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Abstract Soil erosion has become a pressing environmental
concern worldwide. In addition to such natural factors as
slope, rainfall, vegetation cover, and soil characteristics,
land-use changes—a direct reflection of human activities—
also exert a huge influence on soil erosion. In recent years,
such dramatic changes, in conjunction with the increasing
trend toward urbanization worldwide, have led to severe soil
erosion. Against this backdrop, geographic information
system-assisted research on the effects of land-use changes
on soil erosion has become increasingly common, producing a
number of meaningful results. In most of these studies, how-
ever, even when the spatial and temporal effects of land-use
changes are evaluated, knowledge of how the resulting data
can be used to formulate sound land-use plans is generally
lacking. At the same time, land-use decisions are driven by
social, environmental, and economic factors and thus cannot
be made solely with the goal of controlling soil erosion. To
address these issues, a genetic algorithm (GA)-based multi-
objective optimization (MOO) approach has been proposed to
find a balance among various land-use objectives, including
soil erosion control, to achieve sound land-use plans. GA-
based MOO offers decision-makers and land-use planners a
set of Pareto-optimal solutions from which to choose.
Shenzhen, a fast-developing Chinese city that has long

suffered from severe soil erosion, is selected as a case study
area to validate the efficacy of the GA-based MOO approach
for controlling soil erosion. Based on the MOO results, three
multiple land-use objectives are proposed for Shenzhen: (1) to
minimize soil erosion, (2) to minimize the incompatibility of
neighboring land-use types, and (3) to minimize the cost of
changes to the status quo. In addition to these land-use objec-
tives, several constraints are also defined: (1) the provision of
sufficient built-up land to accommodate a growing popula-
tion, (2) restrictions on the development of land with a steep
slope, and (3) the protection of agricultural land. Three Pareto-
optimal solutions are presented and analyzed for comparison.
GA-based MOO is found able to solve the multi-objective
land-use problem in Shenzhen by making a tradeoff among
competing objectives. The outcome is alternative choices for
decision-makers and planners.

Keywords Soil erosion . Shenzhen .Multi-objective
optimization . Land-use change . Geographic information
system . Spatial land-use optimization

Introduction

Soil erosion is a major environmental problem worldwide
(Pimentel 1993; Pimentel et al. 1995). It has negative effects
on the environment and leads to reduced crop productivity,
worsened water quality, lower effective reservoir water levels,
flooding, and habitat destruction (Lee 2004; Oh and Jung
2005; Park et al. 2011). Furthermore, soil erosion is consid-
ered an essential source of non-point source pollution for the
water bodies in many terrestrial environments (Ning et al.
2006; Wu et al. 2012). Additionally, because erosion leads
to the removal of the soil’s organic carbon and clay content,
eroded sediments transporting as much as 20 % carbon can be
released into the atmosphere as CO2 (Lal 1995; Lal and Bruce
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1999; Yang et al. 2003), thereby reducing soil’s ability to
mitigate the green house effect (Yang et al. 2003).

Soil erosion’s negative effects on the environment render it
necessary to evaluate and control it. Soil erosion was tradi-
tionally considered a purely natural process caused by rainfall
and water flow. However, human activities have recently
greatly aggravated such erosion through alteration of the land
cover and disturbance of the soil structure (Yang et al. 2003).
It is estimated that nearly 60 % of present soil erosion is
induced by human activities (Yang et al. 2003). Accordingly,
numerous studies have attempted to estimate soil erosion with
regard to the effects of these activities, many of them taking
the form of analyses of how land-use changes, as a direct and
visible reflection of human activities, affect soil erosion
(Meyer and Turner 1994). Land-use changes such as urban
sprawl and the disappearance of forest, water bodies, and
grasslands reflect the extent and intensity of human activities.
Thanks to such technological developments as the geographic
information system (GIS) and remote sensing (RS), it is now
easy to collect land-use change data, which is beneficial to soil
erosion studies. Numerous soil erosion evaluations based on
land-use changes have now been carried out with GIS and RS
assistance. For example, Zhou et al. (2008) collected land-use
data in the southwestern Chinese city of Chongqing from RS
images and analyzed the city’s annual soil erosion on the basis
of these changes. Their results indicated a high risk of soil
erosion in agricultural areas with frequent human activities.
Van Hengstum et al. (2007) estimated the effects of land-use
patterns and urbanization on wetland and sedimentation pat-
terns in Frenchman’s Bay in the U.S. state of Maine and found
an increased input of fine-grained sediments into wetlands to
result in reduced water clarity. Fistikoglu and Harmancioglu
(2002) reported that the quantity and quality of soil properties,
land use, and vegetation reflect difficulties in the application
of soil erosion methodology. Yang et al. (2003) employed a
GIS-based revised universal soil loss equation model to eval-
uate global soil erosion with regard to global land-use patterns
and climate change. They estimated that, with the develop-
ment of cropland in the past century, the soil erosion potential
worldwide has increased by about 17 %. Similarly, Lufafa
et al. (2003) examined soil loss on different land-use types and
found the greatest such loss to be predicted for cropland,
followed by rangeland.

Although numerous soil erosion studies taking the
effects of land-use changes into account have been
carried out, with meaningful outcomes achieved, most
stop at evaluation. Studies on how to achieve appropri-
ate land-use allocation planning to control soil erosion
are limited in number. What makes further studies in
this arena particularly difficult is that land-use allocation
decisions are driven by social, economic, and environ-
mental factors at the same time. They cannot be deter-
mined by considering soil erosion control in isolation.

