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Abstract The zero-valent iron (ZVI) corrosion products and
their functions were investigated in the combined ZVI and
anaerobic sludge system. Results showed that ZVI corrosion
occurred, and the reductive transformation and dechlorination
of p-chloronitrobenzene (p-ClNB) by the anaerobic sludge
were enhanced. In the combined systems with different types
of ZVIs and mass ratios of anaerobic sludge to ZVI, a consid-
erable amount of suspended iron compounds was produced
and coated onto the microbial cells. However, the microbial
cellular structure was damaged, and the p-ClNB reductive
transformation was affected adversely after the long-term
presence of nanoscale ZVI (NZVI) or reduced ZVI (RZVI)
with a high concentration of 5 g L−1. The oxidized products of
FeOOH and Fe3O4 were found on the surface of ZVI, which
are speculated to act as electron mediators and consequently
facilitate the utilization of electron donors by the anaerobic
microbes.
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Introduction

Chloronitrobenzenes (ClNBs), as important intermediates for
the synthesis of medicines, dyes, and pesticides, are widely
produced and used in China. Lots of studies have confirmed
that ClNBs are mutagenic, genotoxic, refractory, and bio-
cumulative which could be accumulated in the sediments
and soils and subsequently threaten ecological security and
human health (Hartter 1985; Haderlein and Schwarzenbach
1995). Studies have also shown that ClNBs are difficult to
be biodegraded under aerobic conditions due to the strong
electrophilic characteristic of chloro- or nitro- groups on the
benzene ring. However, ClNBs could be reductively trans-
formed or even dechlorinated by sulfate-reducing, methan-
ogenic, and homoacetogenic microorganisms under anaero-
bic or anoxic conditions (USEPA 1988). In general, the
extent and rate of the above reactions are dependent on the
nature of pollutants, character of electron donors, and their
respective concentrations as well (Perkins et al. 1994).
Among these factors, the selection of electron donor is
demonstrated to have the greatest impact on the overall
degradation reaction (Aulenta et al. 2007; Ma and Zhang
2008; He et al. 2009).

Since the 1980s, researchers have applied zero-valent
iron (ZVI), bimetallic ZVI, and nanoscale ZVI (NZVI) in
the treatment of chlorinated aromatic hydrocarbons, chlo-
rinated aliphatic hydrocarbons (CAHs), azo dyes, insecti-
cides, inorganic anions (notably nitrate), and heavy metals
(As, Se, Cr, etc.) (Agrawal and Tratnyek 1996; Mantha
et al. 2001; Xu et al. 2009; Olegario et al. 2010; Stieber
et al. 2011; Liu et al. 2012; Chang et al. 2014; Liang and
Zhao 2014; Velimirovic et al. 2014). Under the anaerobic
condition, ZVI reduction follows the following equations
in the aqueous system:

Fe0 þ 2 H2O→Fe2þ þ H2 þ 2 OH− ð1Þ
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2 Fe0 þ O2 þ 2 H2O→2 Fe2þ þ 4 OH− ð2Þ

Fe2þ2 OH−→Fe OHð Þ2 ð3Þ

Studies have confirmed that the coexistence of ZVI could
enhance the ability of anaerobic microbes in the degradation
of various contaminants such as tetrachloroethene (PCE),
trichloroethylene (TCE), and trichloroethylene (DCA)
(Gandhi et al. 2002; Rosenthal et al. 2004; Min et al. 2009).
Recently, different mechanisms of ZVI process combined
with anaerobic sludge have been proposed including (1) direct
reductive dechlorination on ZVI surface, (2) reductive dechlo-
rination by surface-bounding Fe(II), and (3) hydrogen reduc-
tion via ZVI corrosion (Matheson and Tratnyek 1994; Shea
et al. 2004). Thereinto, it has been well established that the
reduction and coagulation caused by Fe2+ via the ZVI corro-
sion could enhance the pollutant degradation process (Zhang
et al. 2007; Wang and Tseng 2009). Meanwhile, the hydrogen
released from ZVI corrosion could be utilized by anaerobic
microbes (Rosenthal et al. 2004).

Based on the previous study with respect to anaerobic
reduction process and influencing factors of p-ClNB transfor-
mation in the combined ZVI-anaerobic sludge system (Zhu
et al. 2012), the objectives are to reveal the function and
effectiveness of ZVI and its corrosion products on the p-
ClNB reductive transformation and anaerobic granular sludge
growth in the combined ZVI-anaerobic sludge system.
Furthermore, the synergetic effect of different ZVI types and
dosages on the p-ClNB reduction was also investigated, which
was helpful for the application of combined ZVI-anaerobic
sludge process for enhanced refractory organic pollutant
removal.

