants, mammals PPDB 2013; Kim et al. 2012; Ford and Casida
2006a, 2008; FAO clothianidin;

CLO-NNO Mice, insects, plants Ford and Casida 2006a, 2008 Kanne et al. 2005;
Karmakar et al. 2009

CLO-dm-NNO Mice, insects, plants Ford and Casida 2006a, 2008; Kanne et al. 2005

CLO-NNH2, ATMG Mice, insects Ford and Casida 2006a; Kanne et al. 2005

CLO-dm-NNH2, ATG Mice, insects Ford and Casida 2006a; Kanne et al. 2005

CLO-NH, TMG, N-(2-chlorothiazol-5-
ylmethyl)-N′-methylguanidine

Soil, plants, sediment,
mammals

Kim et al. 2012; Ford and Casida 2006a, 2008; FAO
clothianidin

CLO-dm-NH, TZG Mammals, plants Ford and Casida 2006a, 2008; FAO clothianidin

CLO-Urea, TZMU, N-(2-chlorothiazol-
5-ylmethyl)-N-methylurea

Soil, Plants, mammals,
water

PPDB 2013; Kim et al. 2012; FAO clothianidin;
Ford and Casida 2008; Karmakar et al. 2009;
Žabar et al. 2012; Schwartz et al. 2000

CLO-dm-Urea, TZU, 2-chloro-1,
3-thiazole-5-ylmethylurea

Mammals, plants, soil Kim et al. 2012; Ford and Casida 2006a, 2008; FAO
clothianidin

THMN, N-hydroxy clothianidin,
N-2-Chlorothiazol-5-ylmethyl-
N-hydroxy-N′-methyl-N″-nitroguanidine

Rat, apple FAO clothianidin

2-chloro-1,3-thiazole-5-methylamine Tomato cell culture Karmakar et al. 2009
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Table 2 (continued)

Parent compound Metabolites Formation medium Reference

2-chloro-1,3-thiazole-5-methyl isocyanate Tomato cell culture Karmakar et al. 2009

TZA, CTM-a Mammals Ford and Casida 2006a

TZOH, CTM-b* Mammals Ford and Casida 2006a

CTM-c, CTA, CTCA, 2-chloro-1,
3-thiazole-5-carboxylic acid

Mammals, plants Kim et al. 2012; Ford et al. 2010;
Ford and Casida 2008, 2006a

CTM-i, cACT, 2-chlorothiazol-5-
ylmethylamine

Water FAO clothianidin

CTM-f Mammals Ford and Casida 2006a

CTNU, N-(2-chlorothiazol-5-ylmethyl)-
N′-nitrourea

Water FAO clothianidin

HMIO, 4-hydroxy-2-methylamino-
2-imidazolin-5-one

Water FAO clothianidin

MIT, 7-methylamino-4H-imidazo
[5,1-b][1,2,5]thiadiazin-4-one

Water FAO clothianidin

FA, Formamide Water FAO clothianidin

MU, Methylurea Water FAO clothianidin

Thiamethoxam/
Clothianidin/
Dinotefuran

MNG, NG-E, N-methyl-N-nitroguanidine Soil, plants, mammals PPDB 2013; Ford and Casida 2006a, b; FAO
clothianidin

Thiamethoxam/
Clothianidin/
Dinotefuran

MG, NG-F, Methylguanidine Water, plants, mammals Kim et al. 2012; Ford and Casida 2006a; FAO
clothianidin

Thiamethoxam/
Clothianidin/
Dinotefuran

NG-G, NTG, nitroguanidine Mammals, soil, plants Ford and Casida 2006a; FAO clothianidin

Dinotefuran DIN-dm, FNG, N-desmethyl dinotefuran,
2-nitro-1-(tetrahydro-3-furylmethyl)
guanidine

Mammals, plants, soil
(aerobic)

Ford and Casida 2006a; 2008; FAO dinotefuran

DIN-NNO Mammals, plants Ford and Casida 2006a, 2008

DIN-dm-NNO Mammals, plants Ford and Casida 2006a, 2008

DIN-NNH2 Mammals, plants Ford and Casida 2006a, 2008

DIN-dm-NNH2 Mammals, plants Ford and Casida 2006a, 2008

DIN-NH, DN, 1-Methyl-3-(tetrahydro-3-
furylmethyl)guanidine

Mammals, plants, water
(photolysis), soil
(anaerobic)

Ford and Casida 2006a, 2008; FAO dinotefuran;
USEPA 2004b

DIN-dm-NH, 3-(tetrahydro-3-furylmethyl)
guanidine

Mammals, plants Ford and Casida 2006a, 2008

DIN-Urea, UF, 1-Methyl-3-(tetrahydro-3-
furylmethyl)urea

Mammals, plants, soil
(aerobic), water
(hydrolysis+photolysis)

Ford and Casida 2006a, 2008; Rahman et al. 2013;
FAO dinotefuran; USEPA 2004b

DIN-dm-Urea, 3-(tetrahydro-3-
furylmethyl)urea

Mammals, plants Ford and Casida 2006a, 2008

DIN-2-OH Mammals, plants, water
(photolysis)

Ford and Casida 2006a; FAO dinotefuran; USEPA
2004b

DIN-5-OH Mammals, plants Ford and Casida 2006a, 2008

DIN-4-OH Mammals Ford and Casida 2006a

DIN-a, PHP, 1,3-diazinane
aminocarbinol (derivative of DIN-2OH)

Mammals, plants Ford and Casida 2006a; FAO dinotefuran

DIN-b (derivative of DIN-dm) Mammals Ford and Casida 2006a

DIN-e (guanidine derivative of DIN-a) Mammals Ford and Casida 2006a

DIN-f (guanidine derivative fo DIN-b) Mammals Ford and Casida 2006a

DIN-g (derivative of DIN-5-OH) Mammals, plants Ford and Casida 2006a, 2008

DIN-h (desmethyl DIN-g) Mammals, plants Ford and Casida 2006a, 2008

DIN-i (nitroso derivative of DIN-g) Mammals, plants Ford and Casida 2006a, 2008
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Table 2 (continued)

