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Abstract The efficiency of aided phytostabilization using
organic amendments such as ramial chipped wood (RCW)
and composted sewage sludge (CSS) was studied on contam-
inated techno-soils, on nine experimental plots. The objective
was to characterize the role of fulvic (FA) and humic acids
(HA) on the mobilization of trace elements, specifically As,
Cu, Mo, Pb and Zn. Results showed that the addition of CSS
increased the total organic carbon and nitrogen content more
than with RCW and as a result, the C/N ratio in the CSS soil
was higher than in the RCW and non-amended (NE) soil,
reflecting the high decomposition of soil organic matter in
the CSS soil compared with the other soils. The RCW and
CSS amendments increased the hydrogen index (HI) values
and the oxygen index (OI) values compared with the NE soil,
especially for the soil treated with CSS which contained more
aliphatic than aromatic compounds. The addition of CSS to
the techno-soil significantly increased the percentage of Corg

associated with the HA fractions compared with the RCWand

NE soils. The soil amended with CSS showed the highest E4/
E6 ratio and the lowest E2/E3 ratio of FA. Zn and As were
more abundant in the FA fraction than in the HA fraction,
whereas Pb, Cu and Mo were more associated to HA than to
FA in the treated and untreated soils, which may explain the
difference in their mobility and availability.

Keywords Contaminatedtechno-soil .Traceelement .Humic
acid . Fulvic acid .Mobility

Introduction

Techno-soil is a soil “whose properties and function are dom-
inated by technical human activity as evidenced by either a
substantial presence of artifact” (WRB 2006). Moreover, all
techno-soils are not necessary contaminated by inorganic or
organic contaminants. The pollution of anthropogenic soils
with a high concentration of trace elements (TE) is more
problematic than for other types of soils as the properties of
these techno-soils change over time, making handling more
difficult (Kelly et al. 1996). Moreover, they present a real risk
for human health and especially for children's health (De
Burbure et al. 2006).

The contamination of a techno-soil with TE requires spe-
cial soil-management techniques to limit the TE solubility and
thus plant availability. Among remediation techniques,
phytoremediation has attracted attention as it is a low-cost
and ecologically sustainable alternative to physicochemical
methods, can be applied to large areas, and is accepted by
loca l popu la t ions (Mench e t a l . 2010) . Aided
phytostabilization is a phytoremediation technique that is
recognized as a potentially cost-effective and ecologically
sound approach to the containment of TE-polluted soils and
mine tailings. Its principal objective is to reduce the mobility,
ecotoxicity, and dispersion of metals/metalloids through the
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environment (Mendez andMaier 2008; Ginocchio et al. 2007;
Mench et al. 2010). Aided phytostabilisation requires the
incorporation of both plant species and organic or inorganic
amendments that are appropriate for the type of contamination
in order to immobilize TE such as metals/metalloids and
reduce their availability in these soils (Mendez and Maier
2008; Berti and Cunningham 2000) and to restore the physi-
cal, chemical and biological properties of contaminated soils
(Mench et al. 2000; Bolan and Duraisamy 2003; Pérez de
Mora A et al. 2005; Raicevic et al. 2005; Kumpiene et al.
2006, 2008). Several mineral and organic amendments such
as lime, coal fly ashes, phosphates, red muds, compost, bio-
solids, iron grit and Fe/Mn/Al oxides can improve
phytostabilization and the production of plant-based feedstock
through the decrease in the solubility, leaching and bioavail-
ability of TE (Lombi et al. 2002; Bolan and Duraisamy 2003;
Brown et al. 2004; Geebelen et al. 2003; Basta and McGowen
2004; Kumpiene et al. 2008; Mench et al. 2010). This reduc-
tion is achieved via various complex processes, e.g., adsorp-
tion onto mineral surfaces, formation of stable compounds
with organic ligands, surface precipitation and ion exchange
(Kumpiene et al. 2008; Ahmad et al. 2011).