Materials and methods

Chemicals

The reagents used in the study included p-ClNB (purity>
99.5 %; Shanghai Chemical Reagent Co. Ltd., China),
ultrahigh-purity H2 (purity>99.9 %; Hangzhou Specialty
Gases Co. Ltd., China), methyl tert-butyl ether (MTBE) (chro-
matography grade; Merck, Germany), and anhydrous sodium
sulfate (reagent grade, calcined at 450 °C for 4 h). The other
chemicals were of reagent grade.

Three kinds of ZVI were used, such as the industrial ZVI
(named as IZVI, particle size of 100–180mesh, purity of more
than 95%; purchased from the Hangzhou Jiali Metal Co. Ltd.,
China), reduced ZVI (named as RZVI, particle size of about
100 mesh, purity of more than 98 %; purchased from
Shanghai Jinshan Smeltery, China), and nanoscale ZVI
(named as NZVI, particle size approximately 350 nm, purity

of more than 99.9 %; purchased from Shenzhen Junye
Nano Material Co. Ltd., China). The inoculum was the
anaerobic sludge collected from an anaerobic digester at
Sibao Sewage Treatment Plant, Hangzhou, China. The
mixed liquor suspended solids (MLSS) and the mixed
liquor volatile suspended solids (MLVSS) were 38 and
10 g L−1, respectively.

Batch experiments for ZVI product analysis in the combined
system

The analysis of corrosion products was conducted under three
different conditions: single anaerobic sludge system, single
ZVI reduction system, and combined ZVI-anaerobic sludge
system. p-ClNB of 0.275–0.30 mmol L−1 and a certain
amount of micronutrient solution (the components were
shown in Zhu et al. 2012) were initially added to a 100 mL
serum bottle with the HEPES buffer (0.2 mol L−1, pH 7.0±
0.2), and the final liquid volume per bottle was maintained at
60 mL. The medium was purged with N2 to remove the
dissolved oxygen in the system, and then the ZVI or acclimat-
ed anaerobic sludge was added into the serum bottle. The type
and amount of ZVI and the amount of sludge added in the
system were determined based on the purpose of different
experiments. The serum bottles were sealed with butene rub-
ber stoppers and placed onto an incubator at 150 r min−1 and
30 °C for the oscillatory reaction. The gas compositions,
solution pH, oxidation-reduction potential (ORP), dissolved
iron concentration, suspended iron concentration, as well as
the surface property of ZVI and anaerobic sludge were regu-
larly analyzed during the whole experiment. All the samples
were tested in triplicate.

Analysis methods

The pH and ORP were measured using a Delta320 precision
pH meter equipped with a pH electrode and a redox electrode
(Shanghai Mettler-Toledo Instruments, China), respectively.
The CODCr and biomass concentration (MLSS and MLVSS)
were measured according to standard methods (APHA 1998).

Target pollutants as p-ClNB, p-ClAn, and AN were deter-
mined using a high-performance liquid chromatography
(HPLC; Waters, Milford, MA, USA) equipped with a 2487-
double-wavelength absorbance detector, a 717 autosampler,
and a 4.6 mm×150 mm, 5 μmAgilent ZORBAX Eclipse SB-
C18 (Palo Alto, CA, USA). Water sample taken from serum
bottle was treated as described in previous reports (Zhu et al.
2012). A sample of 1.0 mL was centrifuged for 10 min at
10,000 rpm, and subsequently 0.6 mL of supernatant was
mixed with 0.9 mL methanol. Prior to analysis, the sample
solution was filtered with a 0.22-μm filter membrane. The
mobile phase was the mixture of CH3OH/H2O in the propor-
tion of 60/40, and the flow rate was 1.0 mL min−1. Injection
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volume for each sample was adopted to 10 μL, and column
temperature was set at 30 °C. The wavelengths for p-ClNB, p-
ClAn, and AN were 254, 254, and 230 nm, respectively.

The gaseous H2 and CH4 were determined using a gas
chromatograph (GC 9800; Shanghai Tianmei Technology
Co. Ltd., China) equipped with a thermal conductivity detec-
tor (TCD) and a packed Porapak q column. Temperatures of
the column, gasification chamber, and detector were 40, 80,
and 60 °C, respectively. The carrier gas was high-purity
nitrogen, and the injection volume was 1 mL.