Parent compound Metabolites Formation medium Reference

DIN-j (nitroso derivative fo DIN-h) Mammals, plants Ford and Casida 2006a, 2008

DIN-k (guanidine derivative fo DIN-h) Mammals, plants Ford and Casida 2006a, 2008

DIN-l*, tetrahydrofuran carboxaldehyde,
3-Furfural

Mammals Ford and Casida 2006a

DIN-m, THFOL, tetrahydrofuran alcohol,
3-Furfuryl alcohol

Plants Ford and Casida 2008

DIN-n, THFCA, tetrahydrofuran-
3-carboxylic acid

Mammals, plants Ford and Casida 2006a, 2008

DIN-p, 4-hydroxy-tetrahydrofuran-
3-carboxylic acid

Mammals, plants Ford and Casida 2006a, 2008

DIN-r, THFMA, tetrahydrofuran-
3-yl-methylamine

Mammals, plants Ford and Casida 2006a, 2008

446-DO, 1-[4-hydroxy-2-(hydroxymethyl)
butyl]-3-methyl-2-nitroguanidine

Mammals, plants FAO dinotefuran

DIN-3-OH Mammals, plants, water
(photolysis)

FAO dinotefuran; USEPA 2004b

Imidacloprid IMI-olefin, olefin derivative, 4,
5-dehydro-imidacloprid

Honeybee, housefly,
drosophila, mice

Decourtye and Devillers 2010; Suchail et al.
2001; Nishiwaki et al. 2004; Sparks et al.
2012; Tomizawa and Casida 2003

IMI-5-OH, 5-OH-imidacloprid,
5-hydroxy-imidacloprid,
[(6-Chloro-3-pyridinyl) methyl]-4,
5-dihydro-2-(nitroamino)-
1H-imidazol-5-ol

Honeybee, mice Decourtye and Devillers 2010; Suchail et al.
2001; Tomizawa and Casida 2003

IMI-de Mice Tomizawa and Casida 2003

IMI-diol, 4,5-dihydroxy-imidacloprid Honeybee, mice Suchail et al. 2001; Tomizawa and Casida 2003

IMI-NH, desnitro-imidacloprid Honeybee, plants, mice Suchail et al. 2001; Tomizawa and Casida 2003

IMI-urea, urea derivative, N-
((6-Chloropyridin-3-yl)-methyl)-
imidazolidinone

Honeybee, mice Suchail et al. 2001; Tomizawa and Casida 2003

Imidacloprid,
Nitenpyram,
Acetamiprid,
Thiacloprid

6-CNA, 6-chloronicotinic acid Animals, plants, soil Suchail et al. 2001; Nishiwaki et al. 2004; Sparks
et al. 2012; Ford and Casida 2008, 2006b; Casida
2011; Brunet et al. 2005; FAO acetamiprid; Lazic
2012; Tokieda et al. 1999; Phugare and Jadhav
2013; FAO thiacloprid

Nitenpyram NIT-COOH Mice Ford and Casida 2008; Casida 2011

NIT-deschloropyridine Mice Ford and Casida 2008; Casida 2011

NIT-dm, N-desmethyl nitempyram Mice Ford and Casida 2008; Casida 2011

NIT-CN Mice Ford and Casida 2008; Casida 2011

NIT-deschloropyridine derivatives Mice Ford and Casida 2008; Casida 2011

Acetamiprid Acetamiprid-D-desmethyl, N-desmethyl
acetamiprid, IM-2-1, ACE-dm, N-
(6-Chloro-3-pyridylmethyl)-N′-cyano-
acetamidine

Animal, plants, soil
(microbial)

FAO acetamiprid; Brunet et al. 2005; Casida 2011;
Ford and Casida 2008; Chen et al. 2008;
Wang et al. 2012; Wang et al. 2013a

IM-1-3, N-[(6-chloro-3-pyridyl)methyl]-
N-methylacetamide, ACE-acet, ACE-urea

Animal, plants, soil, water
(hydrolysis)

Casida 2011; FAO acetamiprid; Brunet et al. 2005;
Dai et al. 2010; Liu et al. 2011

IM-2-3, N-[(6-chloro-3-pyridyl)methyl]
acetamide, ACE-dm-acet

Mice, plants Casida 2011; FAO acetamiprid

IM-1-2, N2-carbamoyl-N1- [(6-chloro-3-
pyridyl)methyl]-N1-methylacetamidine,
ACE-NCONH2

Mice, plants, soil
(microbial)

Casida 2011; FAO acetamiprid;
Phugare and Jadhav 2013

IM-2-2, N2-carbamoyl-N1- [(6-chloro-
3-pyridyl)methyl]-acetamidine,
ACE-dm-NCONH2

Mice, plants Casida 2011; Ford and Casida 2008
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thiamethoxam is almost as active as the insecticide imidacloprid
(Karmakar et al. 2009). However, nitro reduction reverses the
relative toxicity to insects and mammals, being a mechanism of
detoxification for insects and bioactivation for mammals (Kanne
et al. 2005; Honda et al. 2006, Casida 2011).

Thiamethoxam has been found to be a liver carcinogen in
mice (M. musculus) (Green et al. 2005a, b; Tomizawa and

Casida 2005). Green et al. (2005a, b) proposed that TMX-dm
may be a hepatotoxicant. This suggests that contrary to initial
ideas, neonicotinoids may significantly affect the health of ver-
tebrates including humans. A detailed review of such effects is,
however, outside the scope of the present review.

