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Abstract The application of advanced oxidation process
(AOP) in the treatment of wastewater contaminated with oil
was investigated in this study. The AOP investigated is the
homogeneous photo-Fenton (UV/H2O2/Fe

+2) process. The
reaction is influenced by the input concentration of hydrogen
peroxide H2O2, amount of the iron catalyst Fe+2, pH, temper-
ature, irradiation time, and concentration of oil in the waste-
water. The removal efficiency for the used system at the
optimal operational parameters (H2O2=400 mg/L, Fe+2=
40 mg/L, pH=3, irradiation time=150 min, and tempera-
ture=30 °C) for 1,000 mg/L oil load was found to be 72 %.
The study examined the implementation of artificial neural
network (ANN) for the prediction and simulation of oil deg-
radation in aqueous solution by photo-Fenton process. The
multilayered feed-forward networks were trained by using a
backpropagation algorithm; a three-layer network with 22
neurons in the hidden layer gave optimal results. The results
show that the ANNmodel can predict the experimental results
with high correlation coefficient (R2=0.9949). The sensitivity
analysis showed that all studied variables (H2O2, Fe

+2, pH,
irradiation time, temperature, and oil concentration) have
strong effect on the oil degradation. The pH was found to be
the most influential parameter with relative importance of
20.6 %.

Keywords Advanced oxidation process . Homogeneous
photo-Fenton . Oil degradation . Artificial neural network .

Sensitivity analysis

Introduction

Oil-contaminated wastewater can cause serious environ-
mental problems due to its hazardous nature. The vol-
ume of oil-contaminated wastewater from petroleum fill-
ing stations has increased in line with the number of
such stations required to cater for the growing number
of vehicles. In Iraq, there are 507 car-wash facilities,
excluding the region of Kurdistan (Ministry of
Environment report 2011, Iraq), and some of them dis-
charge their oily wastewater (almost an emulsion) to the
sewer system without treatment.

Also, there are many accidental discharges of hydrocarbon
oil to the natural environment during its processing, transpor-
tation, and storage. Oil-spills cause many problems in the
environment depending on the volume of the oil spilled. For
instance, water resources as well as habitats where fish, birds,
and other wildlife live can be damaged. As a result, there has
been an increase in research activity focusing on treating oily
wastewaters.

Several conventional techniques such as gravity separation,
dissolved air flotation, demulsification, coagulation, and floc-
culation have been employed for the treatment of oily
wastewater.

However, these processes can only transform the pollutants
from one phase to another without destroying them. Also,
these processes result in concentrated sludge which requires
further processing and disposal. In addition, conventional
treatment processes have difficulty in fully removing emulsi-
fied oil or small oil droplets.

Advanced oxidation processes (AOPs) have been investi-
gated for the treatment of oil-contaminated wastewater, as an
alternative to conventional treatment techniques, by many
researchers (Tiburtius et al. 2005; Galvao et al. 2006; Mater
et al. 2007; Mota et al. 2008; Tony et al. 2009; Yu et al. 2011;
Tony et al. 2012).
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AOPs are characterized by the use of highly reactive inter-
mediates, hydroxyl radicals (HO•), which attack the organic
pollutants in the wastewater and mineralize them. Advanced
oxidation processes have the advantage of rapid oxidation of
pollutants to harmless end-products. These processes include
homogenous processes such as Fenton’s reagent and H2O2,
and heterogeneous photocatalysis using semiconductors such
as TiO2 and ZnO. Fenton process has received much attention
especially when induced by ultraviolet radiation (Neyens and
Baeyens 2003).

The AOPs are expensive processes, owing to the high cost
of the reagents involved such as H2O2 and electric energy
when UV radiation is applied. Therefore, a balance must be
maintained between excess and low levels of reagents.

Treatments of recalcitrant wastewater by AOPs are influ-
enced by several factors. Due to the complexity of the process,
it is difficult to be modeled and simulated using conventional
mathematical techniques. Application of artificial neural net-
work (ANN) to solve environmental engineering problems
has been reported in many articles. However, few studies on
application of ANN in advanced oxidation processes have
been reported (Aleboyeh et al. 2008; Oguza et al. 2008;
Duran et al. 2006), especially in the oil contamination domain.