The concentration of dissolved iron was determined using
the 1,10-phenanthroline spectrometric method (APHA 1998).
The total iron concentration was determined based on the
method of Vlyssides et al. (2009). Briefly, the mixed liquor
was acidified with 10 mL concentrated hydrochloric acid
and heated until complete dissolution after MLSS and
MLVSS measurement, and then the dissolved iron was
analyzed via 1,10-phenanthroline spectrometric method.
The suspended iron concentration was calculated from
the difference between the total iron and dissolved iron
concentrations.

The morphology of anaerobic sludge and surface appear-
ance of ZVI were observed using scanning electron
microscopy/energy-dispersive X-ray spectroscopy (SEM/
EDX, FEI SIRON 0308947Q; Netherlands) and transmission
electron microscopy (TEM, JEOL JEM-1230; Japan). The
pretreatment of anaerobic sludge for SEM analysis was as
follows: The sludge sample was fixed overnight in 2.5 %
glutaraldehyde at 4 °C, washed three times with 0.1 mol L−1

at pH 7.0 of phosphate buffer solution (PBS) (15 min each
wash), fixed with a 1 % osmic acid solution for 1–2 h, and
washed three additional times with PBS (15 min each wash).
After a series of ethanol dehydrations (50, 70, 80, 90, 95, and
100 %), the sample was further treated in a mixture of ethanol
and iso-amyl acetate (V/V=1/1) for 30 min and pure iso-amyl
acetate for 1–2 h, dried at a critical point, and coated for use.
The TEM sample was pretreated as follows: The sludge was
dehydrated through a series of ethanol solutions, pretreated in
pure acetone for 20 min and treated in an embedding agent
and acetone mixture for 1 h (V/V=1/1) and 3 h (V/V=3/1),
respectively. After overnight infiltration in pure embedding
agent, the sample was heated to 70 °C overnight, sectioned
into 70–90-nm slices, and sequentially stained for 15min with
lead citrate, uranyl acetate, and a 50 % ethanol solution.

The surface property of ZVI was characterized using a
X-ray diffraction (XRD) equipment. The ZVI particles were
selected from different batch systems at the end of experi-
ments and were ultrasonically cleaned in deoxygenated water
for 30 min with a C5860 ultrasonic cleaner (Nanjin Kejie
Analysis Instrument Co. Ltd., China). Subsequently, the sus-
pension was centrifuged at 104 r min−1 (Sigma 3K18 centri-
fuge) for 10 min, and the supernatant was discharged. The
ZVI sample was finally dried by N2 before the analysis by a

XRD equipment (Rigaku Dmax-2550PC multi-crystal X-ray
diffractometer, Japan).

Results and discussion

To reveal the interaction of ZVI and its corrosive productions
with anaerobic microorganisms during anaerobic p-ClNB re-
ductive process, the pH, ORP, and H2 concentration were
analyzed and the ZVI corrosion products were investigated
in the combined ZVI and anaerobic sludge system.

Corrosion and hydrogen production in the combined
ZVI-anaerobic sludge system

Three kinds of ZVI were used for p-ClNB reductive transfor-
mation in the combined system, and different dosages were
designed for the ZVIs under the same condition of initial p-
ClNB concentration at approximately 0.30 mmol L−1 and
anaerobic sludge concentration at 1.5 g VSS L−1. The addition
of IZVI, RZVI, and NZVI was 1.0–10.0, 0.5–5.0, and 0.5–
2.0 g L−1, respectively. Results showed that different ZVIs
exhibited distinct activity for hydrogen production, which was
ordered as NZVI > RZVI > IZVI. Meanwhile, the production
of hydrogen increased correspondingly with the increase of
ZVI dosage. Numerous studies have reported that the reduc-
tive transformation of ZVI belonged to the surface reaction
and its surface characteristics influenced the rate of
reaction (Agrawal and Tratnyek 1996; Crane and Scott
2012). Under the condition without the additional car-
bon source, the standard Gibbs free energy for produc-
tion of hydrogen through ZVI corrosion was as low as
−5.02 kJ mol Fe−1 under anaerobic condition, and the accu-
mulation of H2 had a negative effect on the reductive reaction
(Karri et al. 2005). However, anaerobic microbes could de-
crease H2 partial pressure by utilization in the combined ZVI-
anaerobic sludge system and, therefore, accelerated the corro-
sion of ZVI and increased the available reaction sites (Ryu
et al. 2011; Shirin and Balakrishnan 2011).