Further steps in the metabolism pathway involve either
phase I metabolites (N-methylene and C-methylene

Table 2 (continued)

Parent compound Metabolites Formation medium Reference

IM-1-4, N-methyl(6-chloro-3-
pyridyl)methylamine, N-
methylpyridinylmethylamine

Animal (honeybees),
plants, soil

Casida 2011; Ford and Casida 2006b;
Brunet et al. 2005; FAO acetamiprid;
Dai et al. 2010; Liu et al. 2011;
Wang et al. 2013b; Tokieda 1999;
Phugare and Jadhav 2013;
Wang et al. 2013a

IM-0, (6-chloro-3-pyridyl)methanol,
CPOL

Animal (honeybees),
plants

Brunet et al. 2005; FAO acetamiprid

ACE-NH, descyano derivative Plants, soil Casida 2011; Wang et al. 2013a

IM-2-5, N1-(6-Chloropyridin-3-ylmethyl)-
acetamidine, ACE-dm-NH

Animals FAO acetamiprid

IM-2-4, (6-chloro-3-pyridyl)methylamine,
chloropyridinylmethylamine

Mice, plants Casida 2011; Ford and Casida 2006a, 2008

N-methylpyridinylmethylamine Soil Phugare and Jadhav 2013

(E)-1-ethylideneurea Soil Phugare and Jadhav 2013

ACE-w, N′-cyano-N-methylacetimidamide Mice, plants Casida 2011; Ford and Casida 2006b, 2008

ACE-u, N′-cyanoacetimidamide Mice, plants Casida 2011; Ford and Casida 2006b, 2008

Thiacloprid THI-NH, M29, thiacloprid thiazolidinimine,
3-[(6-Chloro-3-pyridinyl)methyl]-2-
thiazolidinimine, descyano derivative

Mice, plants, soil Ford and Casida 2006b, 2008; FAO thiacloprid;

THI-ole, M38, thiacloprid-olefin, {3-
[(6-chloro-3-pyridinyl)methyl]-2-
thiazolylidene}cyanamide

Mice, plants Ford and Casida 2006b, 2008; FAO thiacloprid;

THI-ole-NH Mice, plants Ford and Casida 2006b, 2008

THI-4-OH, 4-hydroxy-thiacloprid, {3-
[(6-chloro-3-pyridinyl)methyl]-4-
hydroxy-2-thiazolidinylidene}cyanamide

Animals, plants, soil
(microbial)

Ford and Casida 2006b, 2008; FAO thiacloprid;
Zhao et al. 2009

Thiacloprid-amide, THI-NCONH2, 3-
[(6-chloro-3-pyridinyl)methyl]-2-
thiazolidinylidene}urea, M02

Mice, plants, Soil
(microbial)

Ford and Casida 2006b, 2008; FAO thiacloprid; Dai
et al. 2010

THI-4-OH-NCONH2, M37, {3-
[(6-chloro-3-pyridinyl)methyl]-
4-hydroxy-2-thiazolidinylidene}urea

Mice, plants Ford and Casida 2006b, 2008; FAO thiacloprid;
Casida 2011

THI-SO Mice, plants Ford and Casida 2006b, 2008

THI-SO3-H-NCONH2, Thiacloprid
sulfonic acid, M30

Mice, plants, Soil Ford and Casida 2006b, 2008; PPDB 2013; FAO
thiacloprid

THI-SOMe Mice Ford and Casida 2006b

Cycloxaprid CYC-OH, hydroxy derivatives Mice Shao et al. 2013b

CYC-(OH)2, dihydroxy derivatives Mice Shao et al. 2013b

CYC-NO, nitroso derivative Mice Shao et al. 2013b

CYC-NH2, amine derivative Mice Shao et al. 2013b

NMI, nitromethylene imidazole Mice Shao et al. 2013b

NMI-NO, nitroso derivative of NMI Mice Shao et al. 2013b

*not observed
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hydroxylation) leading to a wide range of nitroguanidine
(NG) and chlorothiazolylmethyl (CTM) cleavage products
or oxidation to the urea derivatives (TMX-Urea, TMX-dm.
Urea, CLO-Urea, CLO-dm-Urea) or phase II metabolites
by adding pyruvate to give the methyltriazinones (TMX-
dm-tri, CLO-tri, and CLO-dm-tri) (Chen et al. 2005; Ford
and Casida 2006a).

While all CTM cleavage products are in common between
thiamethoxam and clothianidin, only some NG cleavage

products are in common between the two insecticides
(methylnitroguanidine (NG-E), methylguanidine (NG-F),
and other NG compounds) (Yokota et al. 2003; Ford and
Casida 2006a; Kim et al. 2012). Other NG metabolites are
specific to thiamethoxam (NG-A, NG-B, NG-C, and NG-D).
These compounds may continue their metabolism leading to a
wide range of breakdown products.

Most of the metabolites of thiamethoxam and clothianidin
are observed not only in small mammals, such as mice and

Table 3 First-generation metabolites of fipronil in various media and organisms. Metabolites known to be active toward invertebrates or mammals are
highlighted in bold

Parent
compound

Metabolites Formation medium Reference

Fipronil Fipronil detrifluoromethylsulphinyl,
5-amino-3-cyano-1-(2,6-dichloro-
4-trifluoromethylphenyl) pyrazole,
MB 45897

Mammals, soil, plants (photolysis) FAO fipronil, Hainzl and Casida 1996;
France 2005

Fipronil-sulfide, 5-amino-1-.
[2,6-dichloro-4-(trifluoromethyl)
phenyl]-4-[(trifluoromethyl)thio]-
1H-pyrazole-3-carbonitrile, MB45950

Mammals, soil, plants, water
(photolysis)

FAO fipronil; Bobé et al. 1998;
Aajoud et al. 2003; France 2005;
Gunasekara et al. 2007

Fipronil-sulfone, 5-amino-1-[2,6-
dichloro-
4-(trifluoromethyl)phenyl]-4-
[(trifluoromethyl)sulfonyl]-
1H-pyrazole-3-carbonitrile,

MB 46136

Mammals (milk), hens (eggs),
soil, plants, water (incl.
photolysis)

Hainzl and Casida 1996;
Hainzl et al. 1998; Bobé et al. 1998;
FAO fipronil, Tingle et al. 2003;
Aajoud et al. 2003; France 2005

Fipronil-desulfinyl, desthiofipronil,
5-amino-1-[2,6-dichloro-4-
(trifluoromethyl)phenyl]-4-[(1R,S)-
(trifluoromethyl)]-1H-pyrazole-3-
carbonitrile, MB 46513