Optimization methods have long been used to address
these problems and formulate comprehensive land-use plans.
As long ago as the 1960s, the linear programming (LP)
optimization model was articulated to solve linear or quadratic
equations to address problems in urban planning systems
(Guldmann 1979; Aerts et al. 2003). However, the LP model
cannot handle nonlinear and unstructured requirements such
as the spatial interactions among land-use types, and it is thus
unsuitable for complex urban problems. In addition, land-use
planning systems involve multiple objectives, and LP is effi-
cient only when a single objective has been identified (Stewart
et al. 2004). To address these issues, a genetic algorithm (GA)-
and heuristic algorithm-based multi-objective optimization
(MOO) approach capable of handling unstructured urban
issues was proposed in the 1970s (Hopkins 1977; Los
1978). The GA is a type of general global optimization algo-
rithm that has been shown to be robust and efficient for
searching large, complex, and little-understood search spaces
such as those of multi-objective land-use planning problems
(Zhang et al. 2010). Furthermore, because the GAworks with
a population of plans, a number of Pareto-optimal solutions
can be generated. These solutions are defined as the subset
comprising the non-dominant designs in the generation
(Balling and Wilson 2001), where a solution is dominant if
another solution exists that is better than or equal to it in every
objective and better than it in at least one objective. By
obtaining a set of Pareto-optimal solutions, land-use planners
and decision-makers can choose from a set of alternative plans
rather than one “best” plan. The Pareto-optimal solutions
generated by the GA are well suited for practical applications.
Owing to its advantages in addressing the multi-objective
problems inherent in land-use planning, the GA is widely
used by scholars to formulate optimal land-use plans. A
number of meaningful outcomes have been achieved, and
GA-based MOO is considered a useful tool in land-use plan-
ning. For example, Balling et al. (1999a, b)) used the GA to
search for optimal future land-use and transportation plans for
a high-growth city, which allowed the decision-makers in-
volved to value each plan in the Pareto-optimal set by
assigning a relative importance to each objective. Stewart
et al. (2004) developed a special purpose GA for the solution
of nonlinear combinatorial optimization problems in land-use
planning systems. Their proposed GA was applied to a spe-
cific land-use planning problem in The Netherlands, and their
results indicated its efficacy for land-use planning and
decision support systems. Cao et al. (2012) developed
a boundary-based fast genetic algorithm to search for
optimal solutions to a land-use allocation problem.
Finally, Holzkämper and Seppelt (2007) confirmed the
GA’s efficacy in supporting management decisions.
They also pointed out that the GA-based MOO ap-
proach can be used as an extension to the GIS and
for spatially explicit decision support tools.
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MOO has achieved great success in generating optimal land-
use plans. However, few scholars have considered soil erosion
control as an objective in MOO, as such control constitutes a
complex spatial problem with many factors. The study reported
herein adopted a well-developed soil erosion evaluation model,
the universal soil loss equation (USLE) model proposed by
Wischmeier and Smith (1961), to assess the objective of soil
erosion control. The GIS and RS techniques were also used to
assist in the soil erosion evaluation. To validate the efficacy of the
MOO approach, Shenzhen, a rapidly urbanizing city in south
China, was selected as the case study area. The MOO approach
was used to search for sound land-use plans for the city in 2020.
Referring to a textbook on Shenzhen’s overall land-use plan and
the city’s development trend, four land-use constraints and three
land-use objectives were defined. The objectives were (1) min-
imizing soil erosion, (2) minimizing the incompatibility of neigh-
boring land-use types, and (3) minimizing the cost of a change to
the status quo.

Study area and data

Shenzhen (22°27′N to 22°52′N, 113°46′E to 114°37′E) is locat-
ed in the eastern part of the Pearl River Delta region adjacent to
Hong Kong (Fig. 1) and has a total terrestrial area of
1,952.84 km2. Owing to its proximity to Hong Kong, the
then-small fishing village was designated the Shenzhen
Special Economic Zone (SSEZ) in 1980 and, in the years since,
has experienced rapid urbanization and economic growth (Chen
et al. 2012). It is now a major economic center (Chen et al.
2012). Shenzhen features numerous mountainous areas
with a steep slope (Chen et al. 2012). In fact, land with
an elevation greater than 80 m accounts for about 30 % of
the total area of the SSEZ, although the lowest elevation

is 0 m. Shenzhen has a subtropical monsoon climate with
abundant rainfall. Because soil erosion can be defined as a
process by which soil is washed away by the flow of
water, steeper slopes and abundant rainfall are aggravat-
ing factors (Lee 2004; Dumas et al. 2010). Given these
natural land characteristics, Shenzhen is vulnerable to
severe soil erosion. Chen et al. (2001) reported that
97.3 km2 of land in Shenzen suffered soil erosion in
1998, accounting for 4.98 % of the SSEZ’s total land area.

In addition to its natural characteristics, the rapid land-use
changes that Shenzhen has undergone in the past 20 years
have further exacerbated its soil erosion. In that period, the
city’s urban area has expanded enormously, with a concomi-
tant decrease in cropland, forest area, and water bodies (Li
et al. 2010). The land-use data used in this study (see
Table 1 and Fig. 2) were obtained from the Shenzhen
Bureau of Land and Resources. They cover eight land-
use types: cultivated land, garden plots, grassland, built-
up land, land for transportation, water bodies, forest, and
unused land. Table 1 shows the quantitative land-use
changes in Shenzhen from 1996 to 2008. It can be seen
that built-up land and land for transportation have expe-
rienced the sharpest increases, accompanied by a decrease
in the other land-use types. The land-use change data
clearly illustrate the rapid process of urbanization that
Shenzhen underwent in the 12-year period considered.