The addition of organic matter amendments such as com-
post, manure or various organic wastes with the plants is a
common practice for the remediation of contaminated soils.
The effect of organic matter amendments on TE bioavailabil-
ity depends on the nature of the organic matter, its microbial
degradability, salt content and effects on soil pH and redox
potential as well as on the particular soil type and metals
concerned (Walker et al. 2003, 2004). Organic amendments
may contain a high proportion of humified organic matter,
which has a large capacity to interact with metal ions and
mobilize or immobilize TE through the formation of more or
less stable complexes. The formation of these insoluble metal
compounds reduces their mobility through the soil profile and
the pool available for biota (Geebelen et al. 2003). The char-
acteristics of humus fractions have proven useful in the inter-
pretation of organic matter dynamics in soil. There is an
extensive literature on the characterization of humic sub-
stances (HS) (Abbt-Braun and Frimmel 1999; Gondar et al.
2005; Shirshova et al. 2006) and on the binding of metals to
HS, mainly concerning laboratory experiments with humic or
fulvic fractions purified from water or soil (Vaca-Paulín et al.
2006; Gondar et al. 2006; Doig and Liber 2007; Evangelou
et al. 2007). The ability of HS to react with TE has long been
recognized (Wu et al. 2002; Clemente and Bernal 2006;
Evangelou et al. 2007). HS have the capacity to control the
behavior of TE in the environment. However the reactions
between TE and HS are highly complex and depend on the TE
itself, the humic material and pH. There are two possible
outcomes of humic–metal binding: (1) metal ions may form
soluble organic complexes with the potential to contaminate
groundwater and to retain the metal in soil solution; and (2)

insoluble complexes can form and result in a reduction in
bioavailability and consequently, in the ecotoxicity of the
metals (Logan et al. 1997).

In the present work we assess the role of HS (humic acid
[HA] and fulvic acid [FA]) extracted from two different or-
ganic soil amendments — composted sewage sludge (CSS)
and fresh ramial chipped wood (RCW)— and from a untreat-
ed soil on the mobility of several TE in metallurgical techno-
soils treated by aided phytostabilisation.

Materials and methods

Site description and experimental design

The studied site is a metallurgical landfill (Industeel-Loire;
45°32′N; 4°38′E) located near Lyon. France. It is located
behind a steel and iron factory which is still in operating.
The site was used from about 1850 to 2001 to dispose of
foundry waste, slag, fire-bricks, and other by-products from
the industrial process, such as more or less hydrated lime. It
extends over nearly 15 ha and is 8–10 m thick. The soil
(“foundry technosol” type) is highly contaminated with iron
(Fe) and different metals used in various alloys: mainly mo-
lybdenum (Mo), arsenic (As), copper (Cu), lead (Pb) and zinc
(Zn). This site is part of a French network of contaminated
sites (“SAFIR” network. http://www.safir-network.com) and
is partly dedicated to research into contaminant transfer,
the biological impact of pollution and remediation
technologies.

In this context, the efficiency of aided phytostabilization
using organic amendments was studied on nine 50 m2 (5×
10 m) experimental plots. Plots were prepared in December
2009 by shallow ploughing (10 to 15 cm depth) and they were
enriched using the following materials: (1) RCW applied on
approx. 500 m3/ha (three plots), (2) SS applied on approx.
120 t DM/ha (three plots) and (3) no organic enrichment (NE)
(three plots). An extensive pedo-geochemical characterization
of the different plots was performed in March 2010, i.e.,
4 months after preparation of the plots.

The soils were air-dried and sieved to <2 mm. The main
pedological characteristics of the soils studied (taken at 0–
20 cm depth), and their chemical composition are given in
Table 1. The soil pH was measured in 1:2.5 soil/water sus-
pension using a glass electrode pH meter (NF ISO 10390
procedure; AFNOR 1994). Total organic carbon (TOC) was
determined in the soil samples by Rock-Eval pyrolysis. Total
N contents were determined using a Fisons Instruments
(Crawley, UK) elemental analyzer model EA 1108. The cation
exchange capacity (CEC) was determined by the Metson
method at pH=7. Particle size distribution of the <2-mm
fraction was determined by sieving and using the pipette
method. Extraction of the major and metallic elements was
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performed using hydrofluoric (HF) and perchloric (HClO4)
acids, according to the NF X 31-147 procedure. The contents
of major and metallic elements in various extracts were
measured by inductively coupled plasma optical emis-
sion spectrometry (ICP-OES) using a Horiba Jobin-Yvon
apparatus.

