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Abstract Pollution resulting from hazardous glass (HG) is
widespread across the globe, both in terms of quantity and
associated health risks. In waste cathode ray tube (CRT) and
fluorescent lamp glass, mercury and lead are present as the
major pollutants. The current review discusses the issues
related to quantity and associated risk from the pollutant
present in HG and proposes the chemical, biological, thermal,
hybrid, and nanotechniques for its management. The hybrid is
one of the upcoming research models involving the compat-
ible combination of two or more techniques for better and
efficient remediation. Thermal mercury desorption starts at
100 °C but for efficient removal, the temperature should be
>460 °C. Involvement of solar energy for this purpose makes
the research more viable and ecofriendly. Nanoparticles such
as Fe, Se, Cu, Ni, Zn, Ag, and WS2 alone or with its formu-
lation can immobilize heavy metals present in HG by involv-
ing a redox mechanism. Straight-line equation from year-wise
sale can provide future sale data in comparison with lifespan
which gives future pollutant approximation. Waste com-
pact fluorescent lamps units projected for the year 2015
is 9,300,000,000 units and can emit nearly 9,300 kg of
mercury. On the other hand, CRT monitors have been
continuously replaced by more improved versions like
liquid crystal display and plasma display panel resulting

in the production of more waste. Worldwide CRT pro-
duction was 83,300,000 units in 2002 and can approx-
imately release 83,000 metric tons of lead.
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Introduction

The use of glass products in household and industrial appliances
is continuously popular among us from thirty-fifth century BC
(Before Christ). In 1994, approximately 9,200,000 tons of post-
consumer glass was discharged in theUSA alone (Shi and Zheng
2007) and this figure is expected to touch 40,000,000 tons of flat
glass as a current global demand (http://www.tatachemicals.com/
europe/touching_lives/pdf/glass_industry.pdf). Waste thus
obtained can be managed by any of the following techniques:

1. Mechanical recycling (remelting and shaping)
2. As a material resource to make concrete admixture/

aggregates (Terro 2006; Disfani et al. 2011a), masonry
blocks (Turgut 2008), and ceramic tiles (Matteucci et al.
2002); as flux in metallurgical processes (Mostaghel and
Samuelsson 2010), foam glass (Chen et al. 2009),
footpath/pavement base material (Arulrajah et al. 2013;
Imteaz et al. 2012), road building material (Disfani et al.
2011b; Disfani et al. 2012), and adsorbent (Pant 2009);
and for decorative purposes (Nnorom et al. 2011), and;

3. Land filling.

Various colorless glass, such as soda lime, borosilicate,
vitreous silica, etc. (McLellan and Shand 1984; Shi and
Zheng 2007), are broadly nonhazardous, with respect to met-
al, and can be managed by any of the above three techniques.
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Fluorescent light (contains hazardous mercury) is made up of
various materials with 20–59 wt% of glass, which varies from
type (i.e., compact fluorescent to fluorescent lamp), design,
and capacity of the lamp. An 11 W capacity fluorescent lamp
contains 46 and 14W compact fluorescent lamp has 65 g glass
(Welz et al. 2011). Many other glasses like colored, light-
emitting diode, and cathode ray tube (CRT) also contains
heavy metals (Cheng et al. 2007; Lim et al. 2013; Romero
et al. 2013).

Due to the limitation in proper management system, nearly
78 % of resultant waste is dumped in a municipal landfill
(Nnorom et al. 2011). A recent study economically validated
closed-loop recycling, pyrometallurgy, and hydrometallurgy
techniques (110–450$/t) with landfill options (45$/t) (Xu
et al. 2013). So there is a continuous requirement towards an
appropriate management option to extend the applications of
these techniques. The current review discusses the issues
related to quantity and associated risks from pollutants present
in hazardous glass (HG) and proposes a plan for its
management.

