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Abstract Air quality problems caused by atmospheric partic-
ulate have drawn broad public concern in the global scope. In
the paper, the spatiotemporal distributions of fine particle
(PM2.5) and inhalable particle (PM10) concentrations esti-
mated with the artificial neural network (ANN) over China
during 2006 to 2010 have been discussed. Most high PM10
concentration appears in Xinjiang, Qinghai, Gansu, Ningxia,
Hubei, and parts of Inner Mongolia. The distribution of
PM2.5 concentration is consistent with China’s three gradient
terrains. The seasonal variations of PM2.5 and PM10 concen-
trations both indicate that they are higher in north China in
spring and winter, lowest in summer. In autumn, most prov-
inces in south China appear high value. In particular, high
PM2.5 concentration appears in the southeast coastal cities
while high PM10 concentration prefers the central regions in
south China. On this basis, seasonal Mann–Kendall test meth-
od is utilized to analyze the short-term trends. The results also
show significant changes of PM2.5 and PM10 concentrations
of China in the past 5 years, and most provinces present the
tendency of reduction (3–5 μg/m3 for PM2.5 and 10–20 μg/
m3 for PM10 per year) while a fraction of provinces appear the
increasing trend of 8–16 μg/m3 (PM2.5) and 16–30 μg/m3

(PM10). Simultaneously, PM2.5 population exposure is
discussed with the combination of population density-
gridded data. Municipalities get much higher exposure level
than other provinces. Shanghai suffers the highest population
exposure to PM2.5, followed by Beijing and then Tianjin,
Jiangsu province. Most provincial capitals, such as

Guangzhou, Nanjing, Chengdu, and Wuhan, face much
higher exposure level than other regions of their province.
Moreover, the PM2.5 exposure situation is more serious in
southeast than northwest regions for Beijing-Tianjin-Hebei
region. Also, per capita PM2.5 concentration and
population-weighted PM2.5 concentration are calculated.
The former shows that the high-level regions distribute in
Guangdong, Shanghai, and Tianjin, while the latter in Hebei,
Chongqing, and Shandong provinces. Further studies may
consider optimizing concentration estimation model and use
it to discuss the effects of particulate matters on human health.
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Introduction

Along with the acceleration of urbanization process, air qual-
ity has become an important protection factor which influ-
ences urban sustainable development and ecological city con-
struction. Particulate matter is one of the major pollutants that
affect air quality in urban and even rural areas of the world
(Gupta et al. 2006). The particles with aerodynamic diameters
less than 2.5 μm are defined as fine particles (PM2.5) (Liu
et al. 2005, 2009), while less than 10 μm are called inhalable
particles (PM10). The density of PM2.5 ground observation
network in China is relatively low, and the distribution of
observation stations is uneven, so it’s difficult to reflect the
spatial distribution characteristics of PM2.5 according to the
ground monitoring data alone.

Remote-sensing techniques, which provide consistent mea-
surements at broad-scale and frequent time intervals, have
been increasingly adopted to assess surface level of particulate
matter concentration at high spatial and temporal resolutions
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(Gupta and Christopher 2009a). Martin (2008) has reviewed
the state-of-arts satellite remote-sensing sensors for air quality
monitoring, and it has been revealed that aerosol remote
sensing at visible wavelengths exhibits high sensitivity to
boundary layer concentrations. A rigorous review of the sen-
sors’ characteristics led to the hypothesis that moderate reso-
lution imaging spectroradiometer (MODIS) instrument is
most likely to achieve the best results and has been utilized
to retrieve aerosol optical thickness (AOT) (Kaufman et al.
1997; Tanré et al. 1997). Wang and Christopher (2003) have
demonstrated that satellite-derived AOT is a good surrogate
for monitoring particulate matter air quality over the earth.