Characterization of soil organic matter by Rock-Eval
pyrolysis

Rock-Eval pyrolysis (Rock-Eval 6 Turbo; Vinci
Technologies, France) is used to identify the type and maturity
of organic matter (Béhar et al. 2001; Disnar et al. 2003; Sebag
et al. 2006). This technique can be applied to soils (Di
Giovanni et al. 1998). The analysis comprised two steps. First,
pyrolysis under nitrogen adsorption of hydrocarbon is main-
tained at 200 °C for 5 min. Then cracking occurs between
200 °C and 650 °C at 30 °C min−1.

In summary, the four basic parameters obtained by pyrol-
ysis are as follows: S1 is the amount of free hydrocarbons in
the sample (in milligrams of hydrocarbon per gram of sam-
ple); S2 is the amount of hydrocarbons generated through
thermal cracking of nonvolatile organic matter; S3 is the
amount of CO2 (in milligrams CO2 per gram of sample)
produced during pyrolysis of kerogen. S3 is an indication of
the amount of oxygen in the kerogen and is used to calculate
the OI; Tmax is the temperature at which the maximum release

of hydrocarbons from cracking of kerogen occurs during
pyrolysis (Tmax is an indication of the stage of maturation of
the organic matter).

The type and maturity of organic matter in our soils was
characterized from Rock Eval pyrolysis data using the follow-
ing parameters: HI (HI=[100×S2]/TOC). This parameter is
used to characterize the origin of organic matter. Marine
organisms and algae, in general, are composed of lipid- and
protein-rich organic matter, where the ratio of H to C is higher
than in the carbohydrate-rich constituents of land plants. OI
(=[100×S3]/TOC) is a parameter that correlates with the ratio
of O to C, which is high for polysaccharide-rich remains of
land plants and inert organic material (residual organic matter)
encountered as background in marine sediments. OI values
range from near 0 to ~150.

TOC was determined in the soil samples by Rock-Eval
pyrolysis. This instrument uses a ramped temperature pyroly-
sis technique in which a small amount of sample (70–100 mg)
is heated in an inert atmosphere (helium or nitrogen) and also
combusted with air to obtain several key geochemical param-
eters such as the TOC.

In the present work a small amount of sample (70–100 mg)
is heated with a precision over 0.5 mg in an inert atmosphere
(helium or nitrogen) and also combusted with air to obtain
several key geochemical parameters. Only the TOC and HI
versus OI were considered as the main parameters, following
the original work by van Krevelen (1950).

Table 1 The main pedological characteristics and chemical composition of the studied soils

Treatment

RCW CSS NE

Physicochemical parameters Texture sandy sandy sandy

pH 9.08±0.07 9.07±0.12 9.34±0.18

Corg (g kg−1) 19.7±0.34 31.4±0.34 8.9±0.24

N (g kg−1) 0.9±0.03 3.9±0.13 0.6±0.01

C/N 22.67±4.31 8.45±2.01 15.76±4.73

CEC (Cmol/kg) 5.63±1.10 6.77±0.15 5.77±0.55

Major elements P2O5 (g kg−1) 0.03±0.00 0.25±0.04 0.02±0.00

K2O (g kg−1) 0.29±0.05 0.59±0.07 0.09±0.07

CaO (g kg−1) 18.88±6.71 20.70±1.13 24.67±2.17

MgO (g kg−1) 2.66±0.44 1.29±0.09 2.79±0.44

Na2O (g kg−1) 0.08±0.07 0.14±0.02 0.14±0.03

Trace elements Zn (mg kg−1) 1,719.00±777.78 1,348.33±560.02 1,326.00±739.13

Pb (mg kg−1) 688.33±453.8 623.00±246.43 839.00±390.20

Mo (mg kg−1) 523.66±142.30 652.66±69.28 682.33±124.44

Cu (mg kg−1) 399.00±84.01 410.33±78.23 523.00±160.36

As (mg kg−1) 76.66±22.47 73.00±11.78 91.33±15.54

For each treatment, data are the mean of 30 measures (ten samples per plot)