In the present work, the effectiveness of UV/H2O2/Fe
+2

system in the degradation of oil in wastewater was studied. To
achieve the experimental objectives, different variables were
chosen to be followed throughout the treatment, H2O2, Fe

+2,
pH, temperature, irradiation time, and oil concentration. The
implementation of ANN model for the prediction of oil deg-
radation was investigated. The ANN modeling outputs were
compared with the experimental data. Additionally, the ANN
model was used to confirm the optimum experimental amount
of H2O2 and Fe+2 required for the oil degradation process.

Materials and methods

Chemicals

Commercial gas oil was used in this study as a model
pollutant for the degradation of oil from wastewater by
AOP. The gas oil was analyzed at the Petroleum
Research and Development Center, Ministry of Oil.
The chemical composition was Paraffins 62.5 %,
Aromatics 18.7 %, and Naphthenes 18.8 %. Hydrogen
peroxide H2O2 (30 % wt/wt from Scharlau) and ferrous
chloride tetrahydrate FeCl2.4H2O (97 % purity from
BDH) were used in the experimentation. All samples
were prepared by dissolving requisite quantity in dis-
tilled water. The pH of the solution was adjusted by
using sulfuric acid H2SO4 solution (99 % purity from
Riedel-deHaen).

Equipment

The experiments were carried out in a batch mode laboratory-
scale reactor .The reactor consisted of Pyrex glass cylinder 3 L
volume with a magnetic stirrer and a heater (MSH-300N,
BOECO, Hamburg, Germany). UV radiation (254 nm) was
generated from UV lamp (TUV 11W 4P-SE, Philips,
Guildford, Surrey, England), which was fixed vertically at
the top of the reactor. The lamp was totally immersed in the
content of the cylindrical reactor. UV lamp was sheathed in
quartz sleeve for protection. The distance between the lamp
and the reactor wall was fixed at 5 cm to ensure maximum
light irradiation as mentioned by Chiu et al. (1999). The
turbidity of the solution was measured using turbidity meter
(Hanna microprocessor, Padua, Italy). Initial pH of the solu-
tion was monitored using a pH meter (INOLAB 72, WTW
Co., Weilheim, Germany).

Experimental procedure

The desired concentration of gas oil (500–2,000 mg/L) was
prepared and the pH was adjusted, before adding the reagents,
by adding a dilute H2SO4 solution to the reactor contents.

The Fenton reagents were introduced to the solution by
adding ferrous chloride (10–100 mg/L) and then the hydrogen
peroxide (100–800 mg/L). The solution was then subjected to
stirring using magnetic stirrer at 200 rpm for 150 min. The
heater was adjusted at the required temperature. Samples at a
regular time intervals (30 min) were taken for COD analysis.

Analysis

Chemical oxygen demand (COD) was used to monitor the oil
concentration. COD of samples was analyzed by using COD
Photometer. The appropriate amount of sample (0.2 mL) was
introduced into commercially available digestion solution
(HR-Rang 0–15,000 mg/L) containing potassium dichromate,
sulfuric acid, and mercuric sulfate. The mixture was then
incubated for 120 min at 150 °C in a COD reactor (model
RD-125, Lovibond, Dortmund, Germany). After oxidation is
complete, the COD concentration was measured colorimetri-
cally at 605 nm using a DR/2010 spectrophotometer (model
MD 100, Lovibond, Dortmund, Germany).

Artificial neural network

Artificial neural networks are computational tools which have
the ability to learn the behavior of a process and the relation-
ship between groups of variables without any phenomenolog-
ical model of the system. They are a powerful tool for discov-
ering relationships between sets of data. This artificial intelli-
gence method has attracted considerable attention because it
can handle complex, nonlinear problems and requires less
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processing time than conventional methods (Khataee and
Kasiri 2010).

A computational neural network consists of simple pro-
cessing units called neurons. A neural net is a interconnected
parallel structure consisting of (1) an input layer of neurons
(independent variables), (2) a number of hidden layers, and (3)
an output layer (dependent variables). The number of input
and output neurons effectively represents the number of var-
iables used in the prediction and the number of variables to be
predicted, respectively. Hidden layers act like feature detec-
tors, and theoretically, the existence of more than one hidden
layer is possible. However, universal approximation theory
suggests that a network with a single hidden layer with a
sufficiently large number of neurons can interpret any input–
output structure (Darioush et al. 2009). The hidden layer’s
task is to transform the inputs into something that the output
layer can use.

