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Abstract The depollution of some gaseous streams contain-
ing n-hexane is studied by adsorption in a fixed bed column,
under dynamic conditions, using granular activated carbon
and two types of non-functionalized hypercross-linked poly-
meric resins. In order to model the process, a new neuro-
evolutionary approach is proposed. It is a combination of a
modified differential evolution (DE) with neural networks
(NNs) and two local search algorithms, the global and local
optimizers, working together to determine the optimal NN
model. Themain elements that characterize the applied variant
of DE consist in using an opposition-based learning initiali-
zation, a simple self-adaptive procedure for the control param-
eters, and a modified mutation principle based on the fitness
function as a criterion for reorganization. The results obtained
prove that the proposed algorithm is able to determine a good
model of the considered process, its performance being better
than those of an available phenomenological model.

Keywords Differential evolution . Neural network . Local
search . Backpropagation . VOC adsorption .

Hypercross-linked polymeric adsorbents

Introduction

It is well known that volatile organic compounds (VOC) are
major contributors to the formation of the photochemical
ozone and secondary organic aerosol, which would result in
serious health and environmental problems. In this sense,

national environmental protection agencies are forcing the
chemical industry to reduce the emission of these compounds
both in wastewater and airstreams and, thus, emissions of
VOCs are becoming one of the most stringent environmental
challenges in many industrial processes (Odabasi et al. 2005;
Hu et al. 2009; Silvestre-Albero et al. 2010).

In general, VOC emissions include a wide range of chem-
ical substances such as aromatics, various chlorinated hydro-
carbons, aldehydes and ketones, alcohols, organic acids, es-
ters, and aliphatics. Various methods are used to eliminate
volatile organic compounds, the most efficient by an econom-
ic point of view being those that involve separation and reuse
of VOCs, such as absorption, adsorption, condensation, and
membrane separation (Matros et al. 1988).

Elimination techniques of VOCs can be divided into two
categories: (1) destructive techniques (thermal and catalytic
oxidation, photochemical oxidation, and biodegradation),
which destroy the undesirable compounds, and (2) recupera-
tive techniques (adsorption, absorption, condensation, and
membrane separation), allowing their recovery (Khan &
Ghoshal 2000). In general, the methods other than adsorption
(especially condensation) are effective when VOC concentra-
tions are relatively at high levels (>1 %). Therefore, adsorp-
tion has been found to be effective, with higher selectivity and
relatively higher capacity for VOC, even at low concentration
levels (ppm or sub-ppm) (Gupta & Verma 2002; Kim et al.
2006; Lillo-Rodenas et al. 2006; Shim et al. 2006).

The emission of solvent vapors from the industrial process-
es can cause not only severe air pollution but also great loss of
valuable chemicals. Therefore, proper recovery of volatile
solvent vapors from industries will help in reducing produc-
tion costs, saving energy, and protecting the environment
(Khan & Ghoshal 2000; Shim et al. 2006).

Related to the adsorption process as one of the most applied
for VOC removal, its complexity derives from the fact that it is
influenced by the type and concentration of VOCs in the
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initial pollutant flow, gas flow rate, relative humidity of gas
stream, nature of the sorbent and its physicochemical charac-
teristics, length of adsorbent bed in the column, residence
time, and temperature of the adsorption process. On the other
hand, the popularity of the method arises from the possibility
to obtain and use different materials.

Taking into account that determination and characterization
of the conditions for VOC removal fromwaste gas streams are
laborious, a cheap and easy to apply alternative is represented
by the simulation of process removal. In this way, it is possible
to replace or, at least, to plan experiments that are material,
energy, and time consuming. In addition, predictions can be
made in real time in situations where accidental pollutions
appear with these substances and useful information can be
obtained about the analyzed processes. Also, a good model is
a prerequisite in optimal control procedures.

Artificial neural networks (NNs) represent efficient tools
for chemical process modelling, being recommended when
classical approaches fail to provide acceptable models
(results). In this context, NNs are viable modelling alterna-
tives, since they have the property of universal approximation
(Subudhi & Jena 2009). A NN is a computational structure
inspired by the biological brain, which consists of a set of
interconnected processing elements called neurons (Xin
1999). It has a series of advantages which include, among
others, modelling non-linear relationships, flexibility, parallel
processing, learning and self-learning, and fault tolerance
(Hernandez et al. 1998; Patan 2008). Besides other artificical
intelligence methods (Caicedo et al. 2013) NNs can be applied
to solve specific problems (Vassileiou et al. 2012), their advan-
tages making them suitable for different types of application. At
the same time, they are good alternatives to different solutions
such as those found in environmental decision (Matthies et al.
2007) or system stabilization (Precup et al. 2007).