RCW ramial chipped wood, CSS composted sewage sludge, NE non-amended soil
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Extraction and characterization of humic substances

Briefly, 100 g of each soil sample was extracted with 500 ml
of 0.5 N NaOH (Schnitzer and Schuppli 1989). The HAs and
FAs used were extracted following the procedure given by
Holtzclaw et al. (1976). The mixture was stirred for 17 h under
N2 gas. HAs were precipitated with 6 M HCl (pH=1) and
separated by centrifugation (3,000 rpm, 15 min). The TOC of
each solution was determined by hot catalytic combustion
(Teckmar – Dohrman Phoenix 8000).

Total metal contents in FA and in the mixture of FA+HA
were determined by HR-ICP-MS (Element 2; Thermofischer,
Waltham, USA) using a Twinna bar cyclonic spray chamber
with a Micromist nebulizer (Glass Expansion, Melbourne,
Australia) for As, Cu, Mo, Pb and Zn.

The ultraviolet–visible (UV–vis) is an instrumental tech-
nique used to identify the functional groups present in organic
compounds by measuring their absorption of infrared radia-
tion over a range of frequencies. The absorption pattern is then
compared to the infrared spectra of known substances for
identification. The UV–vis absorption spectra of separated
FA and HA wer e r e co rded by a J a s co V-530
spectrophotometer. The E4/E6 ratios were calculated as the
ratio of absorbance at 465 and at 665 nm according to Chen
et al. (1997). The E2/E3 ratios were calculated as the ratio of
absorbance at 280 and at 365 nm. The SUVA index was
calculated by dividing the UV absorbance measured at λ=
254 nm by the TOC concentration (Weishaar et al. 2003).

Infrared characterizations in the region of 400–4,000 cm−1

were undertaken in transmission mode for several samples in
classical pellet form. The preparation of the pellets was as
follows: the sample was finely ground in an agate mortar and
1 to 1.5 mg of the resulting powder was mixed with KBr,
previously dried at 120 °C for 24 h. to make a 150-mg pellet.
Themixture was homogenized and pressed in an evaluable die
to prepare a 13 mm diameter pellet. The operating conditions
were 256 scans, 2 cm–1 resolution over the 400–4,000 cm–1

range without ambient H2O and CO2 correction.

Statistical analyses

All statistical analyses were performed using StatSoft
Statistica (version 6). All analytical determinations were per-
formed in three replicates for each plot. Differences were
considered statistically significant at p<0.05.

Results and discussion

Physicochemical properties

The physicochemical properties of these samples are present-
ed in Table 1. The studied soils are alkaline (pH between 9.08

and 9.34), sandy and with CEC ranging from 5.63 to 6.77
cmol/kg. As expected, application of the organic amendments
slightly modified the physicochemical properties of the soil
(Larney and Angers 2012). A significant decrease in pH and
an increase in the CEC are observed. In the case of carbonated
soils, Séré et al. (2010) showed that the application of organic
amendments as compost can lead to a decrease in pH by soil
decarbonization. The increase in CEC can be explained by the
increase in the TOC measured in treated soils (p=0.00037)
compared with untreated soil (NE). Soil amended with RCW
and CSS contained 2.2- and 3.5-fold more TOC, respectively,
than the NE soil. TOC in the soil treated with RCW was less
than that measured in the CSS soil. This could be due to
microbial decomposition of carbon and its subsequent release
as CO2 (Basiramakenga and Simard 1998). Moreover,
Soumare et al. (2003) showed that an increase in the concen-
tration of organic matter is related to the decomposition of
organic amendments in soil, and RCW decomposes more
slowly than compost sewage sludge. RCW and CSS added
to the soil significantly increased the total nitrogen by 1.6- and
7-fold, respectively, compared with the NE soil (p=0.0047)
(Table 1). This result agrees well with that found by Vaca-
Paulin et al. (2006), who reported that the addition of compost
and sewage sludge increased the total nitrogen in the soil
threefold compared with the control soil. Our results are also
in good agreement with those of Kaschl et al. (2002) who
investigated the effect of compost added to a calcareous soil
on the physicochemical characteristics of the soil. They found
a positive correlation between the addition of compost and soil
organic carbon contents. Crecchio et al. (2001) also reported
that amendment with municipal compost increased the total C
and N in the soil significantly compared with the other treated
and control soils. RCW added to the soil increased the C/N
ratio by 1.4-fold, whereas the addition of CSS reduced the
C/N ratio by 1.9-fold comparedwith the NE soil. The decrease
in the C/N ratio in the CSS soil reflects the high microbial
activity, which leads to a high decomposition of organic
matter (Hsu and Lo 2001; Amir et al. 2005) and a greater
degree of humification.