To develop an accurate process model using ANN, the
learning process or training, validation, and testing are among
the important steps. In the training process, a set of input–
output patterns is repeated to the ANN. From that, weights of
all the interconnections between neurons are adjusted until the
specified input yields the desired output. Through these activ-
ities, the ANN learns the correct input–output response be-
havior. For validation, the ANN is subjected to input patterns
unseen during training and introduced adjustment to make the
system more reliable and robust. It is also used to determine
the stopping point before over fitting occurs. After the training
phase, the ANN is used to simulate the output of a set of test
data. If the ANN returns the values of the output for the test
data within an acceptable margin, then the ANN can be said to
be successfully trained and may be used as a predictive tool
(Emad and Malay 2011).

Topology of an artificial neural network is determined by
the number of its layers, the number of nodes in each layer,
and the nature of transfer functions. Optimization of ANN
topology is probably the most important step in the develop-
ment of the model. In the present work, a three-layered feed-
forward backpropagation neural network (6:22:1) was used
for modeling of oil degradation process (Fig. 1). The input
variables to the feed-forward neural network were as follows:
irradiation time (min), initial Fe+2 concentration (mg/L), initial
H2O2 concentration (mg/L), pH, temperature (°C), and initial
oil concentration (mg/L). Removal efficiency (%) was chosen
as the experimental response or output variable.

In order to determine the optimum number of hidden
nodes, a series of topologies was used, in which the number
of nodes were varied from 2 to 22. Mean square error (MSE)
was used as the error function. MSE measures the perfor-
mance of the net network. In the present work, the mean
square error was minimized when 22 neurons were used.

In the feed-forward neural net, all the neurons of a partic-
ular layer are connected to all the neurons of the layer next to

it. The input layer of neurons acts as a distributer, and the input
to this layer is directly transmitted to the hidden layer. The
inputs to the hidden and output layers are calculated by
performing a weighted summation of all the inputs received
from the preceding layer. The weighted sum of the input is
transferred to the hidden neurons, where it is transformed
using an activation function. The output of hidden neurons,
in turn, acts as inputs to output neurons where it undergoes
another transformation.

In the present work, a three-layer ANN with tangent sig-
moid transfer function (tansig) at the hidden layer with (22)
neurons, linear transfer function (purelin) at output layer, and
Levenberg–Marquardt backpropagation (LMA) training algo-
rithm were used. A comparison between calculated and ex-
perimental values of the output variable for test sets using
neural network model showed a correlation coefficient of
0.9949, which confirms that neural network model could
effectively reproduce the experimental results.

Results and discussion

In the photo-Fenton process, H2O2 is dissociated to generate
hydroxyl radical which is responsible for the degradation and
mineralization of organic compounds. The formation of hy-
droxyl radical depends on several factors such as initial con-
centration of H2O2, dose of Fe+2, pH, temperature, and the
organic load. Therefore, the effects of these factors were
investigated.

The effect of initial H2O2 concentrations

The effect of initial concentration of H2O2 (100, 200, 400,
600, and 800 mg/L) on photo-Fenton process was tested to
optimize the amount of H2O2 required to degrade the oil. A
fixed initial amount of Fe+2 (40 mg/L) was maintained
throughout these experiments. The initial oil concentration
was 1,000 ppm (1,550±60 COD), initial pH=7, and the
temperature was maintained at 20 °C throughout the tests.

Figure 2 shows the relation between the removal efficiency
and the irradiation time for different initial concentrations of
H2O2. From this figure, it can be noticed that the percent of
degradation increased to 54 % at 400 mg/L H2O2 then de-
creased to 47 % at 800 mg/L of H2O2 following 150 min of
irradiation time.

It was expected that increasing the concentration of H2O2

results in a reduction in the rate of degradation due to many
reasons among them (Ahmad 2011): the reaction of H2O2with
HO• acts as an inhibiting agent (i.e., self-scavenging of HO•

by H2O2), Eq. 1.

H2O2 þ HO•→HO•
2 þ H2O ð1Þ
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HO• efficiently reacts with H2O2 and produce HO•
2. Since

HO•
2 radicals are not as reactive as HO

•, then low degradation
may be obtained. Also, the hydroxyl radical may recombine
and participate in radical–radical reactions to form H2O2,
Eq. 2.