Soil, plants, water (photolysis) Hainzl and Casida 1996; Hainzl et al. 1998;
Bobé et al. 1998; FAO fipronil; Tingle
et al. 2003; Aajoud et al. 2003; Gunasekara
et al. 2007

5-amino-3-cyano-1-(2,6-dichloro-4-
trifluoromethylphenyl)-pyrazole-
4-sulfonic acid, RPA104615

Soil, water (photolysis) Tingle et al. 2003; FAO fipronil

5-amino-3-carbamyl-1-(2,6-dichloro-
4-trifluoromethylphenyl)-4-
trifluoromethylsulfonylpyrazole,
RPA105320

Soil, plants FAO fipronil

Fipronil-amide, 5-amino-3-carbamyl-1-
(2,6-dichloro-4-
trifluoromethylphenyl)-4-
trifluoromethylsulfinylpyrazole, RPA
200766

Mammals, soil, plants, water
(hydrolysis)

Bobé et al. 1998; Tingle et al. 2003;
Aajoud et al. 2003; FAO fipronil

5-amino-3-carbamyl-1-(2,6-dichloro-
4-trifluoromethylphenyl)-4-
trifluoromethylsulfinylpyrazole-
3-carboxylic acid,

RPA 200761

Mammals, soil, plants, water FAO fipronil; France 2005

Various conjugates in urine and bile
(RPA 105048, UMET/10, UMET/3,
FMET/9, UMET/4, FMET/7,
FMET/10, UMET/15)

Mammals FAO fipronil; France 2005

MB 46400 Mammals, hens (eggs) FAO fipronil; France 2005

RPA 108058 Mammals, hens (eggs) FAO fipronil

Ring-opened 106889 Mammals, hens (eggs) FAO fipronil

RPA 106681 Soil FAO fipronil
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rats, but also in dogs and hens (USEPA 2000; Klein 2003;
USEPA 2003b; Yokota et al. 2003; USEPA 2004a; Ford and
Casida 2006a; Kim et al. 2012).

Dinotefuran differs from TMX and CLO by its
tetrahydrofuranyl moiety instead of the chlorothiazolyl part.
As for thiamethoxam and clothianidin, the principal metabolic
pathways of dinotefuran (hereafter also DIN) in mammals
involve N-demethylation, nitro reduction, and N-methylene
hydroxylation accompanied by amine cleavage (Ford and
Casida 2006a; Casida 2011). Common metabolites have been
described (NG-E, NG-F, and other NG compounds) (FAO
dinotefuran). The metabolism of dinotefuran differs from that
of clothianidin and thiamethoxam by the ready hydroxylation
and metabolism of the tetrahydrofuranyl moiety. The pharma-
cokinetics of dinotefuran are characterized by a rapid metabo-
lism and excretion probably associatedwith its high polarity and
fast metabolism of the hydrofuranyl moiety (Ford and Casida
2006a). As a result, DIN metabolites follow a similar pattern
than those of TMX and CLO (DIN-dm, DIN-NNO, DIN-dm-
NNO, DIN-NNH2, DIN-dm-NNH2, DIN-NH, DIN-dm-NH)
and urea derivatives. Phase II metabolism, with pyruvate addi-
tion, produces methyltriazinones (DIN-tri and DIN-dm-tri)
(Ford and Casida 2006a; Casida 2011). As already observed
for thiamethoxam and clothianidin, the nitro reduction pathway
causes a shift from insect-selective to vertebrate-selective action
(Kanne et al. 2005; Honda et al. 2006; Casida 2011).

The tetrahydrofuran group may undergo metabolization
including hydroxylation at 2, 5, and 4 positions, ring opening,
N-acetylation, N-demethylation or nitro reduction (Ford and
Casida 2006a).

Most of the metabolites are observed in both small mam-
mals such as mice and rats but also in dogs and hens (Ford and
Casida 2006a; USEPA 2003c; USEPA 2004b). Hydrolysis of
the tetrahydrofuran ring to form 1-[4-hydroxy-2-(hydroxy-
methyl) butyl]-3-methyl-2-nitroguanidine (446-DO) has also
been reported (FAO dinotefuran).

Plants

Clothianidin metabolism in plants has been evaluated in a
variety of crops, including maize, sugar beet, fodder beet,
apples, and tomatoes (EFSA 2010). Metabolism of
thiamethoxam has been evaluated in maize, rice, pears, cu-
cumbers, lettuce, and potatoes (FAO thiamethoxam). The
plant enzymes responsible for the conversion of
thiamethoxam and clothianidin into their metabolites have
not been examined so far (Ford and Casida 2008).

Phase I metabolites in spinach, maize, and sugar beet were
remarkably similar to those observed in small mammals
(Chen et al. 2005; Ford and Casida 2006a, 2008), with the
main metabolic pathways proceeding through N-
demethylation and nitro reduction (FAO thiamethoxam;
Ford and Casida 2008).

Thiamethoxam is rapidly metabolized to clothianidin in cot-
ton plants, while TMX-dm is not significantly produced
(Karmakar et al. 2009). EFSA (2010) describes clothianidin as
being metabolized extensively in the leaves predominantly lead-
ing to CLO-NH and NG-F (Kim et al. 2012). Clothianidin is
oxidatively cleaved in plants to the carboxylic acid derivative,
among other metabolites and cleavage products (Ford and
Casida 2008; Ford et al. 2010; FAO clothianidin). In spinach,
thiamethoxam, clothianidin, and their N-demethylated products
form nitrosoguanidine, guanidine, and urea derivatives (Ford and
Casida 2008; FAO thiamethoxam; FAO clothianidin).
Conjugated products from thiamethoxam and clothianidin have
not been observed in spinach and neither have methylthio deriv-
atives (Ford and Casida 2008). Contrary to the metabolism in
mammals, clothianidin undergoes hydroxylation at the inner
guanidine nitrogen atom leading to the N-OH derivative (N-2-
chlorothiazol-5-ylmethyl-N-hydroxy-N ′-methyl-N″-
nitroguanidine, THMN) followed by glycosylation (phase II
metabolism) in maize, apple, and sugarbeet (FAO clothianidin).