Heavy metal pollutant in glass

Different heavy metal compounds are mixed in the glass for
imparting colors and specific applications (Table 1). Iron, in
its trivalent form, in combination with barium oxide, gives a
reddish brown color to the glass matrix; in its divalent form,
with chromium, produces a deep green color; and with sulfur,
it gives a dark amber color. Manganese imparts a purple and a
weak yellow or brown color in its trivalent and divalent stages,
respectively, and provides stability and strength to the glass
object. Chromium(VI) imparts a dark green color, and on
excess it gives a black color. It is one of the most powerful
coloring and corrosion resistance metals in the glass-making

industry. Copper imparts turquoise blue tones to the glass and
improves its strength. Cobalt with potash produces a rich blue
color and green with iodine. Uranium produces a yellow color
and is used in making fluorescent glasses, while with lead it
gives a deep red color.

The glass of a fluorescent lamp is coated with phosphor
powder containing mercury vapor from the inside. Mercury is
added to the lamp in the form of solid, liquid, or amalgam
(Parsons 2006). It emits ultraviolet light (Fig. 1) upon excita-
tion by electric current which fluoresces phosphor; the resul-
tant gives an emission of visible light (Hildenbrand and
Denissen 2000; Nance et al. 2012). Elemental mercury
(Hg0) during lamp operation is oxidized and adsorbed onto
the glass, phosphor powder, and metal component of the lamp
(Aucott et al. 2003; Jang et al. 2005; Nance et al. 2012; Hu and
Cheng 2012) and makes them polluted. The amount of mer-
cury in fluorescent lamp varies according to lamp type, watt-
age, brand, andmanufacturer (Stahler et al. 2008; Culver 2008;
Newmoa 2008). Fluorescent lamps consist of 0.7–115 mg of
mercury per lamp (Jang et al. 2005; Johnson et al. 2008).
Mercury that is present in different lamps can also vary in
different countries because of technology and associated envi-
ronmental legislations. According to the United Nations
Environment Program (UNEP), the mercury used in fluores-
cent tube lights in the European Union was 15 mg/lamp in
1997 which gets reduced to 10mg/lamp in 2002. Russia, USA,
Canada, and India used 15–45, 10–20, 23–46, and 5–60 mg/
lamp in fluorescent tube lights (double end), respectively. In
compact fluorescent lamp, mercury content varies accordingly
such as 5 mg/lamp in the European Union, 10 mg/lamp in
Canada, 12–30 mg/lamp in Russia, and 3–12 mg/lamp in
India. High-intensity discharge lamps have more mercury con-
tent as compared to fluorescent lamps (Hu et al. 2012).

Mercury is hazardous to both infants as well as adults
(Fig. 2). It affects neural development in unborn and growing

Table 1 Heavy metals and their
effect towards glass matrix Metal Color imparted Application Reference

Fe Reddish with BaO (Fe(III) + BaO) Stability Issitt (2005), Romero et al. (2002)
Deep green with Cr (Fe(II) + Cr)

Dark amber with S (Fe + S)

Mn Mn (III)—purple Stability and strength Issitt (2005), Durga and Veeraiah
(2003), Srinivasarao and
Veeraiah (2001)

Mn (II)—weak yellow or brown

Cr Dark green in low concentration
and black in excess

Corrosion resistance Issitt (2005), Li et al. (2008)

Cu Turquoise blue tones Strength Issitt (2005), Podgorkova and
Melnikov (1976)

Co Deep blue with K2CO3 Enhances thermal
property

Issitt (2005)
Shades of pink with B2O3:SiO2

Green with iodine

U Yellow Fluorescence property Issitt (2005), Brenni (2007)
Deep red with lead
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children (Johnson et al. 2008; Clarkson 1993; Wang et al.
2011a) and may cause problems to aquatic and terrestrial
ecosystems both in organic (methyl mercury) and inorganic
(elemental mercury and mercury vapor) forms (Boening
2000; Tchounwou et al. 2003). Inorganic mercury is methyl-
ated in aquatic ecosystem and thus being accumulated to a
high degree in aquatic food chains resulting in the highest
concentration of mercury in marine fish and mammals
(Clarkson 1993; Tchounwou et al. 2003; Sams 2007). It can
affect the brain, the central nervous system, cause tremor,
depression, and behavioral disturbances (Langford and
Ferner 1999; Gupta 2007; Tsydenova and Bengtsson 2011;
Pant et al. 2012).

