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Abstract The scarcity of water resources in Egypt has neces-
sitated the use of various types of lower quality water.
Agricultural drainage water is considered a strategic reserve
for meeting increasing freshwater demands. In this study, a
novel model series was applied to a drainage basin in the Nile
Delta to optimize integrated water quality management for
agriculture and the aquatic environment. The proposed model
series includes a waste load allocation model, an export coef-
ficient model, a stream water quality model, and a genetic
algorithm. This model series offers an optimized solution for
determining the required removal levels of total suspended
solids (TSS), the chemical oxygen demand (COD) at point
and non-point pollution sources, and the source flows that
require treatment to meet a given water quality target. The
model series was applied during the summer and winter to the
El-Qalaa basin in the western delta of the Nile River. Increased
pollutant removal and treated fractions at point and non-point
sources reduced violations of the TSS standards from 732.6 to
238.9 mg/L in summer and from 543.1 to 380.9 mg/L in
winter. Likewise, violations of the COD standards decreased
from 112.4 mg/L to 0 (no violations) in summer and from

91.7 mg/L to no violations in winter. Thus, this model is
recommended as a decision support tool for determining a
desirable waste load allocation solution from a trade-off curve
considering costs and the degree of compliance with water
quality standards.
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Introduction

Rapid population growth over the past few decades, particu-
larly in the Middle East and North Africa, has caused severe
water shortages. Billions of people lack access to safe water
and adequate sanitation (WHO World Health Organization
2002). This is particularly because of recent increases in waste
discharges that have polluted freshwater bodies (Mostafavi
and Afshar 2011). Under these circumstances, resource man-
agement agencies are in need of a holistic approach to envi-
ronmental management. One tool for implementing state wa-
ter quality standards is the waste load allocation (WLA)
process (US EPA 1992), which integrates management of
point and non-point pollution sources and provides decision-
making tools for attaining and maintaining water quality stan-
dards. Development of a WLA is based on a thorough under-
standing of site-specific relationships between pollution
sources and water quality conditions (Yassuda et al. 2000).

Egypt is among the countries with the scarcest water re-
sources (Khalil et al. 2010). The quality and quantity of
agricultural drainage water (ADW) in the Nile Delta suggests
that some of this water can be reused for irrigation (Khalil
et al. 2010). At present, around 7 billion m3/year of ADW is
directly recycled via controlled mixing with Nile water. This
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represents 40 % of the available ADWand can be increased to
9 billion m3/year by 2017 (Talaat et al. 2002; DRI 2007).
However, increasing pollution, particularly in the drainage
system network, threatens the application of these reuse strat-
egies (Shaban et al. 2010). Egyptian drains receive large
quantities of partially treated or untreated domestic and indus-
trial wastewater rich in biodegradable organic matter. This
causes serious deterioration and consumes a large percentage
of the dissolved oxygen (DO) present in the water (El-Sheikh
et al. 2010). The amount of wastewater discharged into re-
ceiving drains far exceeds the natural ability of these water
bodies to attenuate the pollution, violating water quality stan-
dards and making drainage water unsuitable for reuse
(Abulnour et al. 2002). WLA for point and non-point sources
of pollution may facilitate ADW use beyond current levels
(US EPA 1992).

WLA determines the required pollutant removal from point
and non-point sources to attain satisfactory water quality in a
receiving water body. Traditional WLA models have been
formulated to minimize the total treatment cost while satisfy-
ing water quality standards (Kerachian and Karamouz 2005).
Moreover, in some previously proposed models, violations of
the standards were considered the WLA model objective
(Burn and Yuliant 2001; Yandamuri et al. 2006; Saadatpour
and Afshar 2007). Recently, heuristic algorithms such as
genetic algorithms (GA), simulated annealing, and ant colony
algorithms have been employed to deal with multi-criteria
problems (Yandamuri et al. 2006; Saadatpour and Afshar
2007). GA is a powerful optimization technique that has
successfully been applied in water quality management
(Karamouz et al. 2003). Ritzel et al. (1994) and Burn and
Yuliant (2001) showed the effectiveness of GAs in developing
a multi-objective model for WLA. In addition, Kerachian and
Karamouz (2005) proposed a GA-based optimization model
to address the dimensionality problem of the temporal WLA
due to the large number of decision variables.

WLA includes prediction of point and non-point contribu-
tions to the total load in the stream. Many water quality
models have been developed to estimate pollution loading
into water bodies, including simple export coefficient models,
regression models, and complex mechanistic models
(Shrestha et al. 2008). Pollutant export coefficients,
representing the rate of pollutant loading by land area, can
be used to estimate loadings from non-point sources (Shrestha
et al. 2008). In addition, a model of pollutant transport in the
stream system is required for WLA. QUAL2E, and its
enhanced versions, is a widely used water quality model
(Brown and Barnwell 1987; Drolc and Konkan 1996; Park
and Uchrin 1990; Park and Lee 1996; Pelletier and Chapra
2005; Kannel et al. 2007). Several attempts have beenmade to
incorporate such simulation models into WLA models
(Suresh and Mujumdar 1999; Mujumdar and Sasikumar
2002). Mujumdar and Vemula (2004) proposed a

simulation–optimization approach integrating a fuzzy WLA
model with a water quality simulation model. However, fur-
ther improvement in both point and non-point source estima-
tion and pollutant transport simulation is necessary to apply
thesemodels to efficient agricultural practice and environmen-
tal conservation.