Wang and Martin (2007) have estimated near ground
PM2.5 concentration in Beijing area with MODIS 1 km data
based on the vertical and humidity correction of AOT inver-
sion; the correlation with observed values is relatively high
(R2=0.47). Liu et al. (2005) have used aerosol vertical profiles
simulated by atmospheric chemistry model to the vertical
correction of satellite remote sensing AOT and extracted the
extinction contribution of surface layer aerosol which can
reflect better changes of near ground particles (R2=0.46).
Van Donkelaar et al. (2006) have demonstrated that the main
influence factor between AOT and PM2.5 is the relative
vertical profiles of aerosol extinction coefficient. Then,
Donkelaar et al. (2010) have given a map of the average
PM2.5 concentration from 2001 to 2006; in this map, even
the relatively low PM2.5 concentration in east China is about
60–90 μg/m3, while the high value is more than 100 μg/m3.
What’s more, the research also points out that the value is still
25 % lower than the real situation in some areas.

The works have considered the influence of various envi-
ronmental, meteorological factors on AOT–PM2.5 relation-
ship, using multivariate statistical regression model to de-
scribe the relationship between near ground particulate con-
centration and multiple factors including AOT. However, the
regression equation is only applicable to the estimation of
average conditions, a situation that underestimates high con-
centration or overestimates low concentration would arise
(Gupta and Christopher 2009a). Previous research has shown
that the artificial neural network (ANN) can achieve a better
inversion of particulate concentration by introducing the me-
teorological factors in the process of constructing appropriate
satellite AOT–PM relationship (Gupta and Christopher
2009b).

In this paper, ANN (Matthew 1990) is developed with
satellite, ground, and meteorological data sources to assess
the concentration of particulate matter. The spatiotemporal
distribution of PM2.5 and PM10 concentration and also the
short-term trends over China in the period of 2006 and 2010
have been analyzed. Furthermore, population exposure to
PM2.5 of China in 2010 has been discussed and the per capita
PM2.5 concentration and the population-weighted PM2.5
concentration have been calculated.

The rest of this paper is organized as follows. In
Section “Data and methodology,” we give a brief description
on the data sources and the mechanisms and schedules of
proposed methods for particulate matter concentration estima-
tion and short-term trends analysis. The spatiotemporal distri-
bution and short-term trends of particulate matter concentra-
tion in the past 5 years over China are clarified and discussed
in Section “Results and discussion.” Finally, a conclusion is
drawn in Section “Conclusions.”

Data and methodology

Study area

For covering particulate matter problem in China, our spatial
domain includes mainland China (excludes Hainan,
Hongkong,Macao, and Taiwan). To be sure, Hainan province,
Hongkong, Macao, and Taiwan are not included in the study
area because of the influence of cloud and aerosol type.Macao
is also left out of the study area due to the contradiction
between its small area and spatial resolution (10 km) of the
estimated concentration.

Data sources

Four data sources are used in the study; the details of data
sources and their uncertainties are as follows.

1. MODIS atmosphere aerosol product (MOD04_L2). The
MOD04_L2 is daily level-2 data, derived from National
Aeronautics and Space Administration (NASA) Terra plat-
form. It has been produced at the spatial resolution of a
10×10 km (at nadir) pixel array. The MOD04_L2 product
is suitable for granules where the minimum solar zenith
angle is less than or equal to 72°. Levy and Remer (2007)
demonstrated that MODIS AOD product has 10–20 %
uncertainty compared with surface station observation.

2. ERA-Interim, which is the latest global atmospheric re-
analysis produced by European Centre for Medium-
Range Weather Forecasts (ECMWF) (Dee et al. 2011).
It now extends back to 1979, and the analysis continues to
be extended forward in near-real-time. More detailed
description of the ERA-Interim product archive can be
found in the paper of Berrisford et al. (2009). Simmons
et al. (2010) have found that ERA-Interim data agrees
well with Climatic Research Unit and Hadley Centre
analyses of monthly station temperature data
(CRUTEM3), and the correlations between the
CRUTEM3 and ERA-Interim data in North America
and Asia exceed 99 %.