Lead (in the form of PbO) is widely used in CRT glass due
to its specific property to protect harmful exposure of X-rays
generated from electron gun inside the tube (USEPA 1999;
Musson et al. 2000). Lead content in CRTmonitor varies from
black and white towards colored, older towards newer, size,
etc. Black and white and color funnel CRTconsists of 2.8–4.4
and 19–23 % PbO, respectively, in terms of net oxide content
(Mear et al. 2006). In black and white CRTs, lead is present in
the glass part of the panel, funnel, and neck; in colored CRTs,
it is present only in the funnel and neck (Corcoran 2001;
Andreola et al. 2005a; Mear et al. 2006). The panel, funnel,
and neck are joined together with a solder glass called frit

which is highly leaded (Monitor 2001). Older CRT monitor
contains 2–3 kg lead whereas this amount is decreased to 1 kg
in the more recent one (Tsydenova and Bengtsson, 2011).
Lead content may also vary according to the size of the
television (TV) screen such as 13, 17, 27, and 32 in. contains
0.5, 0.7, 1.8, and 2.9 kg of lead, respectively (Karagiannidis
et al. 2005).

The oxide composition in colored CRT glass consist of
about 64 % SiO2, 9 % SrO, 8 % Na2O, 8 % K2O, 3 % PbO,
3 % CaO, 2 % BaO, 1 % Al2O3, and 2 % of other oxides such
as Sb2O3, As2O3, TiO2, Li2O, ZnO, MgO, Fe2O3, CeO2, and
ZrO2 (Brain 1990). The chemical composition of oxides pres-
ent in CRT glass are classified into three groups: (1) network
formers, responsible to form the glassy structure such as SiO2

and B2O3; (2) network modifiers, terminator for glassy net-
work by requiring fewer oxygen to balance the valency such
as CaO, MgO, Na2O, and K2O; and (3) network intermedi-
ates, modify the glass network for its specific application as
Al2O3 and PbO (Mear et al. 2006, 2007).

Humans can be exposed to lead from air and food in
roughly equal proportions (Jarup 2003). Children particularly
are very susceptible to lead exposure due to high gastrointes-
tinal (GI) uptake and the permeable blood–brain barrier
(INSA 2011). Almost 20–30 % lead in adults and 50 % in
children is absorbed through the GI track. Lead can cross
blood–brain barrier as well as placental barrier (http://www.
atsdr.cdc.gov/toxfaq.html). Pregnant women and young
children having iron deficiency (anemia) are more susceptible
to lead toxicity (Flora et al. 2006). Exposure to lead can cause
intellectual impairment in children and damage either ner-
vous, blood, or reproductive systems in adults (Poon 2008;
Barbosa et al. 2005; Chen et al. 2011). Recent data indicates
that there may be neurotoxic effects of lead at lower levels of
exposure (Jarup 2003). The toxic effects of lead includes
anemia, kidney damage, hypertension, cardiac disease, im-
mune system suppression (antibody inhibition), and neurolog-
ical damage (Quaterman 1986) with skin damage, headache,
nausea, gastric, and duodenal ulcers (Monika 2010).