Methods

Soil erosion evaluation

The now well-known USLE model was first proposed by
Wischmeier and Smith (1961) and has since become one of

Fig. 1 Research area: a the location of China on the globe, b location of Shenzhen in China, and c administrative district maps of Shenzhen and Hong
Kong
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the most widely used and empirically grounded approaches
(Ozcan et al. 2008; Meusburger et al. 2010; Abu Hammad
2011). It consists of a set of calculations to estimate the soil
erosion on a plot of land with homogeneous characteristics
(Wischmeier and Smith 1978). In the USLE model, the aver-
age annual soil loss is based on the product of five erosion risk
indicators (Meusburger et al. 2010):

A ¼ R� K � LS � C � P; ð1Þ

where A (tonnes per hectare per year) is the predicted
average annual soil loss, R (megajoule millimeters per
hectare per hour per year) is the rainfall and runoff
factor, K (tonnes per hectare per unit R) is the soil
erosivity factor, LS (dimensionless) is the slope length
and steepness factor, C (dimensionless) is the cover and

management factor, and P (dimensionless) is the con-
servation practices factor. The R, K, and LS factors
basically determine the erosion volume, whereas the C
and P factors are reduction factors ranging from 0 to 1
(Kumar and Kushwaha 2013). Among all these factors,
R, K, and LS factors are not varying with land-use
change. On the other hand, the P factor reflects the
impact of land-use changes, with one land-use type
maintaining a unique P factor; meanwhile C factor is
determined according to the vegetable coverage, which
also has been impacted by land-use change. Since the P
factor and C factor are varying with land-use change,
the USLE model thus allows the influence of land-use
change on soil erosion to be reflected. In this study, the
impact of land-use changes on soil erosion is focused.

Rainfall and runoff factor:R The rainfall and runoff factor (R)
represents two characteristics of a storm that determine its
erosivity: the amount of rainfall and peak intensity sustained
over an extended period. Drawing on Li et al. (2009), R can be
calculated by the following equation.

R ¼
X
k¼1

12
0:3046Pk−2:6398ð Þ ð2Þ

In Eq. 2, R is the rainfall and runoff factor (megajoule
millimeters per hectare per hour per year), and Pk is the
average monthly rainfall (millimeters) (Kim et al. 2005).
Table 2 lists the annual rainfall (Shenzhen Statistics Bureau,

Table 1 Land-use changes in Shenzhen from 1996 to 2008

Land-use type 1996 2000 2002 2004 2006 2008
Area (km2)

Cultivated land 67.42 74.48 59.78 46.93 42.49 32.06

Garden plot 214.62 272.30 301.61 277.80 264.08 231.46

Forest 727.41 649.99 648.27 636.25 629.36 594.41

Grassland 3.90 0.39 0.73 0.47 1.39 2.61

Built-up land 434.85 489.03 571.71 642.95 676.92 754.43

Transportation 118.61 134.43 123.17 136.25 143.62 187.38

Water body 229.52 221.95 223.28 195.45 182.70 141.34

Unused land 156.50 110.28 24.29 16.73 12.26 9.14

Sum 1,952.84

Fig. 2 Spatial distribution of the
land-use pattern in 2008
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1997, 2001, 2003, 2005, 2007, 2009) in 1996, 2000, 2002,
2004, 2006, and 2008 and the corresponding values of the R
factors for Shenzhen in various years.

The value of the R factor for Shenzhen can be
obtained from Eq. 2. However, this R factor is constant
for the whole of Shenzhen and does not reflect spatial
differences. Therefore, the spatial distribution of the
annual average rainfall for numerous years is used to
spatialize it (see Eq. 3). More specifically, this spatial
distribution is achieved by interpolation, as the annual
average rainfall for numerous years is available at each
monitoring station.

R mx;nyð Þ ¼
AnAvRainfall mx;nyð Þ−min AnAvRainfallð Þ
max AnAvRainfallð Þ−min AnAvRainfallð ÞR ð3Þ

In Eq. 3, R(mx,ny) is the value of the refined R factor at the
location of grid (mx,ny), AnAvRainfall(mx,ny) is the value of
the annual average rainfall for numerous years at grid (mx,ny),
min(AnAvRainfall) and max(AnAvRainfall) are the mini-
mum and maximum of the annual average rainfall for numer-
ous years in the entire city, and R is the rainfall and runoff
factor calculated by Eq. 2. Finally, with the assistance of the
GIS tool, the R factor with spatial information is achieved.
Figure 3a shows the spatial distribution of the R factor in 2008
as an example.

Soil erosivity factor: K The soil erosivity factor is defined as
the rate of soil loss per unit of R as measured on a unit
plot (Wischmeier and Smith 1978; Ozsoy et al. 2012)
and represents the average long-term soil and soil pro-
file response to the erosive power associated with rain-
fall and runoff (Lee 2004). The K factor is determined
by the soil’s physical and chemical properties, which
vary from place to place. Several experimental models
have been established on the basis of soil texture, or-
ganic matter, structure, and osmosis (Wischmeier 1976;
Wischmeier and Smith 1978). In the current study, the

value of K is determined by the following equation
given by Sharpley and Williams (1990).

K ¼ 0:2þ 0:3exp −0:0256wd 1−wi=100ð Þ½ �f g

� wi

wl þ wi

� �0:3

� 1:0−
0:025wc

wc þ exp 3:72−2:95wcð Þ
� �

� 1:0−
0:7wn

wn þ exp −5:51þ 2:29wnð Þ
� �

ð4Þ

where wd is percent sand, wi is percent silt, wl is percent
clay, wc is percent organic matter, and wn is the factor that is
determined by percent sand using the formulation wn ¼
1−wd

100

� �
(Sharpley and Williams 1990; Zhou et al. 2008).

All of the soil characteristic data used in Eq. 4 are available
from the Food and Agriculture Organization of the United
Nations (Nachtergaele et al. 2008). The spatial distribution of
the K factor for Shenzhen is obtained using Eq. 4 and the GIS
tool and is presented in Fig. 3b. Some areas of Shenzhen lack
soil type data. The K factors for these areas are represented as
‘no data’ and were omitted during the soil erosion evaluation.