3. Ground-observed particulate matter concentration data.
Due to less monitoring data of China, some American site
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monitoring data derived from the US Environmental
Protection Agency (EPA) is used in this paper.
Considering the fact that particulate matter concentration
in China is much higher than USA, ground-observed
particulate matter concentration data of China is intro-
duced to achieve a more plausible estimation model.

The EPA and its partners in the USA set up the air
quality monitoring network to collect ground-level partic-
ulate matter concentration in air pollution monitoring.
Total suspended particulate (TSP), PM10, and PM2.5
concentrations were obtained according to EPA-defined
methodology.

We consider monitoring data as the gold standard here,
while acknowledging that the ground measurements are
not error-free (instrument error variance of approximately
1.5 based on colocated monitors, relative to a trimmed
variance of the measurements of 60) (Christopher et al.
2008). To assess the relationship between PM2.5 and
AOD, we matched monitoring data to the nearest AOD
pixel, omitting a small number of monitors for which the
nearest pixel centroid is closer to another monitor.

The AOD–PM relationship varies by region and aero-
sol characteristics, but network generalization can be im-
proved by ensuring that the training data are extensive and
comprehensive. An extensive training set would include
all geographic regions of the Earth, all seasons, night and
day cases, and so forth (Blackwell and Chen 2009). In this
paper, the utilization of the USmonitoring data along with
the Chinese monitoring data is to assure the training
dataset contains extensive sampling (that is, high, medi-
um, and low monitoring values).

4. Gridded population dataset, which is derived from the
Center for International Earth Science Information
Network (CIESIN), contains the distribution of human
population. It is a gridded data product that renders global
population data at the scale and extent required to dem-
onstrate the spatial relationship of human population and
the environment across the globe.

Particulate matter concentration estimation

The ANN algorithm, which is designed for modeling complex
relationships between inputs and outputs or to find patterns in
data, has been proved to solve this problem (Gupta and
Christopher 2009a, b; Yao et al. 2012a).

An ANN is typically defined by three types of layers of
units: input, hidden, and output. Each layer can contain mul-
tiple neurons. A layer of input units is connected to a layer of
hidden units, which is connected to a layer of output units.
With the use of input and output sample sets, network struc-
ture builds up network-mapping relationship on a given input
and output through its training, learning, and adjustment of

neural network weights and thresholds. Trained network will
be able to grasp the essential characteristics, not only in the
input sample dataset but also in the given appropriate output
dataset, that is, with the generalization. It is trained using the
traditional error back-propagation (BP) algorithm. BP neural
network is a forward multilayer network, which was first
developed by Rumelhart et al. (1986). Besides, in order to
minimize the error sum of squares, the Levenberg–Marquardt
(LM) algorithm (Levenberg 1944) was utilized to improve BP
network training. LM algorithm is an effective method of
nonlinear least squares problem. It is superior to conventional
BP algorithm with fast convergence and high approximation
accuracy.

In this study, there are eight parameters in the input units of
the constructed neural network, including latitude, longitude,
single scattering albedo (SSA), aerosol optical thickness
(AOT), wind speed, relative humidity, skin temperature
(SKT), and planetary boundary layer height. Where, the
AOT and SSA are retrieved from MODIS instruments, and
the last four parameters are derived from ERA-Interim. There
are 16 hidden layers in the constructed neural network model.
The performance of the network is evaluated by calculating
absolute percentage errors (APE) (Gupta and Christopher
2009a),

APE ¼ 100� Y est−Y obsj jð Þ
Y obsj jð Þ ð1Þ

where, Yest is the estimated particulate matter concentration
using trained network, and Yobs is the observed particulate
matter concentration in validation data set.

To construct an ANN model for the particulate matter
concentration estimation, about 1,078 samples distributed
over USA and China have been used. The samples are ran-
domly assigned to be three subsets. That is, 40 % samples are
selected for training, 20 % for testing, and remaining 40 % are
used for model validation.