In this study, therefore, a multi-objective WLA model was
proposed as an optimization method for water quality man-
agement and environmental conservation. An export coeffi-
cient model was integrated into a stream water quality model,
QUAL2Kw, to estimate the spatial distribution of water
quality constituents in the stream system based on point
and non-point source contributions. That water quality simu-
lation framework was incorporated within a multi-objective
optimization model. The model was employed to (1) identify
the qualitative and quantitative characteristics of point and
non-point sources of pollution and (2) illustrate trade-offs
between objectives, i.e., minimizing the cost of wastewater
treatment and satisfying water quality standards for both
reuse for irrigation and discharge into lakes. The model was
applied during the summer and winter seasons to the El-
Qalaa basin in the western delta of the Nile River. The
proposed decision support tool can be used dynamically,
allowing the results to be refined as additional water quality
data become available.

Study area

The study area was a section of the El-Qalaa drain 10.41 km in
length, with a drainage basin area of 140.7 km2 located within
the western delta of the Nile River (Fig. 1). The El-Qalaa drain
is one of the most important drains in the western delta region,
receiving approximately 70 % of Alexandria city wastewater,
and is the primary pollutant source to Maryout Lake. The
altitude of the study area is 2.44–6.1 m below mean sea level.
The main source of fresh water to the basin is the Nile River.
The target area is served by five secondary open drains that
discharge water into the El-Qalaa drain (Fig. 1). The
Agricultural, Zohra, and Amlak drains collect drainage water
from the fields of three sub-basins through subsurface drains
and discharge into the El-Qalaa drain. Effluent and overflow
from the east wastewater treatment plant (EWTP) flow into
the Somouha and Hydrodrome drains and then into the El-
Qalaa drain.

Samples of the agricultural drainage water at point sources,
sub-basin outlets, and monitoring stations were collected at
fixed sampling sites every 2weeks fromApril 2007 to January
2008. The samples were analyzed for pH, total dissolved
solids (TDS), total suspended solids (TSS), DO, biochemical
oxygen demand (BOD5), total chemical oxygen demand
(COD), nitrite nitrogen (NO2–N), nitrate nitrogen (NO3–N),
and ammonia nitrogen (NH4–N). Results for the ADW in the
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El-Qalaa were 7.2±0.1 for pH and 997.5±171.8, 618.4±
200.6, 0.4±0.1, 128.9±23.1, 231.3±57.8, 7.2±1.7, 2.1±0.5,
and 13.8±2.4 mg/L for TDS, TSS, DO, BOD5, COD, NO2–N,
NO3–N, and NH4–N, respectively. Thus, the ADW in this
study is classified as medium-strength wastewater (Metcalf &
Eddy Inc. 2003).

Materials and methods

Framework of the optimization method

A multi-objective optimization model was developed to pro-
vide a WLA approach for freshwater bodies. Non-point
source contributions were predicted based on export coeffi-
cients. Estimated non-point source contributions and point
source measurements were then integrated into a water quality
simulator, QUAL2Kw, to estimate the spatial distributions of
water quality constituents in the stream system. Qualitative
and quantitative characteristics of the point and non-point
sources of pollutants were identified to minimize the cost of
wastewater treatment and satisfy water quality standards for
reuse in irrigation and discharge into lakes. A GA-based
optimization model was employed to address the multi-
objective criteria of this WLA problem.

Waste load allocation model

Removal of TSS and COD and flow fractions subjected to
treatment at the pollution sources were modeled to address
three objectives. The first objective was to minimize the
overall removal of TSS and COD and the treated flow vol-
umes to minimize wastewater treatment costs. The second and
third objectives were to minimize exceedances of irrigation
water quality standards in the drain and water quality stan-
dards for discharge into lakes at the outfall. Table 1 presents
the Egyptian water quality standards, Law 48/1982, for
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Fig. 1 Location of the study area (El-Qalaa drain, 140.7 km2) in the western delta of the Nile River, Egypt

Table 1 Irrigation water
quality standard and wa-
ter quality standard to
discharge into lakes

Parameter Irrigation
water quality
standards

Effluent
licensed to
discharge
into lakes

pH – 6–9

TDS 2,000 2,000

TSS 50 50

DO >4 >4

BOD5 60 40

COD 80 80

NO3–N 50 50
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discharge into lakes and irrigation water standards (MAB
1983). Exceedances were estimated by analyzing water qual-
ity indicator concentrations at several locations referred to as
check points. The resulting WLA model minimizes three
terms:

Z1 ¼ ∑ns
i¼1 ∑np

j¼1X i; j

h i
Ti þ ∑nsb

k¼1 ∑nl
k¼1 ∑np

j¼1X k;l; j

� �
Tk;l

h i
ð1Þ

Z2 ¼ ∑nc
m¼1 ∑np

j¼1wj Vm; j

� �2h i
ð2Þ

Z3 ¼ ∑np
j¼1wj VE; j

� �2 ð3Þ

Subjected to:

X i; j;X k;l; j∈X s; j ð4Þ

Vm; j ¼ Cm; j−CIS; j

0

n
if Cm; j>CIS; jð Þ
if Cm; j ≤CIS; jð Þ ð5Þ

VE; j ¼ CE; j−CLS; j

0

n
if CE; j>CLS; jð Þ
if CE; j ≤CLS; jð Þ ð6Þ

where ns is the number of point sources, np is the number of
water quality indicators, Xi,j is the removal (%) at point source
i of indicator j, Ti is the treated flow (%) at point source i, nsb is
the number of sub-basins, nl is the number of land use cate-
gories, Xk,l,j is the removal (%) in sub-basin k for land use class
l of indicator j, Tk,l is the treated flow (%) in sub-basin k for
land use class l, wj is the weighting factor for indicator j
(weights were derived in preliminary runs to equalize the
effects of the water quality indicators), Vm,j is the magnitude
of exceedance of the irrigation standard at check point m for
indicator j, VE,j is the magnitude of exceedance of the water
quality standard for discharge into lakes at outfall E for
indicator j, Xs,j is the set of possible removal fractions avail-
able for indicator j, Cm,j is the concentration at check point m
of indicator j,CIS,j is the irrigation standard (IS) for indicator j,
CE,j is the concentration at the outfall E of indicator j, andCLS,j

is the standard for discharge into lakes (LS) for indicator j.
A combination of the ε-constraint method and GA was

used to find an optimal solution for the various objectives.
The ε-constraint method is a powerful technique for generat-
ing a non-dominated set when the objective functions and
constraints are nonlinear. A multi-objective problem is trans-
formed into a series of single-objective problems that can be
solved using single-objective optimization methods such as
GA. The ε-constraint method offers the advantage of better

control over search algorithms for non-dominated sets
(Kerachian and Karamouz 2005).

This method for a minimization problem with n objectives
can be summarized as follows:

Step 1. Solve n individual minimization problems to find the
optimal solution for each individual objective.

Step 2. Compute the value of each of the objectives and
determine the potential range of values for each of
the n objectives.

Step 3. Select a single objective (ZO) to be minimized.
Meanwhile the remaining n−1 objectives are trans-
formed in the form of

Zh≥Lh; h ¼ 1; 2;… …; 0−1; 0þ 1;…n ð7Þ
Add these new n−1 constraints to the original set

of constraints, where Lh represents the right-hand
side values that will be varied.

Step 4. For each of the objectives and the associated range of
potential values, select the desired level of resolution
and divide the range into number of intervals deter-
mined by this level of resolution in order to find Lh.

Step 5. Solve the problem of step 3 for every combination of
right-hand side values determined in step 4. These
solutions form the approximation for the non-
dominated surface (Karamouz et al. 2003; ReVelle
and McGarity 1997).

The solution for the ε-constraint method was calculated
using the GA (Karamouz et al. 2003; ReVelle and McGarity
1997; Fig. 2). Several generations were conducted per GA run
until no further improvements (within a certain tolerance)
were achieved in the objective functions for successive gen-
erations (Ng and Perera 2003; Saavedra et al. 2010). In this
study, the algorithm operators were random population initial-
ization, one-point crossover, and bit mutation.

The decision variables were the percent removal of TSS
and COD and the flows subjected to treatment at the sources.
The upper and lower boundaries of the percent removal were
set to the removal amounts possible for each indicator. The
treated flows were defined as the percentage of the flows at
the sources that were subjected to treatment. The upper
boundary was set to 100 %, assuming that all of the source
flows would be entirely treated. Conversely, the lower bound-
ary was set to 0 %, indicating no treatment. The removal and
treated flow fractions at the point sources are relatively easy
to implement and control. However, the control and imple-
mentation for the non-point sources is difficult. In the Nile
Delta, drainage water is collected by artificial drainage net-
work. The bleeding between the drainage water from differ-
ent land use categories occurred later after dumping in open
systems such as the El-Qalaa drain and its branches. Thus, the
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quantity of the treated flow from non-point sources could be
controlled by collecting this drainage water before discharge
into the open-stream systems. To control the removal rate,
techno-economic biological reactors with small footprints
such as down-flow hanging sponge (Fleifle et al. 2013) are
required.

Minimization of pollutant removal and treated flows at
the sources was the main objective of this study. TSS and
COD concentrations in the ADW were the primary pollution
indicators for evaluating exceedances of water quality stan-
dards for irrigation and discharge into lakes. Initial tests
indicated that 50 generations were sufficient for each step
of the WLA model to obtain optimal or near-optimal solu-
tions because variations in the function for the primary
objective were very small for additional generations. The
model controlled for the effects of population size, proba-
bility of crossover, and probability of mutation. A larger
population in each generation does not improve the fitness
of the optimal solution, but can reduce the number of
generations required to obtain it. Decreasing the probability
of crossover can increase the number of generations required
to obtain the optimal solution. A population size of 100,
probability of crossover of 0.85, and probability of mutation
of 0.005 produced the best results for the main objective
function.

The ε-constraint method provided trade-off curves between
the selected objectives. Three potential solutions for the
decision-making process were presented (MV, MF, and MP).
The MV solution refers to minimum standard violations,
which represents the optimal solution along the trade-off
curve that minimizes exceedances of irrigation and lake dis-
charge water quality standards, objectives 2 and 3. In contrast,
the MF solution—minimum total removal and treated flow
fractions—provides the optimal solution for minimizing the
percent removal of TSS and COD and the treated flows at the
sources (objective 1) regardless of exceedances of the stan-
dards. The MP solution is a midpoint solution.

Water quality simulation

The water quality simulation estimates the spatial distribution
of water quality constituents in the stream system based on
point and non-point source contributions and includes a pol-
lutant export coefficient model (ECM) and a model of pollut-
ant transport in the stream system. The total loads and the
percentages of loads from different land uses were estimated
using the ECM at the sub-basin outlets. Pollutant transport,
sub-basin non-point and point source discharges, and trans-
formation processes in the stream were estimated using
QUAL2Kw (Pelletier et al. 2006). Measured data in summer
(April–September 2007) were used for calibration, while mea-
sured data in winter (October 2007–January 2008) were used
for verification.