Slope length and steepness factor: LS The slope length and
steepness factor (LS) represents the effect of the topography
on soil erosion (Lufafa et al. 2003), as an increase in slope
length and steepness produces higher overland flow velocities
and therefore stronger erosion (Dumas et al. 2010). LS is
derived from Eq. 5, as follows.

LS ¼ λ
22:13

� �m

� 65:41sin2θþ 4:56sinθþ 0:0065
� � ð5Þ

where λ is the slope length in meters, θ is the slope angle in
degrees, and m is a slope angle contingent variable (McCool
et al. 1987) that can be calculated by

m ¼

0:3 22:50≤θ
0:25 17:50≤θ < 22:50

0:2 12:50≤θ < 17:50

0:15 7:50≤θ < 12:50

0:10 θ < 7:50

8>>>><
>>>>:

ð6Þ

The coefficients of λ and θ are obtained from the digital
elevation model, the resolution of which is 30 by 30 m.
Finally, based on these equations, the spatial distribution of
the LS factor for Shenzhen is obtained and is represented in
Fig. 3c.

Table 2 Annual precipitation and R factors for Shenzhen from 1996 to
2008

Year Annual precipitation (mm) R factor (MJ mm ha−1 h−1year−1)

1996 1,683.3 481.06

2000 2,533.6 740.06

2002 1,882.8 541.82

2004 1,299.4 364.12

2006 1,936.5 558.18

2008 2,710 793.79
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Crop and management factor: C The crop and management
factor C depends on vegetation cover, which dissipates
the kinetic energy of raindrops before they hit the soil
surface. Erosion and runoff are markedly affected by
different types of vegetation cover. Erosion and runoff
is measured as the ratio of soil loss to land cropped
under continuously fallow conditions (Wischmeier and
Smith 1978). According to this definition, C equals 1
when it is subject to standard fallow conditions. As the
percentage of vegetation cover approaches 100 %, the C
factor value approaches the minimum. The C factor can
be calculated by Eq. 7, as follows (Cai et al. 2000; Ma
et al. 2001; Zhao et al. 2007) and lc by the normalized
differential vegetation index (NDVI) (see Eq. 8) (Ma
et al. 2001).

C ¼
1 lc ¼ O

0:6805−0:3436lglc 0 < lc < 78:3%
0 78:3%≤ lc

8<
: ð7Þ

lc ¼ 108:49NDVI þ 0:717ð Þ=100 ð8Þ

where lc (dimensionless) is vegetation coverage, andNDVI
(dimensionless), which ranges from −1 to 1, can be obtained
from the RS image. An NDVI value approaching 1 indicates
that the land is fully covered by vegetation, leading to a high
value for lc. Using the foregoing equations, the spatial distri-
bution of the C factor for Shenzhen is obtained, as shown in
Fig. 3d. Some plots in Shenzhen have no data for the C factor,
and their C factors were thus omitted from the soil erosion
evaluation.

Conservation practice factor: P Conservation practice factor
P is defined as the ratio of soil loss from the upward and
downward slope of an inclined plane where a soil preservation
policy has been put in place (Park et al. 2011). In fact, the P
factor affects erosion by redirecting runoff around the slope to
produce less erosivity or slowing down the runoff to make a
deposition (Lee 2004). Its value ranges from 0 to 1, with a
lower value suggesting more effective conservation practices.
According to the literature (Xu and Li 1999; Yang et al. 2003;
Zhao et al. 2007; Mu et al. 2010; Park et al. 2011; Kumar and
Kushwaha 2013), the P factor is associated with the land-use
type and is a reflection of land-use changes. The value of the P
factor for each type of land-use in Shenzhen is determined
(Table 3) with reference to the literature (Mu et al. 2010;
Ozsoy et al. 2012).

Fig. 3 Spatial distribution of USLE factors in Shenzhen. a R factor in 2008. b K factor. c LS factor. d C factor
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Spatial land-use optimization

Constraints

Shenzhen is undergoing a dramatic process of urbaniza-
tion accompanied by an increase in built-up areas. From
the perspective of the city’s current development trend,
a sustainable urbanization process is required to satisfy
the needs of the growing economy and mitigate envi-
ronmental problems. According to local policy and the
economic growth model, the four following constraints
are proposed.

(1) Built-up area should be around 990 km2

According to Shenzhen’s land-use plan for 2006 to
2020, and from the aspect of land resource protection,
however, the built-up area should total 990 km2 by 2020.
Thus, with reference to the suggestions of urban planners
and decision-makers, we decided that the area of built-up
land should be around 990 km2

, in projected year 2020,
which should provide sufficient land for economic de-
velopment and population growth.

(2) Water body=141.34 km2

The local environmental policy states that the water
body should not be occupied by built-up land during the
urbanization process. Therefore, in 2020, the water body
should be maintained at 141.34 km2, its total area in
2008.

(3) Cultivated land ≥ 25.65 km2

According to China’s national Basic Farmland
Protection Regulations, basic farmland in Shenzhen
should not be less than 80 % of total cultivated land.
Basic farmland is a type of cultivated land that should be
maintained and protected according to national policy.
Hence, the amount of cultivated land in 2020 should be
equal to or greater than 32.06 × 0.8=25.65 km2.

(4) Elevation<80 m
Shenzhen is a mountainous area with ecological forest

cover and is thus difficult to develop. The city’s land-use

plan for 2006–2020 states that land with an elevation
greater than 80 m is protected from development.

Objectives

After defining the foregoing constraints, the following land-
use objectives are proposed.

(1) Minimize soil erosion:

minZsiol erosion ¼ R� K � LS � C � P ð9Þ

(2) Minimize the incompatibility of neighboring land-use
types

In the real world, a given land use such as industrial land
tends to be clustered, a phenomenon we call zoning or
clustering but which can also be defined as the compatibil-
ity of land use. Land-use compatibility can minimize con-
flicts with neighboring land uses (Ligmann-Zielinska et al.
2008) and can also result in the effective utilization of
available land (Cao et al. 2012). Furthermore, ensuring
the compatibility of neighboring land-use types is critical
to enhancing accessibility and reducing resource consump-
tion. Therefore, maximizing land-use compatibility, or min-
imizing incompatibility, is an important objective in land-
use planning.