Analysis of ZVI corrosion products in anaerobic system

The variations in pH, ORP, and dissolved and suspended iron
concentrations in different anaerobic systems are shown in
Fig. 1. The concentration of anaerobic sludge was maintained
at 1.5 gMLVSS L−1 and those of IZVI, RZVI, and NZVI were
0–10, 0.5–5, and 0.5–2 g L−1, respectively. As shown in
Fig. 1, the addition of ZVI increased the pH value in the
system and decreased the ORP of the solution, coupling with
the improvement of dissolved and suspended iron concentra-
tions in anaerobic sludge. The above parameters showed
obviously change with ZVI dosage increase, and the affecting
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extent was in accordance with the reductive ability of ZVI as
NZVI > RZVI > IZVI.

The pH values in combined NZVI, RZVI, and IZVI-sludge
systems were 7.05–7.62, 7.17–7.38, and 7.15–7.21, respec-
tively. The pH in the combined systems was kept within the
range by PBS and did not disturb the normal growth of
anaerobic microbes. With regards to the ORP, the anaerobic
microbes have strict ORP requirement generally. For example,
methanogens prefer an ORP that is approximately between
−150 and −400 mV. The addition of NZVI, RZVI, and IZVI
decreased the ORP in the system from −124 to −240~
−480mV, −237~−363mV, and −184~−260mV, respectively,
which were precisely among the range for methanogens. Lee
and Cho (2001) and Zhang et al. (2011) found that the en-
hanced dechlorination of TCE by ZVI and methanogenesis
were correlated with low ORP that resulted from the presence
of ZVI. However, the enhancement of IZVI and NZVI on the
dechlorination is obviously inferior to that of RZVI in the
anaerobic sludge system; therefore, there was little correlation
between the enhancement and ORP in the batch test.

For the iron concentration in different systems, the com-
bined NZVI, RZVI, and IZVI-anaerobic sludge systems had
dissolved iron concentrations of 24.45–160.17, 20.2–41.3,
and 14.5–30.47 mg L−1, respectively. Meanwhile, the
suspended iron concentrations in the systems were 121.7–
208.4, 97.4–174.8, and 57.7–147.3 mg L−1. These data clearly
demonstrated that the majority of oxidized irons were trans-
formed to suspended compounds via further oxidation or

coagulation. The concentrations of both dissolved and
suspended iron compounds in the NZVI system were greater
than those in the IZVI and RZVI systems, which might be
attributed to the higher specific surface area of NZVI.

As one of the essential nutrients for the microbial growth,
iron participates in many metabolic processes and has a pos-
itive effect on microbial activity. Batch test with different Fe2+

concentrations was conducted to investigate the effect of Fe2+

concentration on the rate of p-ClNB reduction in the anaerobic
sludge system (shown in Fig. 2).

The transformation rate of p-ClNB in all the systems could
be well described by pseudo-first-order kinetic of Eq. 4:

d p� ClNB½ �=dt ¼ −kp�ClNB ð4Þ

where [p-ClNB] is the concentration of p-ClNB and kp-ClNB is
the pseudo-first-order rate coefficient.

In order to illustrate the enhancement of Fe2+ on the trans-
formation of p-ClNB by the anaerobic sludge, a strengthening
factor Q′ was employed in Eq. 5:

Q0 ¼ kp�CINBþFe2þ=kp−CINB ð5Þ

where kp-ClNB + Fe
2+ is the rate coefficient of p-ClNB transfor-

mation in Fe2+-added anaerobic sludge system, and kp-ClNB is
the rate coefficient of p-ClNB transformation in the controlled
system.

Results showed that kp-ClNB increased from 0.036 to
0.052 h−1 along with the Fe2+ concentration increased from

0 2 4 6 8 10

0

50

100

150

200

NZVI

 RZVI

 IZVI

ZVI (g L
-1

)

S
o
lu

te
d
 i
r
o
n
 

(
m

g
L

-
1

)

(c)

0 2 4 6 8 10

0

50

100

150

200

250

NZVI

 RZVI

 IZVI

ZVI  (gL
-1

)

S
u

s
p

e
n

d
e

d
 i
r
o

n
（

m
g

L
-
1

）

(d)

0 2 4 6 8 10

7.0

7.1

7.2

7.3

7.4

7.5

7.6

7.7

NZVI

 RZVI

 IZVI

ZVI (g L
-1

)

p
H

(a)