2HO•→H2O2 ð2Þ

Additionally, at higher H2O2 concentrations, a lower light
intensity is available for oil degradation, since H2O2 also
absorbs light in the system. However, if H2O2 does is low,
HO• formation will also be low, decreasing the treatment

efficiency. Therefore, a balance must be maintained between
excess and low levels of H2O2.

The predicted results are also shown in Fig. 2, for different
H2O2 concentrations using ANN model. The figure shows
that the predicted values are in good agreement with the
experimental results.

Khataee and Kasiri (2010) and Emad and Malay (2011)
have reviewed the early applications of ANNs in modeling
and simulation of homogeneous photocatalytic processes in
wastewater treatment. They illustrated that many researchers
applying the photo-Fenton process (Elmolla et al. 2010; Yu
et al. 2009; Giroto et al. 2006; Yu et al. 2010) obtained a good
agreement between experimental and predicted output values,
with high correlation coefficients of more than 95 %. The
ANN predicted results in this research were very close to the
experimental output of oil degradation with a correlation
coefficient of 0.9949 which is in line with previous work.

An optimum value of H2O2 was obtained to be 400 mg/L
experimentally after 150 min of irradiation time. To examine
if this value represents the adequate amount of H2O2 required
for best degradation using ANN model, the amount of H2O2

was varied around the optimum value as shown in Fig. 3. It
can be seen from this figure that increasing the concentration
of H2O2 from 400 to 410 and 430 mg/L gave approximately
the same efficiency, and then, a slight increase in removal
efficiency at 440 mg/L was observed. After that, a noticeable
decrease in the removal efficiency was seen. This means that
400 mg/L of H2O2 is the optimum amount for the degradation
process at the mentioned conditions.

Fig. 1 Optimized ANN structure
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1,000 mg/L, and temperature=20 °C. Experimental and predicted results
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The effect of initial Fe+2 concentrations

Different concentrations of Fe+2 (10, 20, 40, 50, 60, and
100 mg/L) were tested in the present experiments. The opti-
mum H2O2 concentration (400 mg/L) from the previous sec-
tion was used. All the other parameters were maintained at
their previous values. The results are plotted in Fig. 4. From
this figure, it can be observed that the degradation rate of oil
distinctly increased with the increasing amounts of iron salt; it
reached its maximum value of 54 % at 40 mg/L after about
150 min of irradiation time. The addition of the iron salt above
this value did not affect the degradation; rather, it had a
negative effect, only 20 % removal was achieved at 100 mg/
L Fe+2. This finding is in agreement with the previous obser-
vation of Tony et al. (2009, 2012).

The negative effect can be explained as follows: the addi-
tion of ferrous ions increases wastewater brown turbidity
during the photo-treatment, which hinders the absorption of
UV light (Dincer et al. 2008). Excess ferrous ions can react
with hydroxyl radical according to Eq. 3, decreasing the attack
of hydroxyl radical on organic substrates.

Fe2þ þ HO•→Fe3þ þ HO− ð3Þ

Also, excess ferrous ions can react with OH radical pro-
ducing compounds which inhibit reaction rate (Neyens and
Baeyens 2003).

The predicted results by using ANN model are also shown
in Fig. 4. These results confirm that the neural networkmodels
can effectively reproduce the experimental results.

An optimum value of Fe+2 (40 mg/L) was obtained exper-
imentally. To examine if this value represents the adequate
amount of Fe+2 using ANN model, the amount of Fe+2 was
varied around the optimum value as shown in Fig. 5. It can be
seen from this figure that increasing the concentration of Fe+2

from 40 to 41 and 42 mg/L gave nearly the same efficiency;
after that, the efficiency tends to be decreased distinctly.
Hence, 40 mg/L is the optimum amount of Fe+2 at the men-
tioned conditions.

The effect of initial pH

The effect of pH plays an important role in the photo-Fenton
treatment process. Different values of pH were examined in
this study (2, 3, 4, 5, 7, and 8), keeping the other parameters
and dosage constant (Fe+2=40 mg/L, H2O2=400 mg/L, oil
concentration=1,000 mg/L, and temperature=20 °C).
Figure 6 shows that a maximum removal efficiency at 66 %
was obtained at pH=3. Above this value, the removal effi-
ciency decreased gradually, except for pH=8, where a marked
decrease in removal efficiency of 28 % was observed.