Quantification and risk assessment of pollutant in HG

Environmental pollution caused by mercury is a serious prob-
lem around the globe. Elemental mercury can be retained in
atmosphere between 6 to 24 months before redeposition on
the earth’s surface, it can be transported to over tens of
thousands of kilometers (Schroeder and Munthe 1998;
Dastoor and Larocque 2004; Carpi 1997). Fluorescent glass
waste management requires awareness from consumer to
manufacturer level so that they do not break or mix this waste
with municipal trash bin and hand them over to authorized
recycling unit. According to a survey conducted by Raposo
and Roeser (2001) in Minas Gerais, Brazil, fluorescent lamps

Mercury toxicity

Adults Infants

Symptoms:

•memory loss
•behavioral changes
•visual field  constriction
• tremor
•headache
• loss of fine motor control 
• hair loss

Symptoms:

• mental retardation
•blindness and deafness
• seizures
• cerebral palsy
• swallowing, sucking and  
speech disturbances 
• muscle rigidity

Fig. 2 Mercury toxicity in human adults and infants
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Fig. 1 Mechanism involved in lightening of a fluorescent lamp
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are disposed: (1) straight into garbage bins from public
(41 %), hospital (80 %), commercial (100 %), and industrial
sources (32 %); (2) recycling by public (51 %) and industrial
sources (56 %); and (3) use of other disposal methods includ-
ing private landfills, old and out of use wells, destroyed and
buried in the ground, incinerated with other hazardous mate-
rials, dropped in junk yards, burned on corporate dumping
grounds, and given away to service companies that replace
burned out lamps under contract by public (8 %), hospital
(20 %), and industrial sources (12 %).

Table 2 represents the worldwide production and associat-
ed waste data of fluorescent devices in terms of real and
projected data. Worldwide production of compact fluorescent
lamps (CFL) in the year 2001 was 820,000,000 pieces (CPCB
2008). China is the world’s largest CFL manufacturer; in the
year 2009, it produced over 3,650,000,000 pieces of CFL
bulbs out of which 80 % were exported (Chen 2010; Hu and
Cheng 2012). The average life span of CFL is usually 8,000 h
(Welz et al. 2011; Duff 2012), i.e., approximately 1 year.
Straight-line equation from year-wise sales (2001–2006;
Fig. 3) gives the future sale data of CFL in comparison with
its lifespan that provides the resultant future waste data (Pant
2013a; CPCB 2008).

Technological advancement has been continuously replac-
ing CRT with more improved versions like liquid crystal
display (LCD) and plasma display panel thus generating enor-
mous amount of waste CRT (Chen et al. 2009). In 2002, 83,
300,000 of CRT was produced worldwide (Socolof et al.
2005). The amount of CRT glass generated in Asia will
increase with a factor of 2 and will climb up from 800 to 1,
500 metric tons by 2020 (Gregory et al. 2009). China is at the
forefront of CRT production and covers about 90 % of the
global CRT demand (Widmer et al. 2005; He et al. 2006).

International business management estimated that in 2008,
about 294,000,000 CRTs were discarded in the USA
(Mizuki et al. 1997; Mueller et al. 2012). Asian countries like
Japan generated 8,896,000 TVs in 2001, out of which 3,080,
000were taken into recycling facilities and the rest, which is 4,
270,000 were exported to other countries (Tasaki et al. 2004).
Taiwan generated 1,030,000 units of TV in 2002 (Hsu and
Kuo 2005); Korea generated more than 8,000,000 units of TV
waste in 2004–2005 out of which less than 3,000,000 units
were recycled (Lee et al. 2007). In the USA, approximately
20,000,000 TVs become obsolete each year (Jefferies 2006).
Year-wise production of CRT unit (leaded panel, nonleaded
panel, and funnel glass) in the USA is represented in Fig. 4
(Monchamp et al. 2001). This figure shows data from the year
1990 to 2000:

1. There was a continuous increase in CRT glass production
from183,565 to 530,904 tons.

2. The amount of leaded panel glass increased up to 1997; then
from 1998 to 2000, its production is continuously declined.

3. No-lead panel glass production increases rapidly from 30,
137 to 256,358 tons.

4. The amount of funnel glass production increased from 78,
967 to 183,906 tons.

Only few developed countries have effective management
program for CRT waste while large quantities are transferred
to the developing countries like China for its management
(Chen et al. 2009). These countries are deficient in recycling
infrastructures and waste is processed in backyard or small
workshops using manual disassembly and/or open burning.
Such crude recycling techniques creates environmental pollu-
tion by affecting the air, soil, and water bodies (Nnorom et al.
2011).