0 2 4 6 8 10

-490

-420

-350

-280

-210

-140

-70

0

NZVI

 RZVI

 IZVI

O
R

P
  

(
m

V
)
 

ZVI (g L
-1

)

(b)
Fig. 1 Variation of a pH, b ORP,
c dissolved iron, and d suspended
iron with different types and
dosages of ZVI in various
anaerobic systems

12750 Environ Sci Pollut Res (2014) 21:12747–12756



0 to 100 mg L−1, and meanwhile, the strengthening factor Q′
increased from 1.00 to 1.44. The result revealed that a suitable
Fe2+ concentration could improve the anaerobic microbial
metabolism. Nevertheless, the effect of H2 (Q′ was at 4.12–
5.65) was considerably more significant (Zhu et al. 2012). The
t test (paired) differences also indicated no significant differ-
ence between the reduction of p-ClNB and H2 and production
of dissolved and suspended irons, with a t test p value of
0.221–0.246, respectively, which were >0.05. Results con-
firmed that H2 produced via ZVI corrosion could be used as
an electron donor to enhance the reduction of p-ClNB in the
ZVI-sludge combined system. It is noteworthy that the
majority of oxidized irons existed in the suspended forms,
and the systems with NZVI had the highest concentration
of suspended irons. In view of the inhibitory effect from
NZVI and high concentration of RZVI on the anaerobic
sludge, the significant amount of suspended irons generated
from ZVI oxidation may negatively affect the metabolism
of the anaerobes.

Composition of iron oxides and their effect on p-ClNB
reductive transformation

To determine the distribution of iron in the anaerobic sludge
and its potential inhibitory mechanism, the surface property of
anaerobic sludge was analyzed. As shown in Fig. 3, SEM
images revealed that the anaerobic sludge surface was rela-
tively smooth in the controlled group, while in the combined
NZVI (0.5 g L−1)-sludge and RZVI (5.0 g L−1)-sludge sys-
tems, precipitates are exhibited on the sludge surface. EDX
analysis revealed elemental iron existing in sludge surface
precipitates with the value of 1.27, 2.41, 3.11, 3.61, and
8.62 % for the controlled sludge, IZVI (1.0 g L−1)-sludge,
RZVI (1.0 g L−1)-sludge, RZVI (5.0 g L−1)-sludge, and NZVI

(1.0 g L−1)-sludge systems, respectively. Thereby, the richness
followed the order of NZVI-sludge > RZVI-sludge > IZVI-
sludge > sludge. TEM analysis (shown in Fig. 4) also indicat-
ed that there were particulate precipitates coating onto the cell
surface in the combined IZVI-sludge and RZVI (1.0 g L−1)-
sludge systems. Furthermore, the amount of precipitates in-
creased with the RZVI concentration up to 5.0 g L−1; however,
the microbial cells were deformed under a concern pressure.
In the combined NZVI-sludge system, the deformation was
more significant, and the cellular structure of anaerobic mi-
crobes was even damaged. The results indicated that high ZVI
concentrations, especially in the case of NZVI, had a negative
effect on the anaerobic microbial cells.

In recent years, lots of studies have reported that NZVI had
a certain extent of inhibition or even toxic effects on the
microorganisms. Xiu et al. (2010) observed that NZVI sup-
pressed the dechlorination of TCE by Dehalococcoides. Diao
and Yao (2009) concluded that the mechanisms for inhibition
or toxicity could be (1) physical precipitation of iron on the
cell surface, (2) damage to the cell membrane induced by iron
oxides, and (3) formation of radicals such as O·from the
NZVI reaction with dissolved oxygen in the cytoplasm.
Current studies revealed that NZVI and high concentration
of RZVI could also significantly inhibit the dechlorination of
p-ClAn (Zhu et al. 2012). In the prolonged operation under a
fed-batch mode, the presence of RZVI caused obvious inhi-
bition on low concentration of anaerobic sludge. Coupling the
analysis on ZVI oxidation products to the surface characteri-
zation, the inhibition mechanism was speculated that iron
oxides coating onto the cell surface were capable of interfering
the transport of nutrients as well as pollutants and also did
damage to the structure of cell membrane, which consequently
deactivated the microorganisms. With a gradual increase in
the concentration of anaerobic sludge and a constant dosage of
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ZVI, the precipitations contained in microorganisms could be
decreased and the inhibition be ultimately alleviated.