Select the main objective in the
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objective function (L2)

Select the bound of the third
objective function (L3)

GA
Generate initial popullation

Simulate the variation of water
quality variables
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Fig. 2 Flowchart of the combination of the ε-constraint method and the
GA minimizing a problem with n objectives
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Export coefficient model

The ECM assumes that the pollutant load exported from
a watershed equals the sum of the losses from individ-
ual land uses, including agricultural, urban, rural, and
barren lands (Johnes 1996). This empirical model can
be expressed as

Li; j ¼ ∑nlu
k¼1Ek;iAk; j þ Pi; j ð8Þ

where Li,j is the average load of pollutant i at the outlet of
sub-basin j (ton/month), nlu is the number of land use
categories, Ek,i is the export coefficient of land use category
k for pollutant i (ton ha−1 month−1), Ak,j is the area of land
use category k in sub-basin j (ha), and Pi,j is the load of
pollutant i at the outlet of sub-basin j from precipitation
(ton/month).

However, concentrations rather than loads are required to
integrate the ECMwith the stream quality simulator. Thus, the
ECM equation must be modified as follows:

Ci; j ¼ ∑nlu
k¼1Ek;iAk; j þ Pi; j

Q j � 2:592
ð9Þ

where Ci,j is the concentration of pollutant i at the outlet of
sub-basin j (mg/L) and Qj is the discharge at the outlet of sub-
basin j (m3/s).

Export coefficients are usually derived from literature
sources and the results of field experiments to determine
the rate at which pollutants are lost from each identifiable
source to the surface drainage network (Johnes 1996).
Generally, the export coefficients associated with rural homes
and livestock can be determined from the literature because
these coefficients do not vary significantly. However, export
coefficients for other land use types have generally been
obtained under specific conditions that reflect regional fea-
tures and therefore are not sufficiently accurate when used
for other catchments. Thus, in the present study, monthly
monitoring of pollutant exports from small catchments with a
predominant land use was conducted to establish pollutant
loads specific to the study area. The mean values for these
data were then used to determine the export coefficients for
summer and winter. We assumed that export coefficients for
the same land use category were valid within sub-basins.
This is a reasonable assumption as the entire region has
similar wastewater treatment technologies, topographic char-
acteristics, soil properties, climatic conditions, and land man-
agement practices.

The proportions of major land uses in each sub-basin were
determined through supervised maximum likelihood

classification. An Enhanced Thematic Mapper Plus (ETM+)
image acquired on 17 July 2007 was used for the classifica-
tion. The image was acquired during the growing season
under clear atmospheric conditions from the Landsat archive
of the United States Geological Survey (http://glovis.usgs.
gov; http://edcsns17.cr.usgs.gov). All visible and infrared
bands (other than the thermal infrared band) were included
in the analysis.

We applied contrast stretching to the selected image for
visual interpretation. Prior to image classification, land use
features were categorized into five broad types: barren land,
agricultural land, urban land, rural land, and free water bod-
ies. These five types were identified based on visual inter-
pretation of the satellite imagery and verified with field
inspection. Barren land refers to non-cultivated land or bare
land. Agricultural land refers to areas cultivated with field
crops, forage crops, vegetables, or fruit trees. Urban areas
include cities in the study area, typically served by wastewa-
ter treatment plants. In contrast, rural areas include villages
and small communities that frequently do not have wastewa-
ter treatment facilities. Free water bodies include open irriga-
tion and drainage canals, shallow water bodies, and small
lakes. We used ERDAS IMAGINE 9.2 (Leica Geosystems
2008) software for supervised classification of the Landsat
image. Training samples were selected for each of the
predetermined land use types by delimiting polygons around
representative sites. Using the pixels enclosed by these poly-
gons, we derived spectral signatures for the respective land
cover types in the satellite images. A spectral signature is
considered to be satisfactory when confusion among the land
cover types to be mapped is minimal (Gao and Liu 2010).
Once the spectral signature was deemed satisfactory, it was
entered into the classification process. The supervised maxi-
mum likelihood method was used for classification.
Supervised classification outputs a thematic raster layer (the
classified image) and a distance file. Both the thematic layer
and the distance file were used to generate a land use map for
the study area.

A classification accuracy assessment was performed using
91 ground truth points that were randomly located to represent
the different land use classifications. The reference data and
classification results were compared and statistically analyzed
using error matrices.

Stream water quality model

We used the streamwater quality model QUAL2Kw (Pelletier
et al. 2006). For auto-calibration, the model uses a GA to
maximize the goodness of fit of the model results compared
withmeasured data by adjusting a large number of parameters.
Fitness is determined as the reciprocal of the weighted average
of the normalized root mean squared error (RMSE) of the
difference between the model predictions and the observed
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data for water quality constituents. The GA maximizes the
fitness function f (x) as follows:

f xð Þ ¼ ∑n
i¼1wi

� �
∑n

i¼1

1

wi

∑n
i¼1Qi; j=m

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑m

j¼1 Pi; j−Oi; j

� �2
=m

h ir
2
664

3
775

2
664

3
775ð10Þ

where wi is a weighting factor, n is the number of different
state variables included in the reciprocal of the weighted
normalized RMSE, Oi,j are observed values, Pi,j are predicted
values, andm is the number of pairs of predicted and observed
values. A detailed description of the auto-calibration method
can be found in Pelletier et al. (2006).