Some examples of using neural networks for processes
involving VOC adsorption or their detection can be found in
literature. Tchoupo and Guiseppi-Elie (2005) used NNs to
simulate and classify the adsorption of four gases (toluene,
benzene, heptane, and butanol) on six polymer sensors. The
design of new materials for sensors was made by Han et al.
(2005), who reported the findings of a research on nanostruc-
tured materials, sensitive for the detection of volatile organic
compounds and nitro-aromatics, the analysis being performed
based on pattern recognition using NNs and principal
component analysis. An electronic system for detection and
identification of VOCs was designed and developed by
Srivastava (2003) through a series of gas sensors based on
tin oxide and using NNs. Backpropagation neural networks
were used to identify relevant VOCs for environmental mon-
itoring such as 2-propanol, methanol, acetone, methyl ethyl
ketone, hexane, benzene, and xylene. Other applications of
NNs in the field of chemistry and chemical engineering can be
found in the review of Pirdashti et al. (2013).

In the current work, the VOC adsorption process on acti-
vated carbon and polymeric materials is approached, aiming
to retain pollutants from gas streams with high concentrations
of VOCs. Adsorption on granular activated carbon is one of
the well-known and efficient methods used for VOC recovery
from a gaseous stream. However, activated carbon has some
important drawbacks such as the self-firing of the adsorbent in
the bed, pore blocking, and difficulty in the regeneration of the
spent adsorbents. Therefore, it is necessary to develop new
adsorbent materials to separate and recover VOCs from pol-
luted airstreams. For this purpose, in the previous works, the
potential of two non-functionalized hypercross-linked poly-
mers type Macronet, MN 202 and MN 250, was studied for
the adsorption of n-hexane vapors (Halteta Buburuzan et al.
2009; Buburuzan et al. 2009; Buburuzan et al. 2010). Using
these materials along with charcoal, a series of experiments
were performed in different reaction conditions for determin-
ing the efficiency of the process.

In this article, the role of the experiment was to create a
complete database from which a good neural network model
can be derived. The problem of determining the optimal
architecture of the neural network is also approached, the
proposed solutionmaking use of a relatively new evolutionary
algorithm (EA) named differential evolution (DE).

The simplicity of NNs is deceptive because training is a
difficult task when an optimized architecture is desired. In
addition, determining an optimal topology is problem depen-
dent, various contradictory rules being encountered in litera-
ture. In order to solve this aspect, the NNs are combined with
EA, and the advantages of this approach are as follows: (1)
simultaneous evolution of several defined features, (2) a flex-
ible definition of performance criterion, and (3) the possibility
of coupling an EA with a learning algorithm (Floreano
et al. 2008).

DE is a bio-inspired technique capable of working with a
variety of objective functions including non-differentiable,
non-linear, or multimodal functions (Pant et al. 2009). It is a
stochastic, population based, powerful, and easy to implement
optimization algorithm which was successfully applied to
solve different problems from various domains such as engi-
neering design, control, scheduling, chemical engineering,
decision making, or image processing (Feoktistov 2006). As
examples of EA-NN combinations, one can mention our
previous contributions in determining optimal neural net-
works using the improved non-dominant sorting genetic algo-
rithm (Furtuna et al. 2012; Llanos et al. 2013) or different
variants of DE (Dragoi et al. 2011, 2012a).

In the current paper, a hybridization of the self-adaptive DE
algorithm is proposed and tested for the neural modelling of a
depollution process of some gaseous streams containing vol-
atile organic compounds. At the end of each generation, the
best individual found is improved by randomly applying the
random optimization or backpropagation (BK) algorithm.
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This new hybrid DE algorithm (called hybrid self-adaptive
differential evolution with neural network (hSADE-NN)) is
used for determining the optimal neural network which can
model the considered process. Consequently, the NN repre-
sents the problem being solved by the optimizer, a simulta-
neous structural and parametric optimization being
performed.

The main contributions of this paper are related to the
creation of a consistent dataset obtained by adsorption of
hexane into different categories of materials and neural net-
work modelling performed using an optimization procedure
based on a new variant of a hybrid differential evolution
algorithm. A comparison is also made with one of our own
previous DE versions and with a kinetic model, proving the
efficiency of hSADE-NN and its adequacy for the approached
process and, also, justifying the creation of this new version.

Methods

The volatile organic compound used in this work was n-
hexane, with an analytic grade of 99.9 %, purchased from
the Chemical Company and used without further purification.
Dynamic adsorption of n-hexane vapors was studied compar-
atively on two categories of adsorbents: the granular activated
carbon AC 20 which has a bituminous origin and two types of
non-functionalized hypercross-linked polymeric resins
Hypersol-Macronet TM, MN 202 and MN 250. Both poly-
mers consist of macroporous polystyrene crosslinked with
divinylbenzene without functional groups.

The principle of Hypersol-Macronet resins is that the po-
rosity is not introduced during polymerization but during a
post polymerization process in which the polymer is
hypercross-linked in a swollen state and results in two special
properties: (1) a very high surface area, comparable with that
of activated carbon, and (2) swelling by liquids and gases that
do not normally solvate polymeric matrices.