To consolidate the biochemical cooperation between anaer-
obic microbes and ZVI, the inhibitory effect from ZVI had to

be taken into consideration for establishing a stable combined
ZVI-anaerobic sludge system. The selection of an appropriate
ZVI or the ratio of anaerobic sludge to ZVI could be performed
to improve the reductive performance of combined system.

Fig. 4 TEM images of anaerobic
sludge in various combined
systems: a anaerobic sludge
control, b IZVI (1.0 g L−1)-
anaerobic sludge, c RZVI
(1.0 g L−1)-anaerobic sludge,
d RZVI (5.0 g L−1)-anaerobic
sludge, and e NZVI (1.0 g L−1)-
anaerobic sludge systems
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Surface characteristics of ZVI and its effect on reductive
transformation of p-ClNB

SEM images of the RZVI system and combined RZVI-
anaerobic sludge system are shown in Fig. 5. Results showed
that a significant change happened, and flakes were observed
on the RZVI surface after reaction. Analysis of the precipitates
on ZVI surface using XRD (shown in Fig. 6) revealed that
ZVI surface was oxidized to various extents among different
anaerobic systems. The primary precipitates were FeOOH and
Fe3O4, which suggested that the coexistence of ZVI with
anaerobic sludge did not affect the composition of precipitates
on the ZVI surface. FeOOH and Fe3O4 were deemed to be
efficient electron mediators and capable of accelerating

electron transportation when they are absorbed on the ZVI
surface. At the same time, the transformation rates of contam-
inants were also increased (Huang and Zhang 2005; Liu et al.
2006). In preliminary studies, the activity of p-ClNB transfor-
mation was enhanced with kp-ClNB increasing from 0.72 to
0.92 h−1 (indicated as 1.28 times). It was speculated that the
enhancement of kp-ClNB resulted from FeOOH and Fe3O4

forming on the ZVI surface, which accelerated the transport
of electrons during the reduction of p-ClNB by ZVI. In
comparison with the ZVI-control system, the combined
ZVI-anaerobic sludge system had an increase of kp-ClNB from
0.86 to 3.51 h−1 in the first cycle to 2.69–9.53 h−1. The rate of
p-ClNB reduction improved as the sludge concentration in-
creased. Therefore, it was deduced that FeOOH and Fe3O4

Fig. 5 SEM images of RZVI surface in different anaerobic systems: a ×20,000, RZVI (before reaction); b ×50,000, from RZVI control system
(after reaction); and c from combined RZVI-anaerobic sludge system (after reaction)
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improved the utilization rate of electron donors by anaerobic
sludge on the ZVI surface and consequently promoted the
biochemical synergistic effect of ZVI with the anaerobic
sludge. According to the results of the inhibitory effect in-
volved in the dechlorination under the condition of low
sludge/iron mass ratio, the effect of ZVI oxidized products
included two aspects: (1) FeOOH and Fe3O4 facilitated the
transport of electron donors, and (2) a large amount of
FeOOH and Fe3O4 precipitating on the cell surfaces caused
damage to the cellular structure (Watanabe et al. 2013). Studies
about iron-reducing bacteria and sulfate-reducing bacteria
showed that the enhanced dechlorination of TCE and CT was
mainly due to the microorganisms capable of increasing the
oxidation rate of ZVI or forming highly active products on the
ZVI surface (Gerlach et al. 2000; Min et al. 2009; Wang and
Tseng 2009). However, increasing the anaerobic biomass could
not only enhance the cooperation between ZVI and anaerobic
microbes but also improve the resistance to inhibitory effect of
iron oxides, which suggests that increasing the anaerobic bio-
mass might be a key for optimizing the combined ZVI-
anaerobic sludge system for better reductive performance.

Conclusions

In the combined ZVI-anaerobic sludge system, the concentra-
tions of dissolved and suspended iron were significantly in-
creased and the reductive transformation and dechlorination
of p-ClNB were enhanced simultaneously. A considerable
amount of suspended iron compounds was produced and
coated onto the microbial cells. The oxidized products of
FeOOH and Fe3O4 were found on the surface of ZVI, which
was speculated to act as the electron mediators and conse-
quently facilitate the utilization of electron donors by anaero-
bic microbes. However, the microbial cellular structure was
deformed or damaged in the long-term presence of nanoscale
ZVI or reduced ZVI with a high concentration of 5 g L−1, and
the reductive transformation of p-ClNBwas affected adversely.
Results revealed that an appropriate type of ZVI and optimal
mass ratio of anaerobic sludge to ZVI were important to
improve the performance of the conventional anaerobic sludge
process for refractory organic pollutant degradation.
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