Each land-use type has a preferred location, and various
such preferences can be used to measure the degree of
incompatibility. For example, the preferred location for a
given built-up land plot is close to another built-up land
plot. If the plot is instead surrounded by cultivated land,
then its location is not conducive to future development. In
this paper, the degree of conflict between two land-use
types is used to measure the degree of incompatibility.
The degree of conflict ranges from 0 to 1, with a higher
value indicating greater conflict between two land-use
types. In determining the degree of conflict, in addition to
reference to previous studies (Ligmann-Zielinska et al.
2005; Cao et al. 2011, 2012), we adopt the analytic hierar-
chy process (Tsyganok et al. 2012) to collect and analyze
the suggestions of experts, decision-makers, and various
stakeholders. The final degrees of conflict are presented in
Table 4, and the objective ofminimizing the incompatibility
of neighboring land-use types is represented by Eq. 10.

minZInCom ¼
X
l∈U

X
j∈l

ConflictDegree plotl; plot j

� 	
ð10Þ

where ZIncom is the incompatibility of the i-th plan,
plotl and plotj are the l-th and j-th plots in the i-th plan,

Table 3 P factors for
different land-use types
in Shenzhen

Land-use type P factor

Cultivated land 0.5

Garden plot 0.6

Forest 1.0

Grassland 1.0

Built-up land 0.3

Transportation 0.3

Water body 0

Unused land 1

Environ Sci Pollut Res (2015) 22:4475–4490 4481



respectively, and l is the neighborhood in which plot l is
located.

(3) Minimize the cost of changes to the status quo
The cost of changes to the status quo is measured by

the cost of developing a plot from one land-use type to
another (Zhang et al. 2010). In this paper, a dimension-
less changing cost factor is used to denote the per unit
area cost of such development. Because that factor re-
flects only the relative relationship between different
kinds of land-use change or conservation, it is simple
and helps to avoid error in determining the real cost.
Then, the cost of a change to the status quo for a given
land-use plan can be obtained by summing the product of
the changing cost factor and changed area. To determine
the changing cost factor of each land-use pair, we drew
upon the literature (Ligmann-Zielinska et al. 2005; Cao
et al. 2011, 2012) and took into account the suggestions
of experts, decision-makers, and stakeholders in the
land-use allocation. The cost of changing from one
land-use type to another was determined by a specialist
and professionals. The outcomes are listed in Table 5,
and the objective of minimizing the cost of changes to a
given plan is represented by Eq. 11.

minZchange ¼
X

Plot j∈U
ChangeCostlm2ln � Area Plot j

� � ð11Þ

where Zchange is the cost of a change to the status quo,
i.e., plan i; Plotj denotes a plot whose land use has
changed from the status quo, the lm-th land-use type, to
another type, the ln-th land-use type, in plan i; and
ChangeCost is the changing cost factor listed in Table 5.

Optimization

A GA-based MOO technique was used to search for optimal
land-use allocations for Shenzhen. Land-use zones (LUZs),
which are divided by the road network and contour lines, act
as the genes in the GA process. In some studies, the road
network alone, described as the traffic analysis zone, is used to
divide LUZs (Balling et al. 2004). However, Shenzhen, the
site of our case study, has many mountainous areas that the
road network does not reach. Accordingly, we use the road
network associated with contours of 75-m intervals to separate
the LUZs (see Fig. 4). There are 10,742 LUZs in Shenzhen,
each of which maintains one and only one land-use type. Of
these, 778 are covered by a water body and 2,223 feature an
average elevation greater than 80 m, on which development is
restricted. These LUZs cannot be changed in the future.
Therefore, only 10,742–778–2,223=7,741 LUZs or genes
are optimized by the GA. The optimization space and cost
of optimization are thus reduced.

Table 4 Degrees of conflict between land-use pairs

Cultivated land Garden plot Forest Grassland Built-up land Transportation Water body Unused land

Cultivated land 0 0.1 0.2 0.3 0.8 0.7 0.2 0.1

Garden plot 0.1 0 0.1 0.1 0.7 0.6 0.1 0.1

Forest 0.2 0.1 0 0.2 0.7 0.6 0 0.1

Grassland 0.3 0.1 0.2 0 0.6 0.6 0 0.1

Built-up land 0.8 0.7 0.7 0.6 0 0 0.6 0.5

Transportation 0.7 0.6 0.6 0.6 0 0 0.5 0.1

Water body 0.2 0.1 0 0 0.6 0.5 0 0.1

Unused land 0.1 0.1 0.1 0.1 0.5 0.1 0.1 0

Table 5 Cost of changing from one land-use type to another

Change to/ change from Cultivated land Garden plot Forest Grassland Built-up land Transportation Water body Unused land

Cultivated land 0 0.3 0.3 03 0.6 0.7 0.1 0.1

Garden plot 0.4 0 0.2 0.2 0.6 0.6 0.1 0.1

Forest 0.4 0.2 0 0.2 0.7 0.6 0.1 0.1

Grassland 0.4 0.2 0.2 0 0.6 0.6 0.1 0.1

Built-up land 1 1 1 1 0 0.5 1 0.9

Transportation 1 1 1 1 0.5 0 1 1

Water body 1 1 1 1 1 1 0 1

Unused land 0.7 0.7 0.7 0.6 0.7 0.7 0.6 0
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In the process of optimization, each gene or LUZ is set as
an integer ranging from 1 to the total number of possible land
uses. The GA usually begins with 100 randomly generated
plans as one generation, and those plans satisfying the defined
constraints are then ordered by fitness. A second set of 100
plans is then obtained via selection, crossover, mutation, and
elitism processes. These processes are used to generate sub-
sequent generations until the degree of improvement in the
average fitness of each generation is less than a certain thresh-
old. Details of the selection, crossover, mutation, and elitism
processes are as follows. (1) Selection: Two plans with a high
degree of fitness are selected from randomly generated feasi-
ble plans and set as the father and mother. (2) Crossover:
Genes in the two parents are exchanged via a crossover to
generate children. (3) Mutation: Then, to avoid a local opti-
mum, a process of mutation is conducted, with a mutation
probability of 0.05 performed on all child plans. For each
gene, there is thus a probability of 0.05 for a random change
to another land-use value. These three processes are repeated
until 100 plans are generated. (4) Elitism: Finally, to maintain
quality, about 10 % of the plans with the highest degree of
fitness in the previous generation are maintained in the next.