The polymers from class MN 200 tend to be hydrophobic
and may be considered for the removal of organic pollutants.
All adsorbents were supplied by Purolite International Limited
country offices of Purolite Corporation in Bucharest, Romania
(Buburuzan et al. 2010).

Vapor breakthrough experiments of n-hexane were carried
out in a 1.0-cm-diameter quartz column, using different bed
heights of adsorbents, concentrations of n-hexane-air mixture,
and temperatures at a constant flow rate. The temperature of
the adsorbent bed was controlled and measured by a thermo-
couple placed as close to the absorber column as possible. The
concentration of n-hexane vapor in the airstream, before and
after the adsorption column, was measured by using a gas
chromatograph (GC) Carlo Erba 4200 Series. The GC is
equipped with a six-way valve, a column with 10 % DC-200
Chromosorb PNAW, a flame ionization detector (FID), and an

integrator. The injector, oven, and detector temperature were
maintained at 170, 110, and 170 °C, respectively. Hydrogen
gas was used as fuel and nitrogen as carrier gas. The calibra-
tion curve was prepared by injecting known amounts of VOCs
into a sealed bottle equipped with a Teflon septum, according
to the standard procedure.

To study the effect of concentration on the breakthrough
time and adsorption capacity, the concentration of n-hexane
vapors in the gaseous stream was varied at 7, 11, and 16 mg/L
at the flow rate of 130 mL/min. The bed length of adsorbents
in the column was 1 cm for all the three adsorbents studied.

To find out the effect of bed length on the breakthrough and
adsorption capacity of n-hexane vapors, the experiments were
carried out in 20 mg/L of n-hexane passed at the flow rate of
130 mL/min at different bed lengths, i.e., 1, 1.5, and 2 cm of
MN 202, MN 250, and AC 20, respectively. To examine the
effect of temperature on the n-hexane adsorption process, the
temperature was varied at 30, 40, and 50 °C, with 11 mg/L of
n-hexane, a flow rate of 130 mL/min, and 1 cm bed length for
all the three adsorbents.

This kinetic study of VOC adsorption on differentmaterials
leads to a dataset containing 675 data, which was prepared for
modelling purpose. Neural network modelling is an appropri-
ate tool for this process because important consumption of
time is necessary for obtaining optimal retention values when
high quantities of VOC are present in gaseous effluents.
Instead of a significant number of experiments, the resulting
model can be used to predict the optimal conditions for
depollution.

For NNmodels, contact time, initial concentration of VOC,
specific surface of the adsorbent, thickness of the adsorption
material, and temperature were chosen as inputs and elimina-
tion efficiency as output. The analyzed parameters and their
limits of variation were the following:

& Type of adsorbent, quantified through surface area BET.
Taking into account the nature of this parameter, the
variation interval only includes three values, namely
669.4 for AC 20, 789.38 for MN 202, and 980.26 for
MN 250.

& Contact time, 0÷220 min.
& Bed length, 1, 1.5, and 2 cm.
& Temperature, 25, 30, 40, and 50 °C.
& Initial concentration of VOC in the gaseous effluent, 7, 11,

and 16 mg/L.

In this work, the neural network acts as a model for the
considered process, while the modified DE is an optimizer
with the role of determining the best possible model. The main
process parameters are considered as inputs and outputs,
respectively, while the experimental data are used for training
and testing the performance of the generated models. A sim-
plified schema of this workflow is presented in Fig. 1, where
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Ct is the outlet concentration at arbitrary time and Ci is the
inlet concentration.

After the data were gathered, a min-max normalization
procedure was applied. This is one of the most used methods
of data pre-processing, which leads to satisfactory results
since it can reduce the estimation error and time calculation
and can improve the capability of discriminating high-risk
software (Leeghim et al. 2008). The linear interpolation for-
mula used to normalize the data is described by Eq. 1:

xnorm ¼ mint þ maxt −mintð Þ x −min

max −min
ð1Þ

where xnorm represents the normalized value of x parameter,
mint=−0.9 and maxt=0.9 are the values determining the target
interval, and min and max describe the interval in which x
takes values.

Developing an optimal neural network model
with a hybrid version of differential evolution algorithm
(hSADE-NN)

Since the most simple, easy to use neural network with the
function of universal approximator is represented by the feed
forward multilayer perceptron (MLP), this type of network
was chosen for the current study.

Due to a series of aspects such as a high number of
parameters, various possible combinations, multiple training
algorithms (each having various drawbacks), and lack of
consistent rules, determining the optimal topology and inter-
nal parameters of neural networks is a difficult task (Curteanu
& Cartwright 2012). In the current paper, a neuro-
evolutionary approach based on a new version of DE algo-
rithm is used to solve this problem. All the alterations per-
formed to the DE, along with the optimizer-model combina-
tion proposed in the current work, which concretized into a
new algorithm, are reflected into its name: hybrid self-

adaptive differential evolution with neural network (hSADE-
NN). The main characteristics of hSADE-NN, the basic ideas,
and the motivation for specific choices of some parameters are
further presented.