Figure 1a, b shows the correlation between estimated results
and ground monitoring values on the concentration of PM10
and PM2.5, respectively. The correlation coefficient (Heij et al.
2004) and APE are also calculated between the matched pairs
of the estimated result and ground monitoring value to evaluate
the estimation accuracy. The correlation coefficients of PM2.5
and PM10 are, respectively, 0.82 and 0.85, while the APEs are,
respectively, about 25 and 29 %, respectively. The results
demonstrate the feasibility of the proposed ANN model on
estimating the concentration of particulate matter, and the con-
structed model will be utilized in China.

Short-term trend analysis

We first used least-square method to linearly fit the monthly
average atmospheric particulate matters (PM10 and PM2.5).
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The results can reflect the interannual short-term trends of
China. However, singular value may affect the results due to
the shortage of the time series. Thus, a nonparameter Mann–
Kendall test (Mann 1945) method was utilized to analyze the
trends of time series and decrease the effect of possible sin-
gular values. Mann–Kendall test is used to assess the signif-
icance of the trend. It can be stated most generally as a
test for whether estimated results tend to increase or
decrease with ground monitoring values (monotonic
change). However, the monthly observation sequence is
typically seasonal distribution. Hirsch et al. (1982) im-
proved the traditional Mann–Kendall method and devel-
oped the seasonal-based method (seasonal Mann–
Kendall) to solve this problem. This method could be effective
in preventing the disturbance that the abnormal value may
have on judging the time series trend (Partal and Kahya 2006).
In the meanwhile, it does not require the sample to be nor-
mally distributed and will not be affected by certain lack of
value in the time series.

In this research, the trend is calculated with the monthly
average value of the mentioned 5 years, meanwhile, we have
considered the seasonal distribution of PM, so the seasonal
Mann–Kendall trend test is used in the research. That is, 60
effective values are involved in the seasonal Mann–
Kendall trend test. We have also performed significance
test in the research, and the blank area in the figures
means the short-term trend in these regions cannot pass
through the significance test. The trend is calculated
with monthly average value but indicates the yearly
short-term changing characteristic. The details about
seasonal Mann–Kendall test method can be found in
Hirsch et al. (1982) and Yao et al. (2012b).

Population exposure assessment

Based on the yearly average PM2.5 concentration, we
calculate an indicator (P-E) for long-term population
exposure assessment. It’s calculated with Eq. 2 based
on grid computing. Then, a provincial statistics is

performed to access the population exposure in the
provincial scale.

P−E ¼ PMi−threshold valueð Þ � Pi ð2Þ

where, PMi is defined as the ith pixel value of PM2.5 concen-
tration, Pi is the ith pixel value of population density. Accord-
ing to the WHO recommended value, the threshold value in
Eq. 2 is 10 μg/m3.

In the meanwhile, we also calculate per capita PM2.5
concentration (P-C) with population-weighted PM2.5 concen-
tration (P-W). Maybe, they are not about population exposure
but useful to population health assessment while used in
conjunction with incidence data of disease. P-C indicates the
average experience of PM2.5 in a certain province, while P-W
is emphasis on the actual experience to resident, that is, the
weightiness of PM2.5 concentration in population density
area is larger than suburb or population sparse area. They
are, respectively, calculated with Eqs. 3 and 4.

P−C ¼ ∑n
i¼1PMi

n
ð3Þ

P−W ¼
Xn

i¼1

PMi � Pi

∑n
i¼1Pi

ð4Þ

where, PMi is defined as the ith pixel value of PM2.5 concen-
tration, Pi is the ith pixel value of population density, and n is
the total pixel number.