In the GA process, the fitness of each plan plays an important
role in the selection of the father andmother. There are numerous
means to compute fitness (Hajela and Lin 1992, Konak et al.
2006). In this study, the Maximin fitness function proposed by
Balling (2002) is employed tomeasure the goodness of each plan
in one generation. First, translate all objectives into the format of
“min(Z),” and then let Obki as the value of the k-th objective in
the i-th plan. As for the max(Z) format objective, the objective
will be transformed min(Z) format by following equation.

Z ¼ −Z ð12Þ

Now consider two plans in one generation, the i-th plan and
the j-th plan. The i-th planwill be dominate There are numerous
means to compute fitness, like ranking, normalized sum objec-
tives, weighted average of normalized objectives (Hajela and
Lin 1992, Konak et al. 2006). In this study, theMaximin fitness
function proposed by Balling (2002) is employed to measure
the goodness of each plan in one generation. First, translate all
objectives into the format of “min(Z),” and then let Obki as the
value of the k-th objective in the i-th plan. As for the max(Z)
format objective, the objective will be transformed min(Z)
format by following equation.

Z ¼ −Z ð13Þ

Now consider two plans in one generation, the i-th plan and
the j-th plan. The i-th plan will be dominated by the j-th plan if:

Ob1i > Ob1 j;Ob2i > Ob2 j; …;Obki > Obkj ð14Þ

And this equation is equivalent to the following equation:

min Ob1i−Ob1 j;Ob2i−Ob2 j; …;Obki−Obkj
� �

> 0 ð15Þ

Thus, the i-th plan is a dominated plan if:

max
i≠ j

min Ob1i−Ob1 j;Ob2i−Ob2 j; …;Obki−Obkj
� �� �

> 0 ð16Þ

Fig. 4 Land-use zones divided
by the road network and contour
lines with a 75-m interval
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And the fitness of the i-th plan is:

f i ¼ 1−max
j≠i

min
Ob1i−Ob1 j

Ob1−max−Ob1−min
;…;

Obki−Obkj
Obk−max−Obk−min

� �� �
 �p

ð17Þ

In above equations, the scaling factors Obk−max and Obk−
min are the maximum and minimum value of the k-th objec-
tive. According to Eq. 17, the fitness of Pareto-optimal plans
will be between 1 and 2p, whereas the fitness of dominated
plans will be between 0 and 1. As for the exponent p, if it is
larger than 1, it will make the fitness of Pareto-optimal plans
even higher and the fitness of dominated plans even lower. In
Ballling’s study, he used a high value of pwhich was 15, and it
made the GA quite aggressive in pursuing Pareto-optimal
solutions (Balling et al. 1999).

In above equations, the scaling factors Obk−max and Obk−
min are the maximum and minimum value of the k-th objec-
tive. According to Eq. 15, the fitness of Pareto-optimal plans
will be between 1 and 2p, whereas the fitness of dominated
plans will be between 0 and 1. As for the exponent p, if it is
larger than 1, it will make the fitness of Pareto-optimal plans
even higher and the fitness of dominated plans even lower. In
Ballling’s study, he used a high value of pwhich was 15, and it
made the GA quite aggressive in pursuing Pareto-optimal
solutions (Balling et al. 1999).

Results and discussion

Soil erosion evaluation

Shenzhen’s total soil loss was obtained using the USLE.
According to the national soil erosion classification standard
(SL190-2007 2008), soil erosion can be classified into six
clusters based on the annual soil loss amount (tonnes per
hectare). Annual soil loss of less than 5 tonnes per hectare is
classified as very low, a loss ranging from 5 to 25 tonnes per
hectare is classified as low, a loss ranging from25 to 50 tonnes
per hectare is classified as moderate, a loss ranging from 50 to
80 tonnes per hectare is classified as moderately high, a loss

ranging from 80 to 150 tonnes per hectare is classified as
high, and a loss greater than 150 tonnes per hectare is
classified as very high. Table 6 shows the percentage in
Shenzhen that fell into these six clusters from 1996 to 2008.
It can be seen that the degree of soil erosion was “very low” in
77.2-86.0 % of Shenzhen’s total land area during this period,
although some areas were classified as suffering from “high”
and “very high” degrees. The area of severe soil erosion varied
from year to year, in line with land-use changes and changes in
the amount of precipitation from year to year. Table 6 shows
the annual soil losses in 2000 and 2008 to have been much
greater than those in the other years because the annual rainfall
levels in these 2 years were also higher. These results indicate
that the amount of precipitation determines the total amount of
soil lost in a given year and that that amount can vary signif-
icantly from year to year.

The soil erosion classification map in Fig. 5 provides a
visual understanding of soil erosion in Shenzhen. In line with
the city’s topography, it can be seen that the areas suffering the
most severe soil erosion are usually those with steep slopes. It
appears that variations in slope and elevation from place to
place have a great effect on soil erosion.