Various studies successfully employ DE for training neural
networks, the simultaneous optimization of topology and
training being scarcely encountered in literature (Subudhi &
Jena 2009; Chandra & Yao 2006; Dragoi et al. 2012b, 2013).
This can be explained by the fact that optimization requires a
large search space and a high number of parameters which, in
their turn, have an impact on the performance of DE, even if
this algorithm can be successfully used when the network is
very large, when the problem has many local minima, or
where there is much noise in the data (Zarth & Ludermir
2009).

Although very powerful and with several attractive fea-
tures, it has been observed that in some cases DE is inefficient.
It inherits the crucial flaws of the evolutionary computation by
having a slow convergence rate and low accuracy, especially
in noisy environments or when the solution space is hard to
explore (Peng & Wang 2010; Neri & Tirronen 2010).

In order to improve the DE algorithm and eliminate or
reduce the effect of the inherited problems, a series of modi-
fications were proposed by various researchers. These modi-
fications correspond to the main directions of research related
to (1) basic DE research (control variables, perturbation and
diversity enhancement, controlling the vector population), (2)
research specific to the problem domain (where the problem
formulation and the manner in which DE can be modified are
studied), (3) application-specific research, and (4) computing
environment-related research (Storn 2008).

The main approach used to improve DE is to combine it
with other optimization algorithms (Brest 2009). This mixing
of the best features of two or more techniques is called
hybridization, the result being a new algorithm which is
expected to outperform its parents (components) (Das &
Suganthan 2011). Hybridization of the DE algorithm can be
performed at four levels: (1) individual, which describes the
behavior of an individual; (2) population, which describes the
dynamics of a population or subpopulation; (3) external,
which describes the interaction with other methods; and (4)
meta-level, which includes different algorithms as one of the
possible strategies (Feoktistov 2006).

In this paper, in order to improve the performance of the
optimizer and to raise the probability of an optimal NN
determination, a modified version of DE was hybridized with
two algorithms represented by the Random Search and BK.
This hybridization is performed at the individual level, in a
greedy approach. Based on randomly generated numbers, the
best solution found at each generation is improved using one
of the two algorithms. Initially, only BK algorithm was used
as a local search, but it was observed that, in some cases (for
yet unknown reasons), this training algorithm does not
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Fig. 1 Simplified schema of the modelling and optimization workflow
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manage to improve the neural network, although it is applied
multiple times (for example when the solution does not evolve
for a few generations). One way to solve this problem was to
change the algorithm applied, but since this problem seldom
appears, it was considered, based on practical considerations,
that it is better to add a second algorithm for local improve-
ment (Random Search).

The modifications performed to the DE base core are
represented by the introduction of the opposition-based learn-
ing (OBL) as a mode to improve initialization, by a simple
self-adaptive principle which replaced the hand tuning of the
control parameters and by the reorganization of the individ-
uals participating in the mutation phase based on the fitness
function. These changes, in combination with neural net-
works, were also used, in different variants, in previous works
performed by our group, in connection with various types of
applications (Dragoi et al. 2011, 2012a, b, 2013). They were
chosen based on the fact that each modification brings a plus
of performance on the overall algorithm as it was demonstrat-
ed in the abovementioned references. The novelty of the
current version consists in combining these modifications
with BK and Random Search and applying it to the
depollution process of some gaseous compounds.

Since the main idea of the proposed hSADE-NN is to
determine the optimum neural network that acts as a model
for the chosen process, DE algorithm works with a population
of encoded networks. Taking into account that it is an evolu-
tionary algorithm, the population of networks evolves over a
number of generations by employing the mutation, crossover,
and recombination procedures.

The OBL principle was proposed by Tizhoosh (2005), and
it states that the probability that a number is better than its
opposite is 50 %. In the current work, a normal distribution is
used to generate the potential solution and, after that, its
opposite is computed. From this group, the best individuals
are chosen to compose the initial population.

The mutation in the classical DE algorithm is represented
by the addition to a base vector of a scaled differential term. In
literature, various studies related to the use of variants of this
principle can be encountered, the results indicating that, de-
pending on the problem being solved, the performance of the
mutation changes (Dragoi et al. 2011). Consequently, in the
current work, the algorithm is based on a modified approach,
using two differential terms and a base vector chosen as the
best individual selected from the individuals participating in
the mutation phase. From the five distinct mutation individ-
uals, four are randomly chosen and one is represented by the
current individual. This approach is used so that all the

networks in the population have an equal chance to participate
in the mutation phase.

The crossover type applied here is represented by the
binomial version, where the parameters are randomly
inherited from one of the two parents. The type of selection
is the tournament version, where a one-to-one competition
between the individuals from the current and the trial gener-
ations takes place. The survival criterion used in the hSADE-
NN algorithm is the objective function value only, the net-
works with the best fit participating in the next generation.