Metabolism of dinotefuran in plants is similar to that in mam-
mals, leading mainly to methylguanidine, nitroguanidine, and
urea metabolites (Ford and Casida 2008; Casida 2011; Rahman
et al. 2013; FAO dinotefuran). As for clothianidin, N-methylene
hydroxylation yields either tetrahydrofurylmethylamine
(THFMA/DIN-r), which could be further metabolized through
phase I (e.g., N-acetylation, oxidation, reduction…) and/or phase
II (glucoside derivative) reactions (Ford and Casida 2008). In
plants, internal ring formation yields 6-hydroxy-5-(2-
hydroxyethyl)-1-methyl-1,3-diazinane-2-ylidene-N-nitroamine
(PHP). NG-E and NG-F are observed as major cleavage products
(Ford and Casida 2008; FAO dinotefuran).

Water

In water, thiamethoxam is stable to hydrolysis in dark condi-
tions at pH 1–7 (De Uderzo et al. 2007) while it is quickly
hydrolyzed at pH 9 and 20 °C (European Commission 2006)
and almost completely degraded (ca. 96 %) under UV radia-
tion in about 10 min (De Uderzo et al. 2007). The main
hydrolysis products are identified: TMX-Urea, clothianidin
and its derivatives (N-(2-chlorothiazol-5-ylmethyl)-N′-
nitrourea (CTNU), CTM-i, methylurea (MU), and NG-B)
(FAO thiamethoxam).

Conversely, De Uderzo et al. (2007) proposed a
photodegradation mechanism of thiamethoxam to form the
guanidine derivatives (TMX-NH), with a loss of HNO3. After
that, a nucleophilic substitution of the Cl with OH in the
thiazolic ring could occur, which then quickly decomposes to
5-methyl-2(3H)-thiazolone and NG-F (De Uderzo et al. 2007).
5-Methyl-2(3H)-thiazolone could in turn decompose to volatile
products, such as carbonyl sulfide and isocyanic acid, already
observed by Schwartz et al. (2000). Other observed
photodegradation products include an oxazine derivative,
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possibly formed by extrusion of S to generate an azetidinone
intermediate, and an acrylonitrile derivative from hydrolysis of
the imine group of the oxazol ring (De Uderzo et al. 2007).

No peer-reviewed literature could be found concerning
clothianidin breakdown in water. However, the FAOmentions
that this compound degrades by hydrolysis and/or photolysis
into CLO-Urea, with further cleavage tomethylurea (MU) and
2-chlorothiazol -5-y l-methylamine (ACT), (FAO
clothianidin). Clothianidin could also be hydrolyzed to the
nitro urea derivative (CTNU) and further cleaved into ACT.
Nitro reduction, cleavage at the methylene bridge or complex
cyclization reaction accompanied by loss of nitro group, chlo-
rine elimination, and desulphuration convert the parent com-
pound into CLO-NH, NG-F and forms 7-methylamino-4H-
imidazo[5,1-b][1,2,5]thiadiazin-4-one (MIT). Successively,
ring cleavage forms 2-methylamino-2-imidazolin-5-one
(MIO), 4-hydroxy-2-methylamino-2-imidazolin-5-one
(HMIO), NG-F and formamide (FA) with a final mineraliza-
tion to carbon dioxide (FAO clothianidin).

Hydrolysis of dinotefuran in dark conditions and alkaline pH
produces DIN-Urea. Photolysis on surface water produces DIN-
Urea, DIN-NH, DIN-2-OH, and DIN-3-OH (USEPA 2004b).

Soil

No peer-reviewed literature could be found concerning
thiamethoxam breakdown in soil. However, the FAO provides
some information on this regard (FAO thiamethoxam). The
metabolic pathways of thiamethoxam in soil, under aerobic
conditions, lead to the conversion of TMX into CLO, which
then is degraded to CLO-NH and CLO-Urea. CLO-dm is also
observed as a degradation product. Nitro reduction of the
parent compound also occurs, which finally forms TMX-
Urea. The intermediate TMX-NH has been observed only in
rice-paddies so far. NG-A cleavage product, from N-
methylene hydroxylation, has also been observed as a major
product in soil (FAO thiamethoxam). The main metabolite
formed in anaerobic conditions is TMX-NH but TMX-Urea
has been also observed (European Commission 2006).

The aerobic degradation of clothianidin in soil proceeds
through three main pathways. The first pathway starts with N-
demethylation of clothianidin to form CLO-dm and N-
methylene hydroxylation to form nitroguanidine (NG-G). The
second pathway starts with the N-methylene hydroxylation to
form NG-F and proceeds through N-demethylation to form
NG-G. A third route involves the formation of CLO-Urea via
nitro reduction (FAO clothianidin). The metabolisation of
clothianidin further progresses to carbon dioxide.

In soil incubated under aerobic conditions in the dark at 20 °C,
dinotefuran degraded to NG-E and NG-F as major degradation
products. Other minor observed metabolites were DIN-Urea and
DIN-dm (FAO dinotefuran). Dinotefuran and its metabolites are
further mineralized to carbon dioxide. It has been also found that

photolysis is not a significant degradation pathway of dinotefuran
in soil (FAO dinotefuran). DIN-NH has been observed in soil
under anaerobic conditions (USEPA 2004b).