The El-Qalaa drain was discretized into six reaches with
various lengths. Figure 3 shows the system segmentation
along the El-Qalaa drain along with the locations of point
sources of pollution and the lengths of each reach. The stream
geometries were used to determine hydraulic characteristics.
Manning’s equation was used to determine hydraulic charac-
teristics, water velocity, and depth of the stream. The El-Qalaa
drain is a natural stream which is almost clean and has a
straight alignment. Thus, a Manning roughness coefficient
of 0.025 was used for all reaches (Chow et al. 1988).

The water quality input parameters included in the model
were flow rate, pH, TDS, TSS, DO, BOD5, NH4–N, NO3+
NO2–N, and COD. Phytoplankton and pathogens were not
measured and these inputs were left blank. Based on the
available data provided by the Drainage Research Institute
(DRI 2007), algae and bottom sediment oxygen demand
coverage were assumed to be 40 and 100 %, respectively.
The sediment/hyporheic zone thickness was assumed to be
10 cm.

The ranges for model rate parameters required by
QUAL2Kw were obtained from various sources, including
US EPA (1985), the QUAL2Kw user manual (Pelletier and
Chapra 2005), and documentation for the enhanced stream
water quality models QUAL2E and QUAL2E-UNCAS
(Brown and Barnwell 1987). The re-aeration rate was inter-
nally calculated based on the scheme developed by Covar

(1976). An exponential model was chosen for oxygen inhibi-
tion for BOD oxidation, nitrification, denitrification,
phytorespiration, and bottom algae respiration. Wind effects
were considered negligible. The other parameters were set to
their defaults in QUAL2Kw.

Data measured in the summer were used for calibration.
The calculation step was set to 11.25 min to avoid instability
in the model. The integration solution was carried out using
Euler’s method (Newton–Raphson method for pH modeling).
The goodness-of-fit evaluation was performed with the
QUAL2Kw default weighting values for various parameters.
The model was run until the system parameters were appro-
priately adjusted and reasonable agreement between model
results and field measurements was achieved. The model was
run for a population size of 100 with 100 generations of
evolution, in accordance with Pelletier et al. (2006). To test
the ability of the calibrated model to predict water quality
under various conditions, themodel was run using a complete-
ly different data set for the winter season, without changing
the calibrated parameters.

Results and discussion

Estimating pollutant loadings

The generated land use map for the El-Qalaa drain is shown in
Fig. 4, with the spatial distribution of the land use categories.

Table 2 Error matrix and total classification accuracy for the classified image

LULC classes Reference data Classification accuracy

Agriculture Urban Rural Water bodies Barren Production accuracy (%) Use accuracy (%)

Agriculture 49 1 3 0 0 96.08 92.45

Urban 1 14 0 0 0 93.33 93.33

Rural 1 0 17 2 0 85.00 85.00

Water bodies 0 0 0 3 0 60.00 100.00

Barren 0 0 0 0 0 100.00 100.00

Total accuracy (%) 90.52

Table 3 Area of each land use class for each sub-basin resulting from the
classified image

Sub-basin Area (ha)

Urban Rural Agriculture Free water bodies

Agricultural 1,376.2 806.1 744.3 13.4

Zohra 164.6 443.6 1,849.9 7.2

Amlak 455.2 900.9 2,931.6 13.1
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The classifications were compared with the reference data to
assess classification accuracy and an error matrix was gener-
ated (Table 2). The classification accuracy was approximately
90.5 %, and each land use classification had the highest

classification accuracy. In the Zohra and Amlak sub-basins,
agricultural land was the largest class, representing 75 and
68.2 % (1,849.9 and 2,931.6 ha), respectively (Table 3). In the
Agricultural sub-basin, urban land was the largest class,

Table 4 Average values of the export coefficients (ton ha−1 month−1) estimated for major land use categories for the summer and winter seasons

Land use Pollutants

TDS TSS BOD5 COD NH4–N NO2+NO3–N

Summer season Urban 2.65 3.78 18.33×10−2 19.52×10−2 9.52×10−3 7.62×10−3

Rural 3.62 0.72 6.78×10−2 24.16×10−2 5.47×10−3 1.43×10−3

Agricultural 0.19 0.28 0.57×10−2 0.60×10−2 1.43×10−3 2.86×10−3

Winter season Urban 4.41 4.98 18.33×10−2 19.52×10−2 7.14×10−3 10.47×10−3

Rural 2.27 0.82 5.69×10−2 21.28×10−2 2.38×10−3 1.43×10−3

Agricultural 0.19 1.76 0.57×10−2 0.60×10−2 1.67×10−3 1.19×10−3

Fig. 5 Observed and estimated loadings at the outlet of the Agricultural, Zohra, and Amlak sub-basins in the summer and winter seasons. a TDS
loadings. b TSS loadings. c BOD5 loadings. d COD loadings. e NH4–N loadings. f NO2+NO3–N loadings
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representing 46.8 % (1,376.2 ha). The free water bodies class
was the smallest of the land use categories among all sub-
basins, and the barren class was not detected in any sub-basin.

Based on measurements of pollutant exports from small
catchments with a predominant land use, export coefficients
for summer and winter were estimated (Table 4). The load
exported from precipitation was negligible. The pollutant
export coefficients and land use classification results were
then input into the ECM. The ECM was validated by com-
paring the estimated with the measured loads at the outlets of
the three sub-basins (Fig. 5). The observed and the estimated
loads were compared using relative root mean square error
(RRE). The RREs for TDS, TSS, BOD5, COD, NH4–N, and
NO2+NO3–N loads were 12.3, 0.1, 7.1, 23.7, 9.6, and 40.3 %
for the summer (April–September 2007) and 7.8, 12.4, 9.6,
23.9, 8.8, and 17.9 % for the winter (October 2007–January

2008), respectively. Although the estimated loads had some-
what high RREs in some cases, overall, the ECM was in
reasonable agreement with both summer and winter
measurements.