Multiple studies related to the use of DE control parameters
reported that the best method to replace the trial and error
approach when determining their best values is represented by
self-adaptation (Dragoi et al. 2011). In the current work, a
simple self-adaptation principle is used. The control parame-
ters are included into the algorithm itself, and they are evolved
using the same mathematical equation as the individuals con-
taining them. In this manner, the complexity of the algorithm
remains relatively the same as that of the non-adaptive variants.

The type of encoding applied in the current study is repre-
sented by direct encoding, where a direct mapping between
genotype (the network representation) and phenotype (the
actual neural network) exists. A large number of parameters
are considered for the optimization, the structure of the
encoded networks DE works with being presented in Fig. 2,
where Nh represents the number of hidden layers; Nh1 is the
number of neurons in the first hidden layer; Nh2 is the number
of neurons in the second hidden layer; wj, j=1.. m, represents
the weights between the neurons; bi, Afi, and Pafi, i=1… n are
the biases, activation functions, and parameters of the activa-
tion functions, respectively, corresponding to the ith neuron of
the network.

As it can be observed from Fig. 2, the encoded networks
have a relatively high number of parameters which are depen-
dent on the network structure. In order to limit this number,
two main aspects are considered: (1) the number of hidden
layers is limited to two since it was determined that a two-
hidden-layer NN can model, with an acceptable accuracy,
almost any process, and (2) the maximum number of neurons
allowed in the first and second hidden layers are 40 and 20,
respectively. These values were chosen based on practical and
empirical considerations, various rules in literature suggesting
that the number of neurons in the first hidden layer must be
higher than in the second hidden layer. In addition, 40 neurons
for the first hidden layer are a maximum limit for the majority
of the practical cases. Various simulations performed by our
group on multiple chemical engineering processes with a
maximum of ten inputs indicated that this interval is sufficient
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for providing good models. In this manner, the number of
weights is restricted to in×40+40×20+20×out (where in
represents the number of inputs and out the number of outputs
of the considered neural network). Also, the number of biases,
activation functions, and parameters of the activation func-
tions is each limited to a value of in+40+20+out. Conse-
quently, the vector can have 3+43×in+980+32×out param-
eters. For the current case study, where five inputs and one
output are considered, the number of vector components is
equal to 1,230.

On what concerns the activation functions, five types were
applied here: bipolar sigmoid, logarithmic sigmoid, tangent
sigmoid, sinus, and triangular basis functions. Various types of
activation functions can have distinct effects on the NN per-
formance, their correct choice being a problem for the re-
searchers. Consequently, by introducing them into the geno-
type, the DE algorithm can efficiently explore the search space
and determine the optimal combination of the activation func-
tions which lead to high NN performance. From the selected
types of activation functions, only bipolar sigmoid and loga-
rithmic sigmoid require an additional parameter, but, since
there is the possibility that each neuron can have one of the
five types of activation functions, at the end of the vector, a
space is allocated for these values.

Compared with our previous DE-based algorithm, called
SADE-NN-2 (Dragoi et al. 2012b), in hSADE-NN, the ran-
domization of the method used for locally improving the best
solution represents the main modification performed. On the
other hand, SADE-NN-2 was specially designed and applied
for monitoring and controlling the freeze-drying process,
which has other difficulties than the considered process rep-
resented by depollution of some gaseous streams containing
volatile organic compounds.

The simplified schema of the hSADE-NN algorithm is
presented in Fig. 3. Ibest represents the best individual in the
population, and Nbest is the neural network corresponding to
Ibest. As it can be observed, a series of steps are repeated until a
stop criterion is met. In the current work, this criterion is a
mixed one and is represented by the number of generations
reaching a predefined value and the fitness function reaching a
very low value (10−10).
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Fig. 4 The breakthrough curves for n-hexane adsorption on all the three
adsorbents for the initial VOC concentration of 11 mg/L
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adsorbents at 40 °CFig. 3 Schema of the hSADE-NN algorithm
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After the classical steps of the DE algorithm (mutation,
crossover, and selection) are performed, a new step related to
the local search procedure is included. If the random number
generated is lower than 0.5, then BK is applied and the
selected solution must be transformed from a real number
vector into a neural network. If not, the Random Search
algorithm is applied, without the need to transform the vector
into a network.

The BK algorithm used in this case is the classical variant
with no alteration or modifications. In the case of the Random
Search procedure, a simple version is considered. Only the
parameters corresponding to the weight values are altered
using Random Search as they are the most sensitive and small
variations can lead to significant improvements. For a small
number of iterations, a random value is added to the weight
parameters of the initial individual considered for improve-
ment (denoted xind), at the end of each iteration the fitness of

the new individual being computed in order to compare it with
the one of xind. If it is bigger, then xind is replaced and the
procedure is repeated until the specific number of iterations is
reached.