Pollutant management

Mercury-containing glass waste (MCGW) can bemanaged by
dry crushing and heating technology in a fluidized bed reactor.
Countries have their own practices for the treatment, collec-
tion, and disposal of spent fluorescent lamps. Developed
countries like the European Union and the USA have proper
legal back up for the safe disposal of mercury-contaminated
used lamps. The United States Environmental Protection
Agency recommends that fluorescent lamps should be segre-
gated from general waste for recycling or safe disposal
(USEPA 1998). The European Union has developed the
Waste Electrical and Electronic Equipment and Restriction
of Hazardous Substances directives that producers should
setup collection system for their household electronic waste.
In the USA and Sweden, generator has to hand over the used

Table 2 Worldwide production
of CFL (in million units)
(CPCB 2008)

a Based on estimation

Year World
production

Projected
waste

2001 820 –

2002 880 820

2003 1,144 880

2004 1,500 1,144

2005 1,930 1,500

2006 2,650 1,930

2007 4,200 2,650

2008 4,900 4,200

2009 6,000a 4,900

2010 6,700a 6,000

2011 7,300a 6,700

2012 8,100a 7,300

2013 8,600a 8,100

2014 9,300a 8,600

2015 10,100a 9,300
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lamps to authorized recyclers (Luther 2008); in Germany, the
used fluorescent lamps are being collected at various collec-
tion centers (following the Recovery and Disposal Act for
recycling). Russia, China, and Japan follow the regulations of
Federal Law-Waste of Production and Consumption, Law of
Environmental Protection, and Law for Promotion of
Effective Utilization of Resources, respectively (CPCB 2008).

Recycling of waste fluorescent lamps may include the
following steps:

1. Feeding of used lamps in a recycling unit and pulverizing
it.

2. Sieving/separation of glass, metal, phosphor powder, and
mercury vapors.

3. Distillation to recover mercury from phosphor powder.

Other techniques like production of glass ceramics as valu-
able recycled products are also in practice (Yun et al. 2002). A
recent research proposed a low-cost process to remove phos-
phor powder attached to the glass and removal of mercury by
extraction (Rey-Raap and Gallardo 2013).

Lead-containing glass waste (LCGW) can be managed by
various strategy involving reusing, recycling, and land filling
(Zhang et al. 2000; Nnorom et al. 2007; ICER 2004; Smith et al.

1996; Andreola et al. 2005a). Reusing involves the replacement
of previously used electronic gun from the waste CRT to man-
ufacture local brand TVs and screens for video games
(Ahluwalia and Nema 2006; Nnorom et al. 2011). Also, the
reuse of secondhand TVs in developing countries has been
reported as Japan in 2008 exported secondhand TVs to the
Philippines (Yoshida and Atsushi 2010). Recycling is another
way to manage CRT glasses into various value-added products
like flux in metallurgical processes (lead and copper smelting;
Mostaghel and Samuelsson 2010; Weitzman 2003; ICF
Incorporated Fairfax 1999; Andreola et al. 2008), glass ceramics
(Andreola et al. 2005b; Bernardo et al. 2006), glass matrix
composites (Bernardo et al. 2003), glass beads for reflective
elements and shot peening (Balcar and Dunkirk 1997), cement,
clay brick, tile mixture, and glass wool (Lairaksa et al. 2013; Seo
et al. 2011; Chen et al. 2002; Dondi et al. 2009; Luz and Ribeiro
2007); aggregate and mortars in concrete (Romero et al. 2013;
Maschio et al. 2013); biopolymer-modified concrete (Kim et al.
2005), foam glass (Chen et al. 2009; Bernardo and Albertini
2006; Bernardo et al. 2005), fiber glass highway-reflective
products (Dillon 1998), adsorbent (Pant and Singh 2013); and
for decorative purposes such as tiles, glass, and lightening
products (Nnorom et al. 2011). Smelting, a recycling technique
is also used to separate toxic lead from the waste CRT glass
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(Chatterjee and Kumar 2009). For recycling of CRT, the USA
has developed two techniques (Fig. 5; Menad 1999): (1) closed-
loop recycling (glass to glass recycling) and (2) open-loop
recycling (glass to lead recycling). In closed-loop recycling,
whole recovered glass is grounded into cullets and used for the
production of new CRT glass; in open-loop recycling, the glass
is used for the production of secondary materials (Siikamaki
et al. 2002; ICER 2004). Geskin et al. (2002) described the
development of recycling technology (water jet technologies)
for the efficient recovery of LCGW. This recycling technique
involves separation of CRTat the frit line or just below it in order
to achieve both high- and low-lead cullet compositions. Land
filling methods are potentially unacceptable as it may cause
heavy metal pollution which results in contamination of ground
water (Noon et al. 2011; Poon 2008). Methods like reduction
melting process (Okada and Yonezawa 2013), mechanochemi-
cal sulfidization (Yuan et al. 2013a), and mechanical activation
as pretreatment followed by nitric acid leaching (Yuan et al.
2013b) are also proposed recently by some researchers to re-
cover Pb from funnel glass of CRT.