Local policy considers an area in which the amount of soil
loss is greater than 20 tonnes per hectare to be suffering from
soil erosion. According to a report from the Shenzhen
Municipal Water Authority, a total of 80.26 square kilometers
suffered erosion in 2004 (Li et al. 2013; Mu et al. 2010).
Summing areas with soil losses greater than 20 tonnes per
hectare on the soil erosion map generated by the USLEmodel
indicate that a land area equal to 82.13 square kilometers in
Shenzhen is suffering from soil erosion, which suggests that
the model is reasonable for assessing soil erosion in this city.

Spatial land-use optimization

An optimal spatial land-use allocation should be capable of
mitigating soil erosion according to the spatial and quantita-
tive distribution of different land-use types in space. However,
the distribution of land-use types is also determined by other
objectives. Because these competing objectives are in conflict
with one another, it is impossible to achieve one best solution,

Table 6 Areas of classified soil
loss from 1996 to 2008 by USLE
[km2]

Year Very low Low Moderate Moderately high High Very high

1996 81.04 13.80 3.40 1.18 0.50 0.07

2000 77.18 15.33 4.11 1.91 1.15 0.31

2002 81.77 13.01 3.29 1.21 0.61 0.11

2004 85.99 10.88 2.30 0.59 0.22 0.02

2006 81.99 12.76 3.28 1.24 0.63 0.12

2008 78.61 14.24 3.79 1.86 1.16 0.35
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that is, one in which all objectives are better than or no worse
than those of another. However, the GA provides a set of
Pareto-optimal solutions rather than one specific solution.
Figure 6 presents the Pareto-optimal solutions and Pareto line
of the first and last generations. The Pareto line is the line that
connects all Pareto-optimal solution points. In Fig. 6, the
values of the cost of change and incompatibility act as the x
and y axes, respectively.

A number of observations can be made. First, all of the
solutions in the last generation are closer to coordinate point
(0,0), which means that the values of both the cost of change
and incompatibility are reduced by optimization. Because the
GA achieves optimization by selecting plans with a greater
degree of fitness to generate the next generation, the degree of
fitness becomes increasingly high from generation to

generation. Through this process, the objective values of the
plans in the last generation are smaller than those of the plans
in the first generation, as reflected in Fig. 6.

Second, because the Pareto-optimal solutions in all of the
plans in the last generation are made visual, again as shown in
Fig. 6, decision-makers and planners can weigh up the impor-
tance of different objectives and then select one solution on
the Pareto line. For example, if decision-makers consider
incompatibility to be a much more important objective than
reducing the cost of change, then they can select the Pareto-
optimal solutions with the lowest incompatibility value even if
those solutions have large cost-of-change values.

Third, according to the Pareto line in Fig. 6, the objective
values of the cost of change and incompatibility grow smaller
from the first to the last generation. Figure 7 confirms this

Fig. 6 Pareto line of optimal land-use plans: the x axis is the value of the cost of change, and the y axis is the value of incompatibility

Fig. 5 Classified soil loss in
Shenzhen in 2008
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decrease in all objective values during the process of optimi-
zation, where the x axis is the iteration time of optimization,
and the y axis is the average value of a particular objective for
100 plans in one generation. The objective values are dramat-
ically reduced during the first 300 generations, which suggests
that all objectives have been optimized, whereas competition
among objectives occurs after the 300th generation. For ex-
ample, there is a small peak in the soil-loss value around the
500th generation, whereas a valley emerges around this gen-
eration in the cost-of-change value. The competition between
these two objectives is obvious, and a win–win situation is
impossible. Finally, the values of all objectives tend toward
convergence.

To come to a better understanding of the Pareto-optimal
solutions, two group plans were selected and analyzed. In the
first group, three Pareto-optimal plans that had been imple-
mented via multi-objective optimizationmaintainedminimum
objective values for the cost of change, land-use incompati-
bility, and soil erosion. They are listed as Plans 1, 2, and 3 in
Table 7. In the second group, three plans were implemented
via single-objective optimization, each of them taking one
objective from the cost of change, land-use incompatibility,
and soil erosion as the single objective. These three plans
appear as Plans 4, 5, and 6 in Table 7. Single-objective
optimization here denotes the same process as multi-
objective optimization, although only one objective is consid-
ered with other two being ignored.

In the first group, there is no best solution in terms of the
three objectives, the competition among which is confirmed
by Fig. 7. For example, plan 1 features the lowest value for the
cost of a change to the status quo, but much higher values for
incompatibility and soil loss, whereas plan 2 boasts the lowest
value for incompatibility but higher cost-of-change and soil-
loss values than those in plans 1 and 3.

In the second group, each planmaintained one lowest value
for a single objective, with the values of the other two objec-
tives larger in comparison. Take Plan 4 as an example. It is the
optimized result achieved by considering the single objective
cost of change and maintains the lowest value for this cost,
16,753.40. This value is lower than those of all plans in both
the first (the Pareto plans) and second groups. However,

because Plan 4 takes minimization of the cost of change as
its single objective, while ignoring the other two objectives,
i.e., incompatibility and soil erosion, those two minimizing

Fig. 7 Variations in objective value from the first to final generations

Table 7 Objective values of three selected plans

Land-use
plan

Cost of change to status
quo

Incompatibility Soil loss
[t/ha]

Plan 1 18,863.30 46.51 0.7687

Plan 2 18,974.50 42.51 0.7601

Plan 3 19,053.00 44.88 0.7595

Plan 4 16,753.40 74.40 0.8604

Plan 5 20,341.40 37.30 0.8714

Plan 6 19,458.50 73.67 0.7110
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objectives are relatively large. More specifically, Plan 4 main-
tains an incompatibility value of 74.4, whereas the Pareto
plans maintain incompatibility values ranging from 42.51 to
46.51 and a soil loss value of 0.8604 t/ha, whereas the Pareto
plans undergo soil loss ranging from 0.7595 to 0.7687 t/ha.
Obviously, the single-objective plans maintain a minimum
objective value for a single objective, whereas the other two
objectives are ignored and are thus relatively large.
Comparison of the Pareto solutions with the results achieved
via single-objective optimization shows that, although multi-
objective optimization is unable to achieve the best solution
for each single objective, it is able to make a tradeoff among
all conflicting objectives and attempt to find some Pareto
solutions.