As it can be observed from Fig. 3, BK is applied only after
a decoding procedure is performed. This procedure is required
due to the fact that the structure of the DE individuals is not
compatible with BK, although it contains all the information
corresponding to a complete neural network. Therefore, a
decoding-encoding procedure is performed each time BK is
used as a local search algorithm.

The fitness function used (Eq. 2) for determining the net-
work performance is based on the mean squared error (MSE),
and each time it is computed (as in the case of BK applica-
tion), a transformation DE individual network is required. In
this manner, the information flows from DE to neural model
and vice-versa.

Fitness ¼ 1

MSEtraining þ err correction
ð2Þ

where err_correction is a constant value (equal to 10−10)
introduced to eliminate the improbable case when MSEtraining

is equal to 0.

Results and discussion

Processing of experimental data

The experimental data obtained in dynamic conditions were
processed to determine the influence of each parameter ana-
lyzed, namely temperature, length of the bed, and initial

Table 1 Results of the simulations performed with hSADE-NN algorithm

Fitness
function

Network
topology

Training Testing

MSE PR (%) r MSE PR (%) r

1 16.47858 5:18:1 0.06068 6.53227 0.99443 0.05814 9.22087 0.99679

2 16.39714 5:15:1 0.06098 7.12258 0.99453 0.05694 8.75751 0.99578

3 16.38152 5:15:1 0.06104 7.11830 0.99452 0.05718 8.77732 0.99575

4 16.25329 5:17:1 0.06152 7.08973 0.99434 0.05847 10.84208 0.99539

5 16.15935 5:26:1 0.06188 7.05038 0.99436 0.05946 9.41623 0.99529

6 16.05451 5:19:1 0.06228 7.01625 0.99446 0.05581 9.85281 0.99607

7 16.04701 5:29:1 0.06231 7.78126 0.99444 0.06607 10.45398 0.99454

8 16.01581 5:20:1 0.06243 6.40319 0.99415 0.05498 9.34992 0.99614

9 15.96990 5:16:1 0.06261 7.34123 0.99446 0.06009 9.78418 0.99540

10 15.73425 5:18:1 0.06356 7.50501 0.99411 0.06152 10.27262 0.99580

Average 16.14914 0.06193 7.09602 0.99438 0.05887 9.67275 0.99569
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Fig. 6 The breakthrough curves for n-hexane adsorption on all the three
adsorbents for the adsorbent layer thickness of 1.5 cm
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concentration. The amount of pollutant retained increases with
increasing concentration for all the three adsorbents studied.
All adsorbents have a good behavior at low concentrations,
respectively at 7 mg/L, when the ability to retain pollutant is
higher, the breakthrough curves follow the “S” shape and the
breakpoint is reached later.

Comparing the amount of n-hexane adsorbed at a time, i.e.,
the same initial concentration of 11 mg/L, good behavior has
the hypercross-linked polymer MN 250 (Fig. 4). Ci is the inlet
concentration of n-hexane (ppmv), and Ct is the outlet con-
centration of n-hexane at arbitrary time (ppmv).

With increasing temperature, the adsorption capacity of
MN 202, MN 250, and AC 20 for n-hexane vapors decreases
and it was observed that it is most pronounced for theMN 250
adsorbent. The decrease of adsorption capacity with the tem-
perature indicates the exothermic nature of the adsorption of
n-hexane vapors on these adsorbents. Also, with increasing
temperature, the breakthrough curves became steeper and the
breakpoint time is reached earlier for each adsorbent

considered. It was also observed that the great performance
for n-hexane vapor adsorption with increasing temperature
was recorded by the MN 250 adsorbent, as Fig. 5 shows for
a temperature of 40 °C.

The experiments also demonstrate that the length increase
of the adsorbent bed provides a better adsorption percentage
and a higher breakpoint time for each adsorbent studied.
Concerning the type of material used as adsorbent, a behavior
similar to that of previous cases can be observed, when the
best performance for the adsorption of n-hexane vapors is
recorded by MN 250 hypercross-linked polymeric resin,
followed by granular activated carbon AC 20, and then by
hypercross-linked polymeric resin MN 202 (Fig. 6).

Neural network modelling

After the experimental data were gathered and processed
using the normalization procedure and practical consider-
ations related to the training/testing neural networks were