Organic geochemistry

Rock-Eval analyses of the treated (RCW and CSS) and un-
treated soil (NE) was conducted in order to recognize the
origin and the evolution of the MO contained in each soil.
Examination of the results obtained leads to the following
conclusions: (1) the TOC content in treated soils was
significantly higher than that measured in the untreated
one (Table. 1); (2) the same behavior was marked for
the HI, where RCWand CSS presented 63 % and 75 % of HI
more than the NE soil. However, addition of organic amend-
ment to the soil increased slightly soil OI by 23% and 13% in
soil amended with RCWand CSS, respectively (Table 2). The
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HI values presented by the soil amended with CSS were
nearly 2-fold higher than that presented by RCW, whereas
RCW presented 1.8-fold of OI higher than that present by the
soil amended with the CSS (Table. 2). This result is in agree-
ment with the low organic content in the untreated soil (low
TOC), and thereafter the expression of the nature of the two
organic amendments in the RCW and CSS respective values:
their addition in the soil increases the TOC and the HI index
(RCW). Thereafter a very strong correlation was observed
between TOC and HI measured in the three types of soils
(r=0.94). Our results are in agreement with that reported by
Walter et al. (1982), who found very good correlation between
TOC content and the kerogen HI.

The relation between the HI and OI values is shown in
Fig. 1, which plots the origin of the organic matter in the three
types of soil studied here on the well-known van Krevelen
diagram. This diagram consists of three lines highlighting the
natural origin of the organic matter in the soil (Tissot and
Welte 1984; Espitalié et al. 1997; Hassen et al. 2009). Lines I
and II correspond to organic material of microbial or plank-
tonic origin, line III corresponds to the OM of higher conti-
nental plants.

It can be clearly seen in Fig. 1 that the points representing
the treated and untreated soils studied here plot along lineage
III, indicating the terrestrial origin of the organic matter in the
untreated soil. It also shows that the values obtained in the

amended soils are highly dependent on that of the amendment
itself. RCW has a higher OI because of the presence of wood
cellulose. As the original kerogen of the non-treated soil is not
abundant and also because its OI is low, RCW soil has the
highest OI, close to that of wood. Due to its origin, CSS has a
higher HI because it is richer in aliphatic groups than wood.
The soil amended with CSS therefore has a higher HI value
than the others soils.

Characterization of the humic fraction

HS (FA and HA) extracted from the control and amended soils
accounted for 7.0 % to 12.9 % of the soil organic C (C-HS/
Corg). The addition of CSS significantly increased the propor-
tion of Corg associated with HS compared to control soil.
Usman et al. (2004) explained this result by the high propor-
tion of easily biodegradable organic components in sewage
sludge. In contrast, RCW residues have a high lignin concen-
tration, inducing a slower rate of decomposition of these
residues compared to sludge. Amendment with RCW had no
effect on the proportion of HS (N’dayegamiye and Angers
1993). The proportion of FA extracted to soil organic carbon
(C-FA/Corg) ranged from 3.7 % to 4.4 % (Fig. 2a) and the
organic amendments (RCWand CSS) added to the soil had no
significant effect on the percentage of organic carbon associ-
ated with the FA fractions. The HA fractions represent from
2.7 % to 9.1 % of the SOC (C-HA/Corg). Moreover, the
addition of CSS to the soil significantly increased (p<0.001)
the percentage of Corg associated with the HA fractions com-
pared with the RCWand NE soils. The increase in the organic
carbon fraction in the form of HA despite the drastic extrac-
tion procedures used suggests that part of the organic carbon
from organic amendments (CSS) has been incorporated into
the HA fraction. The maturity and stability of organic matter
are expressed by the C-HA/C-FA ratio and shown in Fig. 2b.
A significant increase in the C-HA/C-FA ratio for CSS soil
(p<0.0001), by 3.9-fold compared to RCWand NE soils was
observed which is not the case for the RCW-type amendment.
These results indicate a higher degree of humification of
organic matter in the CSS soil compared to RCW and NE
soils (Hsu and Lo 2001).