Results and discussion

Parameter effects and sensitivity analysis

Why not present all available inputs and let the neural network
determine which are relevant? This approach is reasonable if
there are no restrictions on the training set size or the time
required for training. This is usually not the case, and the
efficiency of the training process can be substantially

Fig. 1 Accuracy of particulate
estimation concentration
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increased if excessively noisy, unimportant, or redundant in-
puts are removed (Blackwell and Chen 2009).

In this paper, we used stepwise regression to ascertain the
input training parameters, the step-by-step iterative construc-
tion of a regression model that involves automatic selection of
independent variables. The main approach used in this re-
search is backward elimination, which involves starting with
all candidate variables, testing the deletion of each variable
using a chosen model comparison criterion, deleting the var-
iable (if any) that improves the model the most by being
deleted, and repeating this process until no further improve-
ment is possible (Chatfield 1995).

As for the number of hidden nodes, it has been proven that
neural networks with a single-hidden layer are universal
approximators capable of representing any real-valued con-
tinuous function to arbitrary precision over a finite domain if
enough hidden nodes are used. However, networks with

multiple hidden layers can sometimes perform better than
single-hidden-layer networks, with fewer total nodes
(Blackwell and Chen 2009).

The experiment shows that over 16 hidden nodes and 9,000
runs with random sampling provided sufficient data samples
for extracting the principal information of the used training
data, because the satellite retrieval accuracy of PM concentra-
tion almost remained the same as the number of hidden nodes
and runs increased subsequently.

Spatiotemporal distribution of particulate matter

PM2.5 spatiotemporal distribution

Figure 2 shows annual average of PM2.5 concentration of
China during 2006 to 2010.

Fig. 2 Annual average of PM2.5
concentration of China in the past
5 years
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Figure 3 shows the diagram of China’s three gradient
terrains. The “three gradient terrains” portrays an outline of
terrain changes like ladders along west–east direction. The
first and second gradient terrains are divided by the profile
along Kunlun, Qilian, and Hengduan mountains. The second
and third gradient terrains are divided by the profile along
Great Khingan, Taihang, Wushan, and Xuefeng mountains.
From Figs. 2 and 3, we found that the spatial distribution of
annual average PM2.5 concentration coincides with China’s
three gradient terrains.

Figure 4 shows the seasonal average of PM2.5 concentra-
tion of China in 2010. Seasonal meteorological division meth-
od is used, i.e., from March to May is spring (lunar calendar),

June to August is summer, September to November is autumn,
and December to February next year is winter.

The results show obvious seasonal variation in China. The
seasonal PM2.5 concentration presents that the north is higher
in the spring and winter, lowest in summer. In autumn, the
PM2.5 concentration of most provinces in southeast China
appears high value. This may be associated with the dust
weather in spring; heating system in winter, which increases
the concentration of PM2.5, while the sufficient precipitation
will decrease the concentration in summer. In autumn, the
high value of PM2.5 in southern China may be associated
with straw burning after crop harvest.

PM10 spatiotemporal distribution

Figure 5 shows annual average of PM10 concentration of
China during 2006 to 2010. During 2006 to 2008, PM10
concentration of China, especially in Xinjiang, southeast
coastal areas, and Guangdong province, show a clear down-
ward trend. In 2009, the concentration of Hunan, Hubei, and
adjacent provinces increased, and decreased again in 2010.
There are several obvious high value regions of China in the
past 5 years, such as, most of Xinjiang, Qinghai, Gansu,
Ningxia, Hubei, and parts of Inner Mongolia. Some east coast
provinces, e.g., Jiangsu and Anhui, are located in the median
zone. The results are consistent with the 343 monitoring and
statistical data released by Ministry of Environmental

Fig. 3 Diagram of three gradient terrains in China

Fig. 4 Seasonal average of
PM2.5 concentration of China in
2010
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Protection of China. Beijing is not in the high value area
throughout the country and lower than its neighborhoods.

Figure 6 shows the seasonal average of PM10 concentra-
tion of China in 2010. The seasonal PM10 concentration is a
bit like PM2.5 concentration; nevertheless, there are apparent
differences about the high value region in autumn between
them. PM2.5 high value area appears in the southeast coast
cities while PM10 prefers the central regions in the southern
China.