Imidacloprid and nitenpyram

Animals (and plants)

The metabolic pathways of neonicotinoids present many sim-
ilarities between insects and plants. In the honey bee,
imidacloprid (hereafter also IMI) is transformed mainly to
olefin, 5-hydroxy-imidaclorpid (5-OH-imidacloprid), 4,5-di-
hydroxy-imidacloprid, desnitro-imidacloprid, urea derivative,
and 6-chloronicotinic acid (6-CNA). Among these metabo-
lites, olefin and 5-OH-imidacloprid exhibit toxicity both in
acute and chronic exposures (Suchail et al. 2001). Thus, the
biotransformation of imidacloprid leads to a metabolic activa-
tion and to the concentration of the toxic metabolites in the
brain and thorax of the honey bee for more than 96 h (Suchail
et al. 2004a, b). This results in a metabolic relay, in which
imidacloprid induces first toxicity and then the toxic metabo-
lites act in bees surviving the early action of imidacloprid.
This leads to a lethal phenomenon that lasts more than 96 h,
contrary to the other neurotoxic insecticides for which the
maximum mortality rate is generally observed between 10
and 24 h (Suchail et al. 2001). The metabolism of
imidacloprid is very similar in bees and flies with hydroxyl-
ated imidacloprid derivatives, olefin, 6-CNA, and the
imidazoline moiety as main metabolites in the housefly and
drosophila (Nishiwaki et al. 2004; Sparks et al. 2012). This
suggests that insects may exhibit close neonicotinoid meta-
bolic pathways. Thus, metabolic activation and sensitivity to
certain plant metabolites might be a common feature in in-
sects. That could be the reason for which the conserved
toxicity profiles have been depicted in bees and in flies after
chronic exposure to concentrations three to five orders of
magnitude lower than LC50 (Charpentier et al. 2014).

Much of the use of neonicotinoids takes advantage of the
systemic properties of the active substances and involves plant
treatments by seed dressing. As a result, humans and animals
are exposed through consumption of vegetables containing
neonicotinoid active substances taken up by plants, and their
metabolites. Exposure through food should be taken into ac-
count, since studies have shown that nicotine and nicotine
derivatives, such as the neonicotinoids imidacloprid,
acetamiprid, and clothianidin, can be rapidly and efficiently
absorbed through the intestine barrier (Yokota et al. 2003;
Brunet et al. 2004; Brunet et al. 2008). Moreover, seven me-
tabolites of these neonicotinoids have been found in human
urine of sick patients (Taira et al. 2013). Among plant metab-
olites, desnitro-imidacloprid is of particular interest because it
displays high toxicity to vertebrates associated with an agonist
action on theα4β2 nAChRs (Chao and Casida 1997; D'Amour
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and Casida 1999; Tomizawa and Casida 2000; Tomizawa et al.
2001a). Desnitro-imidacloprid is also able to activate intracel-
lular calciummobilization and the extracellular signal-regulated
kinase cascade through its interaction with the nAChR
(Tomizawa and Casida 2002). In mice, imidacloprid is
biotransformed into IMI-de, IMI-olefin, IMI-NH (desnitro-
imidacloprid), IMI-urea, IMI-urea-gluc, IMI-urea-gent, IMI-di-
ol, IMI-diol-gluc, IMI-5-OH, IMI-5-OH-gluc, IMI-NNO, 6-
CNA and different imidazoline and pyridinyl derivatives.
IMI-NH is generated by the action of cytochromes P450 on
imidacloprid (Tomizawa and Casida 2003). The appearance of
this metabolite can be considered a bioactivation, since IMI-NH
exhibits toxicity to mammals due to its ability to bind to α4β2
nAChR (Chao and Casida 1997; D'Amour and Casida 1999;
Tomizawa and Casida 2000; Tomizawa et al. 2001a; Tomizawa
and Casida 2003, 2005).

However, desnitro-imidacloprid is a detoxification deriva-
tive in insects. The 6-CNA is a metabolite common to
chloropyridinyl neonicotinoids (Ford and Casida 2008;
Casida 2011). Thus, the risk posed by 6-CNA to the honey
bee might be common to the use of imidacloprid, thiacloprid,
acetamiprid, and nitenpyram.

Nitenpyram (hereafter also NIT) is metabolized in mice
into NIT-COOH, NIT-deschloropyridine, NIT-dm (N-
desmethyl nitempyram), NIT-CN, and different NIT-
deschloropyridine derivative (Ford and Casida 2008; Casida
2011). The NIT metabolites have not been subjected to in-
depth toxicological investigations. These metabolites can un-
dergo an oxidation of the cyano group into a carboxylic acid
(Ford and Casida 2008; Casida 2011).

Soil and water

Further to metabolites described for plants and animals,
desntiro-olefin, 2,5 diketone, carbone dioxide, and 6-
hydroxynicotinic acid have been described in soil (FAO
imidacloprid).

Acetamiprid and thiacloprid

Animals

In mammals, acetamiprid (hereafter also ACE) undergoes a
rapid and efficient intestinal absorption (Brunet et al. 2008).
As for the other neonicotinoids, N-demethylation is the main
metabolisation pathway for acetamiprid and thiacloprid (here-
after also THI). In insects, acetamiprid undergoes a rapid
biotransformation, which signals a high metabolic activity,
being metabolized into IM2-1 (ACE-dm), IM1-3 (ACE-urea),
IM1-4 (N-methyl-chloropyridinylmethylamine), IM0 (6-
chloropicolyl alcohol), IC0 (6-CNA) and two unknown me-
tabolites (Brunet et al. 2005; Ford and Casida 2006a; Casida
2011). The metabolite 6-CNA remains stable for more than

72 h in all biological compartments, except gut-free abdomen,
which could explain the toxicity of acetamiprid (Brunet et al.
2005). Thiacloprid is transformed into THI-NH, THI-ole,
THI-ole-NH (putative), THI-4-OH, THI-NCONH2, THI-4-
OH-NCONH2, THI-SO, THI-SO3H-NCONH2, and THI-
SMe (Ford and Casida 2006b; Casida 2011). Descyano-
thiacloprid (THI-NH) is generated by the action of cyto-
chromes P450 on thiacloprid in vivo (Tomizawa and Casida
2003, 2005). As for imidacloprid and desnitro-imidacloprid,
the appearance of THI-NH can be considered as thiacloprid
bioactivation because THI-NH exhibits a toxicity to mammals
in relation with its ability to bind to α4β2 nicotinic acetyl-
choline receptors (Chao and Casida 1997; D'Amour and
Casida 1999; Tomizawa and Casida 2000; Tomizawa et al.
2001a; Tomizawa and Casida 2003, 2005). In insects, THI-
NH is instead a detoxification metabolite.