Overall, the highest percent loads of TSS (58.7 %), NH4–N
(49.5 %), and NO2+NO3–N (56.5 %) were from urban land.
Agriculture land was the next largest source of these pollut-
ants, contributing 29.9, 26.3, and 33.9 %, respectively. Rural
land had the smallest contributions of 11.4, 24.2, and 9.6 %,
respectively. Rural land use represented about 27.4, 17.8, and
20.9% of the areas of the Agricultural, Zohra, and Amlak sub-
basins, respectively. These areas contributed the largest COD
load (53.6 %) because they lack access to adequate wastewa-
ter treatment. The second largest source of COD was urban
land (42.9 %). Agricultural land contributed an almost negli-
gible COD (3.5 %) compared to rural and urban lands. For

Fig. 5 (continued)
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TDS and BOD5, urban land was the dominant source (48.7
and 68.9 %, respectively), while rural land was the second
highest source (44.2 and 25.2 %). The contribution of agri-
culture land to TDS and BOD5 was lowest at 7.1 and 5.9 %,
respectively.

Water quality simulation of the El-Qalaa drain

The results for the calibration parameters for the El-Qalaa
drain are shown in Table 5. The model calibration and verifi-
cation results were in good agreement with the measured data,

with some exceptions. The RMSEs between the simulated and
observed values for pH, TDS, TSS, DO, BOD5, COD, NO2+
NO3–N, and NH4–N were 0.07, 76.5, 156.9, 0.02, 34.8, 44.8,
8.8, and 5.2 mg/L, respectively, for the summer simulation
(April–September 2007). For the winter simulation (October
2007–January 2008), these values were 0.11, 146.7, 258.9,
0.15, 43.8, 51, 7.3, and 3.9 mg/L, respectively.

The El-Qalaa water did not meet the water quality stan-
dards for irrigation or for discharge into lakes for TSS, DO,
BOD5, and COD (Figs. 6 and 7). However, along the drain
and at its end, TDS and NO3–N concentrations were below

Table 5 Calibration parameters of the El-Qalaa drain water quality modelling for 2007

Parameter Value Units Auto-calibration Min. value Max. value

Stoichiometry

Carbon 40 g C No 30 50

Nitrogen 7.2 g N No 3 9

Phosphorus 1 g P No 0.4 2

Dry weight 100 g D No 100 100

Chlorophyll 1 g A No 0.4 2

ISS settling velocity 0.86 m/day Yes 0 2

O2 re-aeration model Internal No

Slow CBOD hydrolysis rate 2.6 day−1 Yes 0.04 4.2

Slow CBOD oxidation rate 2.92 day−1 Yes 0.04 4.2

Fast CBOD oxidation rate 0.18 day−1 Yes 0.02 4.2

Organic N hydrolysis 0.04 day−1 Yes 0.02 0.4

Organic N settling velocity 0.07 m/day Yes 0.001 0.1

Ammonium nitrification 0.13 day−1 Yes 0 10

Nitrate denitrification 0.18 day−1 Yes 0 2

Sed. denitrification transfer coeff. 0.02 m/day Yes 0 1

Detritus dissolution rate 3.73 day−1 Yes 0 5

Detritus settling velocity 3.67 m/day Yes 0 5

COD decay rate 0.006 day−1 Yes 0 0.8

COD settling velocity 0.21 m/day Yes 0 1

Bottom algae

Growth model Zero-order

Max growth rate 244.13 mg A/m2/ady Yes 0 500

First-order model carrying capacity 1762.91 mg A/m2 Yes 500 2,000

Respiration rate 0.34 day−1 Yes 0.05 0.5

Excretion rate 0.5 day−1 Yes 0 0.5

Death rate 0.4 day−1 Yes 0 0.5

External nitrogen half-sat. constant 86 μg N/L Yes 10 300

Inorganic carbon half-sat. constant 9.12E-05 mol/L Yes 0.0000013 0.00013

Light model Half-saturation

Light constant 52.84 Ly/day Yes 1 100

Ammonia preference 17.08 μg N/L Yes 1 100

Subsistence quota for nitrogen 0.38 mg N/mg A Yes 0.072 7.2

Maximum uptake rate for nitrogen 236.38 mg N/mg A/day Yes 1 500

Internal nitrogen half–sat. ratio 2.33 Yes 1.05 5
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2,000 and 50 mg/L, respectively, satisfying the water quality
standards. In addition, pH was within the water quality limi-
tations. Thus, suspended and organic material concentrations
are critical management issues for the El-Qalaa drain because
of substantial violations of TSS, DO, BOD5, and COD water
quality standards.

At the head of the El-Qalaa, TSS concentrations were very
high compared to the standards because urban land is the
dominant land use (46.8 %) within the Agricultural sub-
basin and urban lands were the largest source of TSS. TSS
concentrations then decreased due to their relatively low con-
centrations in the discharges from the other sub-basins and
point sources. BOD5 and COD peaks were observed between
kilometers 7.6 and 10 of the drain due to the input of organic
pollutants from the Somouha and Hydrodrome drains receiv-
ing the influent and overflow of the EWTP. This influent
consumes a large amount of the DO in the water course, and
a subsequent oxygen depression was observed within this
section of the drain.