The quantitative areas of all land-use types in the first-
group three plans are listed in Table 8. All of the plans satisfy
the constraints because the optimization process in the GA is
conducted only for plans that previously satisfied the con-
straints. Although there are few differences among the three
plans, similar land-use areas generate numerous spatial allo-
cation scenarios, which lead to a gap in the plans’ objectives.

Figure 8 shows the spatial distribution of the plan with the
lowest objective value for soil loss as an example. Compared
with the land-use pattern in 2008 (see Fig. 2), an increase in
the amount of built-up land can be seen because the constraint
on built-up land to accommodate population growth and
economic development in Shenzhen is around 990 km2, and
the total built-up land area in 2008 was 754.43 km2. The
optimization process thus adds about 236 km2 of built-up
land. More specifically, the built-up land in Fig. 8 tends to
increase around the administrative boundaries of Shenzhen.
With regard to the spatial distribution of slope and elevation in
Shenzhen, it can be seen that the additional built-up land is
generally allocated to areas with a low elevation and plain
slope, which should relieve the severity of soil erosion to some
extent. The increases in built-up land are also clustered (see
Plots A and B in Fig. 8) because of the objective to minimize
land-use incompatibility in a given neighborhood. Clustered
built-up land leads to minimal such incompatibility. Finally,
because an increase in built-up land acts as a constraint that
must be satisfied first, the objective of minimizing the cost of
changes to the status quo can be considered after a land-use
plan requiring such an increase has been formulated.

Plot A

Plot B

Fig. 8 Spatial distribution of
optimized land-use plan with
lowest soil erosion value

Table 8 Land-use areas of three selected plans

Land-use types Plan 1 Plan 2 Plan 3 Constraints
Area [km2]

Cultivated land 30.69 31.22 32.19 > 25.65 km2

Garden plot 99.46 97.88 96.96

Forest 457.53 457.89 456.53

Grassland 13.09 12.56 12.58

Built-up land 991.87 992.13 993.15 > 990 km2

Transportation 203.18 203.32 203.50

Water body 141.34 141.34 141.34 = 141.34 km2

Unused land 15.67 16.49 16.60

Sum 1,952.84
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Summary and conclusions

The paper presents the results of the computation and analysis
of soil erosion with regard to land-use changes in a rapidly
urbanizing city using the USLE model with the assistance of
GIS and RS techniques. The USLE model was used to calcu-
late the annual soil loss in Shenzhen based on soil type,
precipitation, vegetation cover, slope, and land-use status. In
the process of evaluation, the GIS and RS techniques were
used to collect and present the spatial factors and results. The
results of the USLE model were validated using statistical soil
loss data from 2004. The spatial results show a steep slope to
have a huge effect on soil loss, whereas the total amount of
soil lost each year suggests that annual precipitation exerts
only a temporary effect on such loss. At the same time,
because land-use change leads to a varying crop and manage-
ment factorC and conservation practice factor P, and the slope
is the result of natural characteristics and uncontrollable pre-
cipitation, land-use change exerts a huge impact on the total
amount and spatial distribution of soil erosion in Shenzhen.
The USLE model is an empirical model that allows the pre-
diction of average annual soil loss based on the product of five
erosion risk factors. Owing to difficulties in data collection,
only 2004 soil loss data from Shenzhen were used to validate
the model. The results suggest that the USLE model is appli-
cable to the case study area.

In addition to soil erosion evaluation, the GA-based MOO
approach was used to search for an optimal land-use plan for
Shenzhen. Three objectives, one of them soil-loss minimiza-
tion, and four constraints were considered. The Pareto-optimal
solutions generated by the GA provided a set of alternative
choices for decision-makers and land-use planners. The Pareto
line makes comparison among these solutions easy. The ob-
jective values of three selected Pareto-optimal solutions were
subjected to careful analysis, the results of which indicated
conflict and competition among the objectives in the process
of optimization. In summary, the optimization results confirm
the usefulness of GA-based MOO for land-use planning opti-
mization in Shenzhen. Such optimization allows a tradeoff
among multiple objectives and constraints such as maintain-
ing sufficient built-up land to accommodate an increasing
population, reducing conflicts between neighboring land-use
types, and minimizing soil loss during the process of
urbanization.

Urbanization is a growing trend worldwide. Take China as
an example. Its national urbanization level stood at 11 % in
1949 and at 29% in 1996 (Wang et al. 2004). The aggravating
role that urban sprawl and natural land disappearance play in
soil erosion is obvious and has been confirmed in numerous
studies (Van Hengstum et al. 2007; Fistikoglu and
Harmancioglu 2002; Yang et al. 2003; Lufafa et al. 2003).
Therefore, a comprehensive evaluation of soil erosion taking
temporal and spatial land-use changes into account is

necessary, particularly for cities located in mountainous areas
with high levels of rainfall. Such cities also require sound
land-use plans that take soil erosion control into consideration.
The GA-based MOO approach used in the study reported
herein is capable of taking the spatially related and complex
objective of soil erosion control into account. Most important-
ly, the optimal plans generated by MOO offer alternatives to
decision-makers and planners who can choose from among a
number of Pareto-optimal solutions. Furthermore, for the
greater convenience of decision-makers, the spatial distribu-
tion of alternative plans can be represented by the GIS tool,
with the specific objective values of each plan also provided.
With the help of the GIS tool, the MOO approach renders
land-use planning system simpler and makes it easier to
formulate sound and practical land-use plans.
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