Plants

As seen for the other neonicotinoids, metabolization of
acetamiprid and thiacloprid is similar in plants and mammals.
Acetamiprid metabolization involves several initial sites of
attack: N-demethylation, cyano hydrolysis, cleavage of 6-
CNA. Additionally, cleavage of N-CN linkage from
acetamiprid, which yields the N-descyano compound (ACE-
NH) also occurs (Ford and Casida 2008; Casida 2011).

Thiacloprid metabolization involves five different sites of
attack: cyano hydrolysis (THI-NCONH2), sulfoxidation
(THI-SO, THI-SO3H-NCONH2), hydroxylation at the 4-
position (THI-4-OH, THI-4-OHNCONH2), conversion to
the olefin (THI-ole) and loss of the cyano group (THI-NH,
THI-ole-NH). The urea derivative (THI-4-OHNCONH2) and
THI-SO were the major metabolites observed (Ford and
Casida 2008; Casida 2011).

Soil and water

Acetamiprid is stable to hydrolysis and photolysis, the main
metabolite in soil being IM1-4 (FAO acetamiprid; Dai et al.
2010; Liu et al. 2011; Wang et al. 2013a; Wang et al. 2013b).
Minor metabolites are ACE-urea and 6-CNA (FAO
acetamipr id; Dai et a l . 2010; Liu et al . 2011) .
Biotransformation of acetamiprid produces the N-
demethylated derivative (Chen et al. 2008; Wang et al.
2012). Recently, Phugare and Jadhav (2013) evidenced the
formation of ACE-NCONH2 from microbial degradation in
soil, which is then cleaved to N-methylpyridinylmethylamine
and (E)-1-ethylideneurea with further oxidative cleavage to 6-
CNA.

Thiacloprid is stable to hydrolysis (95–98 % recovery after
30 days). It can be degraded to THI-NCONH2 in soil in both
light and dark conditions (FAO thiacloprid), which can be
further transformed into THI-NH and THI-SO3-H-NCONH2.
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Cis-neonicotinoids and new-generation insecticides

Cycloxaprid, paichongding, imidaclothiz, and sulfoxaflor are
newly developed neonicotinoid-like insecticides.
Paichongding and cycloxaprid are cis-neonicotinoids (Li
et al. 2011; Shao et al. 2011; Cui et al. 2012), imidaclothiz is
a nitroguanidine thiazole neonicotinoid (Wu et al. 2010), and
sulfoxaflor is a sulfoximine insecticide, whose insecticidal
activity could be closely related to its very high efficacy at
nAChRs (Watson et al. 2011). However, only a few studies
have been published on the metabolism of these new sub-
stances in insects and mammals.

Animals

Cycloxaprid (hereafter also CYC) metabolism has been inves-
tigated in mice (Shao et al. 2013b). Five monohydroxy (CYC-
OH) and one dihydroxy (CYC-(OH)2) metabolites have been
characterized, along with compounds resulting from modifi-
cation of the NO2 group into nitroso and amine derivatives
(CYC-NO and CYC-NH2, respectively). The next more abun-
dant product was nitromethylene imidazole (NMI) and its NO
derivative (NMI-NO). When they bind to housefly
(M. domestica L.) head membranes, NMI and CYC exhibit
dissociation constants of 1.1 and 28 nM, respectively. This
indicates that, as imidacloprid, the degradation of CYC gen-
erates toxic metabolites with high affinity for receptors. As a
result, metabolites could prolong their toxic effects. Should
these metabolites be found on plants, insect exposure could
occur.

Sulfoxaflor metabolism has been investigated in vitro on
drosophila D.mel-2 cells transfected with CYP6G1 (Sparks
et al. 2012). Compared to imidacloprid, acetamiprid,
dinotefuran, thiamethoxam, and clothianidin for which the
extents of metabolism are respectively 85.1, 95.5, 55.1, 46.8,
and 45.6 % after 24 h, sulfoxaflor presents an almost unde-
tectable metabolism. These results could explain the absence
of cross-resistance to sulfoxaflor in insects resistant to
neonicotinoids or other insecticides. However, because
sulfoxaflor metabolism has been investigated only with
CYP6G1, the extrapolation of the least metabolic susceptibil-
ity to the whole drosophila metabolism is difficult.

Fipronil

Animals

In mammals, f ipronil can be metabolized at i ts
trifluoromethylsulfinyl or cyano moieties through three major
pathways: (1) oxidation at the sulfinyl moiety to form fipronil-
sulfone; (2) reduction at the sulfinyl moiety yielding fipronil-
sulfide; and (3) by hydrolysis of the cyano moiety to form
fipronil-amide followed by further hydrolysis to the

corresponding carboxylic acid (5-amino-1-(2,6-dichloro-4-
trifluoromethylphenyl)-4-trifluoromethylsulfinyl pyrazole-3-
carboxylic acid) (France 2005).

Metabolism in rats has proved to be independent of dose
level, regime, and sex (France 2005). In the rat, two urinary
metabolites have been identified following deconjugation
with glucuronidase and sulfatase, leading to pyrazole ring-
opened compounds. Other compounds can be found in urine
as the derivates fipronil-amide, fipronil-sulfone, and fipronil-
sulf ide , and the metabol i te of f iproni l -sul fone,
defluoromethylsulfynil-fipronil (France 2005; FAO fipronil).
Fipronil itself can also be found in urine. Fipronil-sulfone is
the major metabolite and often the only one found in the
tissues of the species examined: fat, adrenal gland, pancreas,
skin, liver, kidney, muscle, thyroid, and ovaries and uterus, as
well as in foodstuffs: milk and eggs (FAO fipronil). Fipronil,
and its amide, sulfone, and sulfide derivates are the main
compounds recovered from fat tissues, consistently with their
lipophilic nature. Fipronil and its amide, sulfone, and sulfide
derivates are the main components found in feces, together
with seven other metabolites found at minimal quantities. At
least 16 different derivates are present in bile, including the
fipronil-carboxylic acid metabolite (FAO fipronil).