The optimum pH, as observed, was 3 which is in agreement
with previous studies using photo-Fenton process (Benitez
et al. 2001; Tiburtius et al. 2005; Tony et al. 2012).

The pH affects the activity of both the speciation of iron
and hydrogen peroxide decomposition. The decrease in re-
moval efficiency can be explained as follows: at lower pH
(<2.5), the formation of [Fe(H2O)6]

2+ complex occurs rather
than [Fe(OH)(H2O)5]

+ complex, which reacts more slowly
with hydrogen peroxide and therefore produces less amount
of reactive hydroxyl radicals, thereby reducing the degrada-
tion efficiency asmentioned byMota et al. (2008). In addition,
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Fig. 3 Removal efficiency at different concentrations of H2O2, varied
around the optimum value (400 mg/L) as predicted by ANN model
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Fig. 5 Removal efficiency at different concentrations of Fe+2, varied
around the optimum value (40 mg/L) as predicted by ANN model

7534 Environ Sci Pollut Res (2014) 21:7530–7537



the scavenging effect of hydroxyl radicals by hydrogen ions
becomes important at a very low pH, and also, the reaction of
Fe3+ with hydrogen peroxide is inhibited (Pignatello 1992).

At an operating pH of >4, iron reacts with the hydroxide
ions (HO−), precipitating iron hydroxide Fe(OH)2 or
Fe(OH)3, which does not react with H2O2, and precluding
the Fenton reaction. Also, the oxidation potential of OH
radical is known to decrease with an increase in the pH
(Kwon et al. 1999).

A very good fitting between the predicted values and the
experimental results can be observed for different pH values in
Fig. 6.

The effect of temperature

Reaction temperature is another important process parameter
that affects the degradation process. Different temperatures
(20, 30, and 40 °C) were used. The dosage of the reagents and
other parameters were kept constant (Fe+2=40 mg/L, H2O2=
400 mg/L, oil concentration=1,000 mg/L, and pH=3). The

results are plotted in Fig. 7. This figure shows that the removal
efficiency of oil increases from 66% at 20 °C to 72% at 30 °C
and then decreases to 69 % at 40 °C. The increase in temper-
ature accelerated the decomposition of H2O2, thus increasing
the generation of OH radicals which enhances the degradation
process slightly. Rivas et al. (2004) have reported that the
degradation efficiency is unaffected even when the tempera-
ture is increased from 10 to 40 °C. Above 40 °C, the efficiency
of hydrogen peroxide utilization decreases due to accelerated
decomposition of hydrogen peroxide into water and oxygen as
mentioned by Nesheiwat and Swanson (2000).

Additionally, Fig. 7 shows a very good agreement between
the predicted values of ANN model and the experimental
values.

The effect of initial oil concentration

Different concentrations of gas oil (500, 1,000, and
2,000 °mg/L) were used with H2O2=400 mg/L, Fe+2=
40 mg/L, pH=3, and temperature=30 °C. The results are
plotted in Fig. 8. From this figure, it can be observed that
the removal efficiency decreases from 79 to 50 % as the
concentration of gas oil increases from 500 to 2,000 mg/L,
respectively. This can be attributed to the increase in turbidity
of the solution. The turbidity for 2,000 mg/L oil solution was
measured to be 47 NTU, whereas for 500 mg/L oil solution
the turbidity was only 6 NTU. Decreasing turbidity clearly
enhances the penetration of UV light, resulting in enhanced oil
removal; this observation was reported by Najjar et al. (2001).

Figure 8 confirms that the neural network model can effec-
tively predict the experimental results.

Sensitivity analysis

In order to assess the relative importance of the input vari-
ables, sensitivity analysis was conducted based on the Garson
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equation. Garson (1991) proposed an equation based on the
partitioning of connection weights:

Ij ¼
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where Ij is the relative importance of the jth input variable on
the output variable; Ni and Nh are the numbers of input and
hidden neurons, respectively; W is connection weights; the

superscripts i, h, and o refer to input, hidden, and output
layers, respectively; and subscripts k, m, and n refer to input,
hidden, and output neurons, respectively.