The water quality profiles for the summer and winter
seasons show some differences, likely due to changes in
meteorological variables such air temperature and precipita-
tion. Moreover, there is a significant change in crops between
the two seasons. Rice, maize, and cotton are the main crops in
summer, while wheat, beans, and berseem are dominant in
winter. This difference in crops, coupled with associated
changes in the quantities of irrigation water, types and quan-
tities of fertilizers, and agricultural practices, results in more
agricultural wastewater in the summer compared to the winter
with different characteristics.

The El-Qalaa drain and its branches receive domestic and
industrial wastewaters in addition to the agricultural drainage
water. The major portion of the industrial and domestic
wastewaters is collected first to the EWTP and then the
effluent and the overflow of the plant are discharged to the
El-Qalaa. A significant portion of these wastewaters is un-
officially directly discharged to the El-Qalaa and its
branches. The industrial and domestic wastewaters were

Fig. 6 Calibrated results of water
quality in the El-Qalaa drain for
the summer season,
April–September 2007
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not quantified and completely identified. Some input vari-
ables such as algae coverage and sediment oxygen demand
were not monitored. This limitation in the data and the
monitoring results in low accuracy in the verification simu-
lation using the same calibrated parameters. Despite some
errors in the water quality framework results, the modeling
results were acceptable for achieving modest management
goals for such a data-limited condition. Greater accuracy
could be achieved through frequent monitoring; monitoring
additional input variables such algae coverage, sediment
oxygen demand, and organic nitrogen; and using more
sophisticated 2D or 3D stream models.

The combination of the water quality simulation model
(QUAL2Kw) and the ECM increased the understanding of
the source apportionment of water pollutants. This water
quality framework helped decision makers to achieve their
goals in an economic way by deciding the required removal
for the root causes of pollution.

Optimized solutions for water quality management

The proposed multi-objective WLA optimization model ex-
amines solutions that vary from minimizing violations with
correspondingly large treatment costs to those that result in
greater violations and lower costs. Figure 8a, b exhibits the
trade-off curves for the objectives for summer and winter,
respectively. Violations of both irrigation and lake discharge
standards were inversely proportional to the removal of TSS
and COD among the sources and the flows subjected to
treatment. By increasing the pollutants removed and treated
flows, exceedances of the water quality standards for TSS and
COD in the El-Qalaa drain decreased from 845 to 223 mg/L in
summer and from 634.9 to 343.4 mg/L in winter, a reduction
of 73.6 and 45.9 % for summer and winter, respectively. The
difference in the decrease was due to changes in the meteoro-
logical conditions and crop patterns between the seasons.
Pollutant concentrations in the agricultural wastewaters were

a ed

Fig. 7 Verification results of
water quality simulation in the
El-Qalaa drain for the winter
season, October 2007–January
2008
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noticeably higher in winter, particularly for TSS (export coef-
ficient of agricultural land for TSS increased from
0.28 ton ha−1 month−1 in summer to 1.76 ton ha−1 month−1

in winter).
The trade-off curves can assist decision makers in selecting

the most favorable solution, based on their priorities. The MV,
MP, and MF solutions (as potential solutions for decision
making) are summarized in Table 6 for each season. The
required quantities to be treated for the MV, MP, and MF
solutions were 7.23, 2.71, and 0.84 m3/s, respectively, for
the summer season, which were 0.69, 0.42, 0.01, 0.21, 0.01,
0.19, 1.06, and 4.64 m3/s from the urban land discharge of the
Agricultural sub-basin, the rural land discharge of the
Agricultural sub-basin, the urban land discharge of the
Zohra sub-basin, the rural land discharge of the Zohra sub-
basin, the urban land discharge of the Amlak sub-basin, the
rural land discharge of the Amlak sub-basin, Somouha drain
discharge, and Hydrodrome drain discharge, respectively, for
the MV solution; 0.49, 0.41, 0.01, 0.01, 0.01, 0.01, 0.89, and
0.89 m3/s for the MP solution; and 0.16, 0.06, 0.01, 0.05,
0.001, 0.04, 0.29, and 0.25 m3/s for the MF solution.
Similarly, the required quantities to be treated for the MV,
MP, and MF solutions were 7.68, 5.04, and 1.70 m3/s, respec-
tively, for the summer season, which were 0.71, 0.37, 0.04,
0.04, 0.17, 0.42, 1.31, and 4.61 m3/s from the urban land
discharge of the Agricultural sub-basin, the rural land

discharge of the Agricultural sub-basin, the urban land dis-
charge of the Zohra sub-basin, the rural land discharge of the
Zohra sub-basin, the urban land discharge of the Amlak sub-
basin, the rural land discharge of the Amlak sub-basin,
Somouha drain discharge, and Hydrodrome drain discharge,
respectively, for the MV solution; 0.003, 0.01, 0.003, 0.04,
0.03, 0.06, 0.67, and 4.22 m3/s for the MP solution; and 0.02,
0.02, 0.002, 0.05, 0.01, 0.06, 0.74, and 0.79 m3/s for the MF
solution. The required removal fractions for TSS and COD for
each source for these solutions are dedicated in Table 6.
Overall, the MV solution required the highest treated quanti-
ties and removal fractions which minimize the exceedances of
the water quality standards. In contrast, the MF solution
required the minimum treated quantities and removal frac-
tions. The MP solution was presented as a midpoint solution.
The treatment of the drainage water from both Somouha and
Hydrodrome drains was essential to meet the water quality
standards. Figure 9a, b presents the water quality profiles for
TSS and COD for the summer season, respectively, along the
El-Qalaa drain for each of these three solutions. Likewise,
Fig. 10a, b presents these profiles for the winter season. The
average exceedances of the water quality standards for the
MV and MF solutions were 238.9 and 732.6 mg/L for TSS,
respectively, and 0 and 112.4 mg/L for COD, respectively, in
summer. In winter, the average exceedances for the MV and
MF solutions were 380.9 and 543.1 mg/L for TSS and 0 and
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Fig. 8 Trade-off curves between
the total removal and treated flow
fractions at point and non-point
sources, deviation from irrigation
standards along the drain, and
deviation from standard to
discharge into lakes at the drain
end for the summer (a) and winter
seasons (b)
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91.7 mg/L for COD, respectively. As can be seen in Figs. 9a
and 10a, exceedances of the standards for TSS are unavoid-
able because of the high TSS concentrations in the headwaters
and significant contributions from agricultural wastewater
along the drain.