Table 2 Rock-Eval pyrolysis

Soil TOC (%) HI (mg g−1) OI (mg g−1) HI/OI

RCW 1.97ab±0.34*** 181.41ab±15.08*** 188.86a±23.84 NS 0.965

CSS 3.14a±0.34*** 264.54a±11.50*** 165.52a±7.58 NS 1.600

NE 0.89b±0.24*** 66.01b±13.43*** 143.67a±28.99 NS 0.459

TOC total organic carbon (%),HI hydrogen index (mg g−1 ),OI oxygen index (mg g−1 ), RCW ramial chipped wood,CSS composted sewage sludge,NE
non-amended soil

0.01<(*)p<0.05, 0.01>(**)p>0.001, (***)p<0.0001; NS insignificant difference

Fig. 1 Origin of the organic matter in the three types of soils: RCW (blue
diamond), CSS (red square) and NE (green triangle) as a function of the
hydrogen and oxygen indices
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UV–visible spectroscopy results

The absorbance ratio E2/E3 is considered in the literature as an
indicator of the size of the organic molecules and their hydro-
philicity (Thomsen et al. 2002). The addition of CSS signifi-
cantly decreased the E2/E3 ratio (p<0.0001), whereas in soil
amended with RCW the E2/E3 ratio of FA increased weakly
compared with NE soil (Table 3). This means that the organic
particle size of the RCW and NE soils was larger than that of
CSS, and that the hydrophobic properties in the RCWand NE
soils were lower than that in CSS soil (Guo and Chorover
2003).

Typically, the E4/E6 ratio is considered to be inversely
related to the following: the particle size (Chen et al. 1997),
the molecular weight (Christl et al. 2000), and the degree of
condensation of the aromatic network in HS macromolecules
(Senesi and Loffredo 1999). Table 3 shows that the addition of
CSS to the soil increased the E4/E6 ratio by 30 % in compar-
ison with the NE soil, whereas in soil amended with RCW, the
E4/E6 ratio decreased by 19% compared with the NE soil. Our
results show that CSS soil has a low degree of aromatic
condensation, indicating the presence of low-molecular-
weight organic acids (Senesi and Loffredo 1999; Chen et al.
1997; Christl et al. 2000; Thomsen et al. 2002). Finally, it can
be seen that the highest E4/E6 ratio and the lowest E2/E3 ratio
of FAs were extracted from the soil amended with CSS,
indicating that this soil contains more hydrophilic and

aliphatic compounds and fewer condensed and aromatic struc-
tures than RCW and NE soils.