Table 2 Results obtained with SADE-NN-2 algorithm

Fitness
function

Network
topology

Training Testing

MSE PR (%) r MSE PR (%) r

1 15.69654 5:13:1 0.06374 8.15766 0.99419 0.06036 10.44920 0.99524

2 15.55176 5:20:1 0.06430 8.79539 0.99380 0.06340 12.11586 0.99487

3 15.51521 5:13:1 0.06445 8.26029 0.99391 0.05912 11.34787 0.99546

4 15.49429 5:09:1 0.06454 9.15480 0.99408 0.06759 12.93116 0.99434

5 15.43640 5:20:1 0.06478 9.18417 0.99160 0.06617 13.00828 0.99240

6 15.33790 5:15:1 0.06520 8.69051 0.99407 0.06374 10.97239 0.99469

7 15.27924 5:09:1 0.06544 8.39316 0.99407 0.06245 10.98566 0.99497

8 15.23317 5:39:1 0.06564 8.77666 0.99387 0.06852 11.64928 0.99388

9 15.03166 5:17:1 0.06652 8.31172 0.99356 0.06591 12.02195 0.99460

10 14.94833 5:12:1 0.06759 9.34549 0.09935 0.06658 12.39459 0.99452

Average 15.35245 0.06522 8.70699 0.90425 0.06438 11.78762 0.99450

Fig. 7 Evolution of MSEtraining
and MSEtesting during the
determination of a neural network
model using hSADE-NN
algorithm
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applied, the next step was represented by the determination of
an optimal model for the process. This task was achieved by
performing various software simulations using the hSADE-
NN algorithm proposed in this work.

As previously mentioned, a series of limitations to the
network structure were imposed (maximum of two hidden
layers with 40 and 20 neurons, respectively) to reduce the
individual complexity.

A series of ten results ordered by the fitness function are
presented in Table 1, were the network topology is coded
using the following structure: in:Nh1:Nh2:out, MSE is the
mean square error, r is the correlation coefficient between
experimental and simulation data, and PR is the average
percentage error.

The average percentage error was computed using the
following formula:

PR ¼ 100

n

Xn

1

xi;0 − xi
xi

ð3Þ

where xi is the predicted value and xi, 0 is the ith measured
value.

As it can be observed from Table 1, although the network
settings allow the determination of two-hidden-layer neural
networks, the considered algorithm found only one-hidden-
layer networks. This indicates that the proposed algorithm de-
termines models with a simple structure. On the other hand, an
average value of MSE around 0.06 in both training and testing
phases represents an acceptable performance of the model.

By comparing the data from Table 1 with the ones from
Table 2 (results obtained with previous SADE-NN-2), it can
be observed that, from various points of view (fitness value,
MSE, average relative error, correlation), hSADE-NN is better
in finding the suitable neural network model. On what con-
cerns the network topology, SADE-NN-2 seems to determine
simpler models, but since their performance is not as good as
the one determined with hSADE-NN (which has only a few
more neurons), the former algorithm is considered providing
the best results. In this way, the creation of a new, improved
version of the DE algorithm is justified.

The best networks are the ones having the highest fitness:
value of 16.478 and network 5:18:1 generated by hSADE-NN
and 15.696 for network 5:13:1, generated by SADE-NN-2.
For determining if these best networks are overtrained, a
comparison between the evolution of MSEtraining and
MSEtesting during simulations was realized (Fig. 7 for
hSADE-NN and Fig. 8 for SADE-NN-2). This action is
performed for safety, although the possibility of overtraining

Fig. 8 Evolution of MSEtraining
and MSEtesting during the
determination of a neural network
model using SADE-NN-2
algorithm
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Fig. 9 MLP(5:18:1) network prediction vs. experimental data in the
testing phase

Table 3 Yoon-Nelson
parameters for MN 202,
MN 250, and AC 20 ad-
sorbents (Buburuzan
et al. 2010)

Adsorbent kYN (min−1) τ (min)

MN 202 0.1393 27.4064

MN 250 0.1242 39.583

AC 20 0.1367 34.1902
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a neural network when using hSADE-NN algorithm or its
predecessors is quite low due to the following factors: (1) a
simultaneous topological and structural optimization is per-
formed and (2) the population of networks evolves, the best
solution not always representing the same individual over the
entire generations.

Comparing Figs. 7 and 8, it can be observed that the curves
of MSE evolution in both training and testing phases are
similar in the first 20 % of the entire number of generations,
registering the most abrupt change. In the other 80 %, the
networks evolved slower, the individuals being placed in local
optimum from which the algorithm is trying to escape.

One can see in Figs. 7 and 8 that after 200 generations, the
algorithm can stop since there is no significant improvement
rate. On the other hand, since the desired outcome is a near-
optimal neural network which models the considered process,
the number of simulations performed is 1,000. As the current
generation grows, the MSEtraining becomes smaller and small-
er, but the MSEtesting varies, although it follows a descending
trend as indicated by the trend lines from Figs. 7 and 8. This
evolution shows that the determined network is not
overtrained, a good correlation between the desired data and
the one generated with the 15:18:1 network (the results of
hSADE-NN) existing in the testing phase (Fig. 9).

Concerning the MSE in the testing phase of the two algo-
rithms, for the duration of the last 10 % of evolution, hSADE-
NN has a steeper trend line, indicating that if the evolution is
extended (by raising the maximum allowed number of gener-
ations), then a better network will be found. Since this im-
provement is small and the computational resources con-
sumed rise, a compromise is considered, the current best
network MLP(5:18:1) being chosen as a suitable model for
the process of depollution of gaseous streams containing
volatile organic compounds.