Decision makers can select a desirable WLA solution from
the trade-off curves produced by the multi-objective optimi-
zation model based on their treatment budget and degree of
exceedance of the water quality standards. This approach can
be extended to other drainage basins throughout the Nile Delta
region and to other basins with similar agricultural character-
istics. Improvements in water quality measurements can be
used to refine model input data, improve model recommen-
dations, and utilize the methodology in a dynamic way.

Conclusions

& A multi-objective optimization model integrating several
component models was developed to provide waste load
allocation alternatives for a freshwater system.

& This approach provides optimal treatment strategies for
achieving competing wastewater treatment, wastewater
reuse, and environmental objectives.

& The water quality framework was calibrated and verified
using data obtained in 2007–2008 for the El-Qalaa drain
in the Nile Basin, Egypt. A larger data set is necessary to
refine the general approach used here. Nevertheless, the
framework represented the field data satisfactorily and can
be used to support future WLA decisions.

& The results show that the El-Qalaa drainwater did not meet
the water quality standards for irrigation and lake dis-
charge for TSS, DO, BOD5, and COD. Thus, suspended
and organic material concentrations are critical consider-
ations for El-Qalaa drain water quality management.

& The model provides trade-off curves among the selected
objectives, with increases in pollutant removal and
treated flow fractions at point and non-point sources
leading to decreases in exceedances of the water quality
standards. These trade-off curves can assist decision
makers in selecting the most favorable solution based
on their priorities.

Table 6 Minimum standard violation (MV), middle point (MP), and minimum total removal and treated flow fractions (MF) solutions for the summer
and winter seasons

Source Decided fraction (%) Summer season Winter season

MV MP MF MV MP MF

Agricultural sub-basin Treated flow fraction from urban land 91.15 64.92 20.44 94.23 0.42 2.53

Treated flow fraction from rural land 94.27 91.39 12.40 83.89 2.32 5.44

TSS removal fraction for urban discharge 2.96 3.34 70.95 18.41 23.17 95.22

TSS removal fraction for rural discharge 12.04 84.32 85.54 6.21 6.36 88.32

COD removal fraction for urban discharge 41.70 88.73 99.85 16.94 61.13 81.50

COD removal fraction for rural discharge 64.35 99.33 97.03 99.66 77.40 79.41

Zohra sub-basin Treated flow fraction from urban land 7.04 8.32 7.71 42.91 3.32 2.50

Treated flow fraction from rural land 87.31 3.67 20.79 14.34 16.01 21.15

TSS removal fraction for urban discharge 42.38 74.73 98.42 76.03 65.47 95.17

TSS removal fraction for rural discharge 53.85 53.15 98.31 24.11 44.51 79.50

COD removal fraction for urban discharge 20.25 93.23 88.00 5.57 89.42 93.57

COD removal fraction for rural discharge 98.87 98.78 98.52 7.47 99.10 94.69

Amlak sub-basin Treated flow fraction from urban land 5.67 2.22 0.25 68.67 11.39 3.16

Treated flow fraction from rural land 38.13 0.97 7.21 84.65 12.42 12.24

TSS removal fraction for urban discharge 16.98 53.05 45.06 29.00 66.44 88.11

TSS removal fraction for rural discharge 92.07 97.19 98.43 11.94 66.38 81.93

COD removal fraction for urban discharge 58.18 98.18 57.73 72.47 98.37 88.47

COD removal fraction for rural discharge 93.47 3.90 89.55 84.81 84.69 43.55

Somouha drain Treated flow fraction 75.94 64.17 20.61 94.30 48.31 53.32

TSS removal fraction 2.14 69.93 78.75 1.76 90.29 56.72

COD removal fraction 18.71 82.50 92.47 8.52 45.96 46.76

Hydrodrome drain Treated flow fraction 99.67 19.11 5.38 98.97 90.62 17.05

TSS removal fraction 5.41 9.39 82.28 9.43 21.68 73.30

COD removal fraction 16.81 11.04 87.23 5.11 51.32 86.74
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& This approach can be extended to other drainage basins
throughout the Nile Delta region with similar

characteristics and to other regions through collection of
area-specific land use and water quality data.

Fig. 9 Water quality profiles for
the summer season along the
El-Qalaa drain resulting from
minimum standard violation
(MV), middle point (MP), and
minimum total removal and
treated flow fraction (MF)
solutions for the summer season
for TSS concentration (a) and
COD concentration (b)

Fig. 10 Water quality profiles for
the summer season along the
El-Qalaa drain resulting from
minimum standard violation
(MV), middle point (MP), and
minimum total removal and
treated flow fraction (MF)
solutions for the winter season for
TSS concentration (a) and COD
concentration (b)
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