FTIR

FTIR has been widely used for the characterization of HS
extracted from soils. Even if the interpretation of the analysis
may be difficult due to the overlapping of spectral features of
the two fractions, the assignment of the absorption bands,
determined by several studies, highlights certain differences
once soils have been amended with RCWand CSS. The FTIR
spectra of HAs and FAs show typical absorption bands rela-
tive to the organic groups of the polyfunctionality of humic
substances (Piccolo and Stevenson 1982; Baes and Bloom
1989; Vaca Paulin et al. 2006). The most important features
are: (1) the two peaks of variable intensity at 2,918–2,926 and
2,850–2,855 cm−1 due to aliphatic C–H stretching; (2) the
strong peak centered between 1,615 and 1,624 cm−1 mostly
attributed to structural vibrations of aromatic C=C and
antisymmetrical stretching of COO– groups; (3) the medium
intensity absorption centered between 1,398 and 1,450 cm−1,
mostly due to aliphatic C–H bending and symmetrical COO–
stretching; and (4) absorption at 1,030 and 1,090 cm−1 asso-
ciated with C–O stretching of alcohols. The aliphatic group
absorptions are often associated with weak peaks of aliphatic
CH chains centered at about 770–778 cm−1 as both spectra
show. Moreover, the weak absorption bands at 1,220 and
1,260 cm−1, due to the C–O stretching of carboxylic groups,
phenols and/or aromatic ethers appear more intense for HS
and more particularly in a soil treated by RCW. The sharp
bands at 1,375 cm−1 present on all the spectra are attributed to
residual inorganic salts resulting from the extraction of organ-
ic matter. The wide bands centered around 1,100 cm−1 are
attributed to inorganic Si–O vibrations of clay impurities co-
precipitated with both FAs and HAs and not eliminated by the
purification process (Fig. 3).

The most significant differences in absorption bands were
found for the humic fractions. The FTIR spectra of soils
treated with RCWand CSS show a more pronounced absorp-
tion band at 1,720 cm−1 than the raw or standard one,
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Table 3 E2/E3, E4/E6 and SUVA254 values calculated for fulvic acid (FA)
fraction by UV–visible spectroscopy

E2/E3 E4/E6

RCW (FA) 5.44 a ±0.41*** 5.12 NS±1.56

CSS (FA) 2.40 ab ±0.21*** 9.06 NS ±1.53

NE (FA) 4.41 b±0.67*** 6.33 NS ±3.18

RCW ramial chipped wood, CSS composted sewage sludge, NE non-
amended soil, FA fulvic acid

0.01<(*)p<0.05, 0.01>(**)p>0.001, (***)p<0.0001; NS insignificant
difference
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indicating a larger content in carboxylic groups. The pH
values of the untreated and treated soils confirm that this band
(shoulder around 1,720 cm−1) results from COOH groups.
The introduction of amendments decreases soil pH and con-
sequently increases such bands. This is further confirmed by
the concomitant appearance of two new bands in the 1,620
and 1,380 cm−1 regions ascribed to COO− ions resulting from
the conversion of HAs to their salts. Another difference in the
spectra of HA fractions is the appearance of weak absorption
bands at 1,520 cm−1 for amended soils, relative to N–H
vibration of amide groups. The identification of these bands
suggests the presence of complex structural components with
a high molecular weight and high humification.

Effect of organic amendments on trace element dynamics

The ecological effects of TE, metals and metalloids, in soils
are closely related to the concentration and speciation of the
elements in the soil (Bruemmer et al. 1986). Whatever the
elements, their contents are considerably higher than natural
background (Baize 2000) (Table 1), which confirms the high

level of polymetallic contamination in the soils. More-
over, the addition of CSS and RCW to the soil has no
significant effect on the total metal concentrations com-
pared with the NE soil.

The contents of As, Cu, Mo, Pb and Zn associated to HS
extracted from all soils are presented in Fig. 4. Cu, Pb and Zn
were extracted from the fractions bound to organic constitu-
ents by NaOH in higher amounts than Mo and As. Our results
show that RCW added to the soil significantly increased the
concentration of extractable Zn, Pb and Cu by 4.9- and 2-fold
and slightly increased the extractable arsenic by 1.3-fold in the
solution, whereas it decreased the extractable fraction of Mo
by 0.8-fold compared with the NE soil. The effect of CSS
added to the soil on the concentration of extractable TE was
less than that shown by RCW: the addition of CSS increased
the extractable Zn, Pb, Mo and As by 2-, 1.8-, 1.2- and 1.3-
fold and decreased Cu by 1.3-fold compared with the NE soil.
In general, we can note that organic amendments (RCW and
CSS) added to the soil increased the extractable TE especially
in the case of RCW amendment in comparison with the
NE soil.
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Fig. 3 FTIR analysis of the treated (RCW and CSS) and untreated soils
(NE). Typical absorption vibration bands of both humic and fulvic
substances were labeled and assigned in the main text. The two

amendments contribute to the formation of high molecular weight and
humification substances which are highlighted with additional bands for
the extracted humic acids