Analysis on the spatial difference of P2.5 and PM10

As can be seen in Figs. 2 and 5, there exists an obvious spatial
difference between PM2.5 and PM10. As stated in the previous
section, most high PM10 concentrate in Xinjiang, Qinghai,
Gansu, Ningxia, Hubei, and parts of Inner Mongolia. Yet, the

distribution of PM2.5 concentration is consistent with China’s
three gradient terrains. We could use Angstrom exponent and
explain what is happening.

Figure 7 shows the distribution of Angstrom exponent in
China in 2010. Angstrom exponent is the exponent in the
formula that is usually used to describe the dependency of
the aerosol optical thickness, or aerosol extinction coefficient
on wavelength. Angstrom exponent is a useful quantity to
assess the particle size of atmospheric aerosols or clouds and
the wavelength dependence of the aerosol/cloud optical prop-
erties. Kaufman et al. (1997) have demonstrated the Angstrom
exponent less than 0.7 for large dust particles, and the value
greater than 1.8 for fine particulate matter, or smoke particles.

Angstrom exponent is inversely related to the average size
of the particles in the aerosol: the smaller the particles, the
larger the exponent. That is, for a given pixel in Fig. 7, the

Fig. 5 Annual average of PM10
concentration of China in the past
5 years
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larger the Angstrom exponent value, the greater the proportion
of PM2.5; the smaller the Angstrom exponent value, the
greater the proportion of PM10. For example, we can see
obvious high value of Angstrom exponent in Heilongjiang
province in Fig. 7; the corresponding region demonstrates
high PM2.5 concentration (Fig. 2) and low PM10 concentra-
tion (Fig. 5). It can explain the spatial difference of PM2.5 and
PM10 concentrations in some extent.

Short-term trends of particulate matter

PM concentration changing trends consist of long-term trend
and short-term trend. That is, PM concentration changing
trends in China may point to a long-term increasing trend,
with some short-term variability, which need to be checked in
the future research. The short-term trends are not representa-
tive of the long-term changes in PM, but important when

Fig. 6 Seasonal average of
PM10 concentration of China in
2010

Fig. 7 Distribution of Angstrom
exponent in China (2010). Data is
from Terra MODIS
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testing time series models (Foster and Rahmstorf 2011;
Thompson et al. 2009).

Short-term PM variability means that individual years can
have higher PM concentrations than the previous year, while
the underlying decreasing trend continues. Short-term varia-
tions in PM may be due to the government behavior. For
example, Beijing adopted many prevention and control mea-
sures to improve air quality for the 29th Olympic Games in
2008 (Zhang et al. 2010).

We adopted seasonal Mann–Kendall test to detect the
short-term trends of PM concentrations. It is a rank-based
procedure, which is robust to the influence of extremes and
good for use with skewed variables (Partal and Kahya 2006).
Figure 8 shows the significant changes of PM2.5 and PM10 of
China in the past 5 years. The blank area in the figures means
the change trends are not significant in these regions.

For PM10, most provinces present the tendency of reduc-
tion. The declination of concentration is about 10–20 μg/m3.
Few of provinces show increase, such as Gansu, Shaanxi,
Sichuan, Guizhou, and Guangdong. Besides, in Henan,
Anhui, Jiangsu, and Hunan, the concentration is also increas-
ing, and the corresponding level is about 16–30 μg/m3.

PM2.5 shows the same change trend as PM10; most prov-
inces present the tendency of reduction. The declination of
concentration is about 3–5 μg/m3. Few of provinces show
increase, such as Hebei, Shandong, Anhui, Jiangxi,
Guangdong, Guangxi, Sichuan, and Guizhou. The corre-
sponding level is about 8–16 μg/m3.