Experiments on rats, goats, and hens with the photolytic
metabolite of fipronil, desulfinyl-fipronil, yield numerous uri-
nary metabolites mainly as a result of phase II metabolism.
These metabolites result from the metabolism of radicals of the
pyrazole ring different from the trifluoromethylsulfinyl or cya-
no moieties. Among others, the following have been described:
(1) N-sulfate conjugate of desulfinyl-fipronil, (2) two amino
acid conjugates resulting from the action of deconjugating
enzymes glucuronidase and sulfatase followed by acidic hydro-
lysis, (3) 5-aminoglucuronide confugate, (4) 5-(N-cysteinyl)
conjugate of fipronil-desulfinyl, and (5) a 4-cyano- 5-(N-
cysteinylglycine) conjugate, (4) and (5) linked through the
cysteine residue. Metabolization of desulfinyl-fipronil leads to
the amide derivate, 4-cyano-5-(–cysteinyl) derivate, which in
turn may result in the 4-carboxylic acid-fipronil (Totis 1996 in
FAO fipronil). Ring-opened conjugates were observed in goat’s
liver (Johnson et al. 1996 in FAO fipronil).

Plants

Translocation studies carried out with [14C]fipronil on maize,
sunflower, and sugar beet show uptake of about 5 %. Fipronil
could be co-formulated with numerous polymers in order to
enhance the systemicity of this active substance (Dieckmann
et al. 2010c). Studies carried out in potatoes, rice, sunflower,
sugar beet, cabbage, cotton, maize, showed metabolism of the
mother compound in plants via hydrolysis to amide-fipronil,
oxidation to the sulfone-fipronil and reduction to the sulfide-
f iproni l . Fol iar appl icat ion was also subject of
photodegradation to desulfinyl-fipronil. Fipronil-sulfone can
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undergo photolysis resulting in sulfonic acid (Roberts and
Hutson 1999). This molecule may be target of cleavage and
l o s s o f t h e s u l f o n e m o i e t y , r e s u l t i n g i n
detrifluoromethylsulfinyl-fipronil. A carboxylic derivate of
fipronil can be produced from the hydrolysis of the radical
CONH2 of fipronil-amida (FAO fipronil).

Residues of fipronil, fipronil-amida, fipronil-sulfone, and
fipronil-carboxylic acid, as well as minor undetermined deri-
vates, have been found in boll components following seed
dressing in cotton (France 2005). Fipronil and its desulfinyl
and sulfone derivates have been found in pollen loads and
honey (Bonmatin et al. 2007; Chauzat et al. 2011).

Soil and water

Fipronil degrades in water and soil through various metabolic
pathways: (1) hydrolysis to the amidemetabolite; (2) oxidation to
fipronil-sulfone; and (3) reduction to fipronil-sulfide, mainly
under anaerobic conditions (Raveton et al. 2007). Photolysis
may also occur, leading to desulfinyl-fipronil and other aniline
derivates (Raveton et al. 2006). A minor photoproduct both in
water and soil surfaces is sulfonic acid. In aqueous surfaces,
fipronil has proved to be stable in dark conditions. However,
pH is a relevant factor determining metabolism. Hydrolysis
kinetics at different pH values differ from half-lives of 770 h at
pH 9 to 2.4 h at pH 12. Fipronil remains stable under acid
(pH 5.5) and neutral conditions (Bobé et al. 1998). An amide
derivate of the fipronil-sulfone can be present following hydro-
lysis or the cyano moiety (FAO fipronil), which can be further
hydrolyzed rendering a carboxylic acid derivate. Photolysis of
fipronil-sulfone results in the production of sulfonic acid.
Fipronil-sulfide can follow hydrolyzes of its cyano moiety lead-
ing to a carboxylic acid derivate.

Detrifluoromethylsulfinyl-fipronil can appear in soil fol-
lowing cleavage of the trifluoromethylsulfinyl moiety (FAO
fipronil).

Adsorption and leaching studies carried out in laboratory
show that fipronil and its main metabolites are slightly mobile
in soil (IUPAC 2014).

Conclusion

This paper summarizes some of the key reasons for the success
of neonicotinoids and fipronil and documents their rapidly
expanding share of the global insecticide market in the last
25 years. Their physicochemical characteristics (extensively
covered in Bonmatin et al. (2014)), especially in terms of water
solubility, pKa, and Kow, confer systemic properties enabling
them to be absorbed and translocated within all plant tissues.
They are persistent (e.g., imidacloprid half-life in soil is ca.
6 months) and neurotoxic. Neonicotinoids share greater affinity

toward arthropod nACh receptors than toward those of mam-
mals and other vertebrates. Fipronil acts on insect specific
receptors. This makes them highly efficient insecticides with
reduced operator and consumer risk compared to some of their
predecessors such as organophosphorous and carbamate insec-
ticides. Furthermore, their mode of action enables new strate-
gies for pest control that profit from the existing synergies
between these substances and either other chemicals or micro-
organisms. As a result, there are a wide range of uses available,
including seed coating and root bathing, as invertebrate pest
control in agriculture, horticulture, orchards, forestry, veterinary
applications, and fish farming. However, these same properties
have led to problems. Specifically, their widespread (Main et al.
2014) and prophylactic use, their systemic properties in plants,
their broad spectrum of toxicity in invertebrates, and the per-
sistence and environmental fate of parent compounds and me-
tabolites renders them potentially harmful to a broad range of
non-target organisms. Subsequent papers in this review of the
global literature explore different aspects of these risks. Pisa
et al. (2014) and (Gibbons et al. (2014) extensively cover the
potential impacts on non-target invertebrates and vertebrates,
respectively. Chagnon et al. (2014) explore the risks of their
large scale of use to ecosystem functioning and services. These
papers show a growing body of evidence that persistent, low
concentrations of these insecticides pose serious risks of unde-
sirable environmental impacts (Tennekes and Sánchez-Bayo
2011; Roessink et al. 2013), and therefore the sustainability of
the current heavy reliance upon these compounds is question-
able considering the availability of existing alternative agricul-
tural and forestry practices (Furlan and Kreutzweiser 2014).
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