HS constitute a large fraction of soil organic matter (SOM)
and their binding capacities affect the mobility of TE in soils.
FAs are the most mobile fraction and a major component of
dissolved organic matter (DOM) in soil (Stevenson 1994).
Therefore, the presence of soluble organic matter (as FAs)
may be responsible for the solubilization of TE in soils where-
as insoluble organic matter (such as HAs) may contribute to
TE immobilization in soils. Indeed, FA is characterized by
smaller molecular size fractions and a high ability to form
complexes with trace metals that are more mobile than those
formed with HA (Stevenson 1982). As Hsu and Lo point out
(2001), knowledge about the distribution of TE between HA
and FA fractions is essential for understanding and predicting
the mobility of TE in contaminated soils after organic amend-
ments. The distribution of TE in FA and HA fractions show a
large variability depending on the chemical elements and the
treatment (Fig. 5).

Figure 5a shows that Zn in the amended soils is more
abundant in the FA fraction than in the HA fraction. The
proportion of Zn bound to FA was about 23 % and 32 %
higher than that bound to HA in the soils treated with RCW
and CSS, respectively. Almas et al. (2000) and Usman et al.
(2004) found that the addition of sewage sludge increased the
solubility of Zn due to the formation of soluble organo-
metallic complexes. Our results concerning Zn agree with
Donisa et al. (2003), who studied the distribution of trace
metals between humic and fulvic fractions in natural soils.
They found that Zn associated more with FA than with HA.
Boruvka and Drabek (2004) also found that 95.7 % of Zn
bound to FA compared to HA, whereas over 75 % of Pb and
Cu fractions bound to HA in treated and untreated soils, e.g.,
in soil amended with CSS, 80 % of Cu associated with HA
compared with 20 % associated with FA (Fig. 5b,c). He et al.
(1995) also found that more Cu in the compost was recovered
in HA than in FA. In a study of the irrigation of Mediterranean

sandy soil by treated wastewater, Tarchouna Gharbi et al.
(2010) demonstrated that copper had a high affinity for the
HA fraction. Concerning Pb and Cu, our results do not agree
with those reported by Donisa et al. (2003) or Boruvka and
Drabek (2004), who investigated the distribution of TE
between the dissolved organic fraction and found that Pb
and Cu were more abundant in FA than in HA. Hsu and Lo
(2001) isolated the HS from several separated swine manures
(SSW) to investigate the effect of HS on the leachability and
availability of TE. They found that more than 98 % of Cu and
Zn complexed with FA.

Arsenic is more abundant in the fulvic fraction than in the
humic fraction for all soils. The proportion of arsenic associ-
ated with FA was 13 %, 8 % and 35 % higher than that
associated with HA in the soils treated with RCW, CSS and
NE, respectively (Fig. 5d). Mo is about 60 % more abundant
in HA than in FA in the soil treated with RCWand about 25%
and 60 % less abundant in HA than in FA in the soil treated
with CSS and NE, respectively (Fig. 5e). This result can
be explained by the capacity of RCW soil to provide a
greater quantity of organic carbon in the form of FA than CSS
soil.

Conclusion

In aided phytostabilization, the additions of organic amend-
ments of various natures (RCWandCSS)were utilized: (1) for
improve the physical, chemical and biological properties of
contaminated soils and (2) to immobilize the TE and reduce
their availability in contaminated soils. This study showed that
the quantity and quality of SOM were modified according to
the type of organic amendments. Although the two amend-
ments significantly increase the content of SOM, only CSS
increased the proportions of HA in soil highlighting that added
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organic matter was more mature and stable in the time. In
treated and untreated soils, humid acids are the main organic
fraction associated to Pb, Cu and Mo and contribute to their
immobilization in soil. However, formation of a large amount

of soluble Zn- and As-FA complexes can result in their mo-
bilization in the soil profile, and then play an important role in
term of contamination risks. Moreover, whatever the type of
organic amendments, an increase in the proportion of zinc
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associated with FA is highlighted, indicating a high risk of Zn
leaching at short and long term.
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