The possible remediation techniques to manage hazardous
pollutant from glass waste are broadly classified as (Fig. 6):

1. Chemical remediation involving stabilization/solidification
and immobilization

2. Biological remediation involving microremediation,
phytoremediation, and animal remediation;

3. Thermal desorption
4. Nanotechnology
5. Hybrid technique

Chemical remediation

Chemical remediation technique involves the use of various
chemicals for the removal of toxic and hazardous substances
from environment. It may be done by the use of acid, base,

chelating agents, and inorganic compounds by leaching and/
or precipitation.

Remediation of MCGW

Table 3 represents the list of various chemicals used for Hg
remediation from waste. It is found that for mercury remedi-
ation, EDTA and activated carbon have very extensive re-
search level. Perusal of this table reveals that:

1. Acids like HF and aqua regia, nitric and perchloric acid
form soluble compounds with mercury for its removal.

2. Mercury can be precipitated as Hg(OH)2 by using NaOH
or at higher pH.

3. Chelating agent increases the concentration and mobility
of certain metal atom using coordination (Wenzel et al.
2003). Some biodegradable ligands like diethylene
triamine penta-acetate (DTPA), nitrilotriacetic acid
(NTA), along with oxalate and citrate have also been used
as chelating agents for the extraction of mercury.

4. Various inorganic compounds as KI/I can also be used as
leaching agent.

5. Sulfide can be used to remediate Hg by the formation of
less toxic HgS (Piao and Bishop 2006; Bower et al. 2008).

6. Various adsorbents like activated carbon, coal and coal fly
ash, bamboo charcoal modified with KI , powdered sulfur
polymer cement and sulfide, zeolites, sulfur-impregnated
activated carbonwith zeolites, and rice husk ash can remove
mercury from its aqueous solution as well as in vapor form.

For the soils which have high elemental mercury content,
methods such as stabilization/solidification and immobilization
are suitable remediation options (Wang et al. 2012). It involves
chemical reactions between the stabilizing agent and the con-
taminants to reduce Hg mobility. Powder-activated carbon with
cement (Zhang and Bishop 2002) and thiol-functionalized

Closed 
loop 

recycling

Open 
loop 

recycling 

Recycling
of

LCGWCullets

Recovered LCGW

New CRT glass

Flux

Ceramics

Beads

Clay and Cement brick 

Glass wool

Decoration
Highway reflectorFoam glass

Fig. 5 Open- and closed-loop
recycling of LCGW
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zeolite (Zhang and Bishop 2002; Zhang et al. 2009) can be used
to stabilize mercury.

Chemical remediation technique is primarily applied if the
target metal is in the ionic form (Dermont et al. 2008a, b).