Table 1 shows the weights between input and hidden layers
(W1) and weights between hidden and output layers (W2).
Table 2 shows the relative importance of the input variables
(irradiation time, H2O2, Fe

+2, pH, temperature, and oil con-
centration). It can be seen that all variables have strong effect
on oil degradation.

pH was found to be the most influential parameter with a
relative importance of 20.6 %. A number of researchers in
their papers show different relative importance of input vari-
ables for the photo-Fenton degradation process (Aleboyeh
et al. 2008; Khataee and Kasiri 2010; Elmolla et al. 2010).
This variation may depend on the specific conditions and
variables each researcher dealt with.

Conclusion

The removal efficiency of the system UV/H2O2/Fe
+2 (homo-

geneous photocatalysis) considered in this study, for the

Table 1 Weight matrix, weights between input, and hidden layers W1 and between hidden and output layers W2

Neuron W1 W2

Input Output removal efficiency

Time Fe+2 H2O2 pH Temperature Concentration

1 0.074 −1.2287 1.4079 0.1123 0.8194 −1.2166 0.4139

2 0.0006 1.2271 0.8978 0.6385 1.7186 −0.0842 1.0085

3 −0.7775 −1.5063 1.68 0.0567 0.2417 −1.4488 1.4461

4 −2.5685 −0.5048 −0.4694 2.3759 1.5027 −0.1929 1.5725

5 1.1365 0.5833 0.3538 −0.9943 2.31 0.2087 0.7732

6 0.4473 −0.4432 0.0646 2.6564 1.4318 1.5292 −1.2890
7 −0.454 −0.1175 −0.1876 −0.1937 0.0413 −1.6799 0.4331

8 −1.7649 −0.8794 0.932 −0.4883 −0.4338 0.1091 0.7381

9 1.3475 1.6684 −1.1184 1.4551 1.5735 −0.4795 0.6531

10 −1.099 0.4118 0.6014 1.2003 −0.2165 1.091 0.3258

11 −2.1269 −0.6149 −0.9933 2.1928 1.2592 −0.3137 −1.8707
12 2.1671 −1.0603 1.2899 −2.2465 −1.8442 −1.3058 0.6504

13 −0.0765 −1.3239 −0.9012 4.1684 0.3216 −1.2305 0.8400

14 −0.446 3.5371 −0.8388 1.8283 −0.3713 −1.2131 −2.1613
15 −0.6529 −0.7292 0.9099 −0.0229 1.6426 0.9243 0.7674

16 0.0455 0.8619 0.3482 1.5888 −1.5156 −1.0472 1.8880

17 −2.2509 −0.5292 0.6256 2.7353 −0.0015 −1.1773 −0.5977
18 0.5551 3.6213 0.4745 0.6041 −0.7958 0.5588 2.2289

19 0.2415 1.924 −0.0695 0.3129 −1.816 0.1995 −0.0403
20 0.6519 −0.7632 1.5633 −1.9622 −2.1796 0.5395 2.0682

21 −2.426 0.4957 0.8348 −0.5804 0.1756 −0.1244 −3.0095
22 0.7928 0.7843 0.6314 −0.623 1.0546 −1.226 −0.5539

Table 2 Relative impor-
tance of input variables Input variables Importance %

pH 20.6

Fe+2 19.5

Time 18.4

Temperature 16.1

H2O2 13.3

Concentration 12.1
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degradation of oil in wastewater was found to be 72 % at
400 mg/L H2O2, 40 mg/L Fe+2, 30 °C temperature, pH=3,
and 1,000 mg/L oil load.

A three-layer feed-forward backpropagation neural net-
work was optimized to predict the degradation of oil in waste-
water. The configuration of the backpropagation neural net-
work giving the smallest MSE was a three-layer ANN, with
tangent sigmoid transfer function (tansig) at a hidden layer
with 22 neurons, linear transfer function (purelin) at an output
layer, and Levenberg–Marquardt backpropagation training
algorithm. ANN predicted results are very close to the exper-
imental results with a correlation coefficient of 0.9949 and
MSE of 0.0003. Sensitivity analysis showed that all studied
variables in this work (H2O2, Fe

+2, pH, temperature, irradia-
tion time, and oil concentration) have considerable effects on
the degradation efficiency. pH was found to be the most
influential parameter a with relative importance of 20.6 %.
The result of the modeling confirmed that ANN model could
effectively reproduce experimental data and predict the be-
havior of the process.
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