This steeper trend line observed for hSADE-NN is the
result of a second local search algorithm. By alternating two
different local algorithms, the probability of creating an indi-
vidual which can introduce a new direction of search in the
mutation phase is higher. Consequently, the search space is

better scanned for feasible areas where the optimum can be
found.

Onwhat concerns the fact that our group developed a series
of DE versions (Dragoi et al. 2011, 2012a, b, 2013), it is worth
mentioning that, depending on the process on which they are
applied, the DE variants could have different performances.
Consequently, there is a possibility of choosing, testing, and
selecting the best variant, according to the accuracy of the
results.

Comparison between NN and classical models

The model developed by Yoon and Nelson (1984), which is a
descriptive model that uses experimental data to calculate its
parameters, was applied to investigate the breakthrough be-
havior of n-hexane vapors onto the three adsorbents, AC 20,
MN 202, and MN 250. The model has been developed based
on the assumption that the decrease of the probability of
adsorption for each adsorbate molecule is proportional to the
probability of adsorbate adsorption and the probability of
adsorbate breakthrough on the adsorbent (Hu et al. 2009;
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Fig. 10 a NN predictions
compared with experimental data
and b Yoon-Nelson model results
compared with experimental data,
for T=30 °C and a bed length
of 1 cm
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Fig. 11 Comparison between the experimental data set, Yoon-Nelson
model, and neural network predictions
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Ahmad & Hameed 2010). The equation describing the
model is

ln
C1

C1−C1
¼ kYN � t − τ � kYN ð4Þ

where kYN is the rate velocity constant (min−1), τ is the time
required for 50 % adsorbate breakthrough (min), and t is the
breakthrough (sampling) time (min).

The values kYN and τwere determined from ln[Ct /(Ci−Ct)]
against t plots, at a flow rate of 130 cm3/min, a bed length of
1 cm for each adsorbent, and a space velocity of 2.75 s−1.
These values are listed in Table 3 for MN 202, MN 250, and
AC 20 adsorbents.

Figure 10 presents the results provided by MLP(5:18:1)
(Fig. 10a) and Yoon-Nelson model (Fig. 10b) against exper-
imental data. Only an example is presented here (T=30 °C and
bed length=1 cm), but the conclusion is the same for the
whole set of data.

The mean square error was calculated for each situation:
MSE=0.002565 for NN modelling, where NN is determined
with hSADE-NN, and MSE=0.007680 for the Yoon-Nelson
model (three times higher). The results are comparable in
average values, but the use of a descriptive model is more
laborious and has to be adapted to each set of experimental
data. Once developed and trained, the NN model is able to
make predictions in a facile manner and in a reasonable time
interval. In addition, the NN model can be easily integrated in
on-line optimization procedures, being capable to work with
different optimization algorithms.

The benefits of NN modelling are more evident in Fig. 11
where the comparison is made point by point. The fact that the
predictions of MLP(5:18:1) are closer to experimental data
than the results provided by the Yoon-Nelson model is visible.
A similar conclusion derives from Fig. 10—the phenomeno-
logical model results are more scattered from the trend line
(Fig. 10b). Consequently, the neural model can be considered
an efficient modelling alternative, useful for experimental
practice.

Conclusions

In this research, three different adsorbents were studied for
adsorption of n-hexane vapors from the gaseous stream, in the
dynamic regime—the granular activated carbon AC 20 and
two hypercross-linked polymeric resins, MN 202 and
MN250. The experimental study was carried out by varying
some important parameters that influence the efficiency of the
adsorption process like concentration of VOCs in the gaseous
stream, temperature, and length of the adsorbent bed in the
adsorption column. Generally, the three adsorbents recorded

high efficiency for n-hexane vapors retention from gaseous
stream, the performance of adsorption decreasing according to
the hierarchy: MN 250>AC 20>MN 202.

The depollution process of gaseous streams is a complex
problem which poses a series of problems related to the
determination of a good model. In the current work, this
problem is solved using a neuro-evolutionary approach that
combines a differential evolution algorithmwith a local search
procedure employing two distinct local algorithms: Random
Search and Backpropagation. These algorithms are randomly
used to improve the best solution generated at each generation
by DE. The DE algorithm included an opposition-based learn-
ing initialization, a simple self-adaptive method for control-
ling the parameter tuning, and a modified mutation principle
based on the fitness function as a criterion for reorganization.
This variant of DE combined with local search algorithms
leads to the new hSADE-NNwhich, as the results indicated, is
able to find good neural network models for the considered
process, in an optimum variant.

The best neural model was also compared with a classical
model, the results indicating that the neural network predic-
tions are closer to the experimental data. Thus, the proposed
algorithm is a viable alternative to the classical approaches
used in modelling of the depollution process of gaseous
streams.

hSADE-NN can be also considered an efficient and flexi-
ble algorithm, having the capability to be applied successfully
to other different processes and systems, as it was designed in
a general form.
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