Population exposure to PM2.5

Chinese long-term population exposure to PM2.5 in 2010 is
shown in Fig. 9. The spatial distribution of the results is
illustrated in both gird level and provincial level. It can be
seen from the provincial statistics figure that municipalities
get much higher exposure level than other provinces.
Shanghai suffers the highest population exposure to PM2.5,
followed by Beijing and then Tianjin, Jiangsu province. On
the other hand, the grid-scale map demonstrates the spatial
distribution of population exposure to PM2.5. Obviously,
there is a totally different population exposure level even in
a certain province. Most provincial capitals, such as
Guangzhou, Nanjing, Chengdu, and Wuhan, face much
higher exposure level than other regions of their province.

Fig. 8 Change trends of PM2.5 and PM10 in China from 2006 to 2010 Fig. 9 PM2.5 population exposure level of China in 2010
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Moreover, the PM2.5 exposure situation is more serious in
southeast than northwest regions for Beijing-Tianjin-Hebei
region.

The calculated results of per capita PM2.5 concentration
and population-weighted PM2.5 concentration are summa-
rized in Table 1. Provinces with highest per capita PM2.5
concentration are Guangdong, Shanghai, and Tianjin. The
following higher places are Shandong, Anhui, and Zhejiang
provinces. The high-level areas of population-weighted
PM2.5 concentration are Hebei, Chongqing, and Shandong
provinces, and followed by Henan, Anhui, Zhejiang,
Guangdong, and Guangxi provinces. That is, the per capita
PM2.5 concentration in Guangdong, Shanghai, and Tianjin is
totally high, but population in the potential high pollution area
is sparse.

Although the per capita PM2.5 concentration in Hebei and
Chongqing is lower than the high-level area, the population in
the potential high pollution area is denser. Shandong province
is a special case; it not only locates in the high-level concen-
tration area, but also the population in the potential high
pollution area is dense.

Conclusions

The main purpose of this paper is to describe the spatiotem-
poral distribution and short-term trends of fine particle
(PM2.5) and inhalable particle (PM10) concentration over
the China in the period of 2006–2010. Several data sets are
used, e.g., MODIS atmosphere aerosol product, ERA-Interim,
ground-based particulate matter observations, and gridded

population dataset. The artificial neural network (ANN) was
utilized to estimate the concentration of particulate matter, and
seasonal Mann–Kendall test method was utilized to analyze
the short-term trends.

Most high PM10 concentration appears in Xinjiang,
Qinghai, Gansu, Ningxia, Hubei, and parts of Inner
Mongolia. The distribution of PM2.5 concentration is consis-
tent with China’s three gradient terrains. The results also show
that the interannual PM10 and PM2.5 concentrations in the
past 5 years present downward short-term trend, on the whole.
The declinations of PM2.5 concentration and the PM10 con-
centration in most provinces are, respectively, about 3–5 and
10–20 μg/m3, while a fraction of provinces appear in the
increasing trend of 8–16 and 16–30 μg/m3.

Municipalities get much higher exposure level than other
provinces. Shanghai suffers the highest population exposure
to PM2.5, followed by Beijing and then Tianjin, Jiangsu
province. Most provincial capitals, such as Guangzhou,
Nanjing, Chengdu, and Wuhan, face much higher exposure
level than other regions of their province. Moreover, the
PM2.5 exposure situation is more serious in southeast than
northwest regions for Beijing-Tianjin-Hebei region. The per
capita PM2.5 concentration shows that the high-level regions
concentrated in Guangdong, Shanghai, and Tianjin while the
population-weighted PM2.5 concentrated in Hebei,
Chongqing, and Shandong provinces in 2010.

Further improvements on the models should consider the
optimization of parameters by using more robust historical
data to train and select parameters. The proposed method
could be used as a supplementary tool in aid of station mon-
itoring. Moreover, it can also be used to discuss the human
health effects of particulate matter while integrated with re-
spiratory tract disease morbidity data.
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