MCGW/LCGW

Chemical

Biological

Hybrid

Phytoremediation

Microremediation

Phytoextraction

Phytostabilization

Animal remediation

Natural Chemically assisted

Inorganic
compounds

Adsorbent
Acid 

treatment

Alkali 
treatment Ligands

Nanotechnology

Phytovolatilization
(For MCGW only)

Thermal desorption
(For MCGW only)

Rhizofilteration
(For LCGW only)

Fig. 6 Management techniques
for hazardous metal management
from LCGWand MCGW

Table 3 Chemical remediation of MCGW

S. no. Technique Mode of action Research level References

1 Acid treatment

(a) HF Leaching Less extensive Sladek and Gustin (2003)

(b) Aqua regia Leaching Less extensive Sladek and Gustin (2003)

(c) Nitric acid and perchloric acid Leaching Less extensive Harikumar et al. (2011)

2 Alkali treatment

(a) NaOH Leaching/precipitation Less extensive Anderson and Twidwell (2008)

(b) Hypochlorite Leaching Extensive Pedroso et al. (1994)

3 Ligands (chelating agents)

(a) EDTA Leaching Very extensive Peters (1999), Cheikh et al. (2010),
Hong et al. (2000)

(b) NTA Leaching Less extensive Elliott and Shastri (1999), Hong et al. (2000)

(c) DTPA Leaching Less extensive Paez-Hernandez et al. (2005), Hong et al. (2002)

(d) Citrate and oxalate Leaching Less extensive Peters (1999)

4 Involving inorganic compounds

(a) KI/I Leaching Extensive Klasson et al. (1998)

(b) Sulfide Lewis base Extensive Fuhrmann et al. (2002), Piao and Bishop (2006)

5 Adsorbents

(a) Activated carbon Adsorbent Very extensive Inbaraj and Sulochana (2006), Skodrasa
et al. (2007), Hafshejani et al. (2012),
Oubagaranadin et al. (2007), Ghorishi and
Gullett (1998), Yardim et al. (2003),
Coolidge (1927), Shabudeen et al. (2013)

(b) Coal and coal fly ash Adsorbent Extensive Kannan et al. (2010)

(c) Bamboo charcoal modified with KI Adsorbent Less extensive Tan et al. (2012)

(d) Zeolites Adsorbent Less extensive Barrer and Whiteman (1967)

(e) Sulfur-impregnated activated carbon with
zeolites

Adsorbent Less extensive Steijns et al. (1976), Otani et al. (1998),
Gomez-Serrano et al. (1998)

(f) Powdered sulfur polymer cement and sulfide Absorbent Less extensive Fuhrmann et al. (2002)

(g) Rice husk ash Adsorbent Extensive Tiwari et al. (1995), Feng et al. (2004)
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Sierra et al. (2011) investigated the feasibility of physico-
chemical procedures by involving physical separation follow-
ed by chemical process.

Remediation of LCGW

Table 4 represents the list of various chemicals used for lead
removal from waste. EDTA is widely used for Pb removal of
the waste with very extensive research level. A perusal of this
table reveals that:

1. Acids like HCl, HNO3 alone/or with H2SO4, and acetic
acid form soluble compounds with lead for its removal.

2. Extract lead as lead hydroxide by NaOH.
3. Synthetic chelators like DTPA, hydroxylethyl

ethylenediamine-triacetic acid (HEDTA), propylene

diamine tetraacetic acid, ethyleneglycol-bis (2-
aminoethylether) tetraacetic acid and biodegradable syn-
thetic chelating agents, such as ethylenediaminedisuccinic
acid (EDDS), citric acid and NTA, can also be used for the
removal of lead from LCGW.

4. Pyrolusite, calcite, kaolinitic clay, kaolinite with alu-
mina, zeolites, glass, and biosorbents like rice husk
ash, Syzygium cumini L., and Coir (fibers from
Coco nucifera ) can act as adsorbents for Pb
removal.

Biological remediation

Bioremediation technique involves the use of living organ-
isms (microbe, plant, and animal) to remove pollutants from
the environment.

Table 4 Chemical remediation of LCGW

S. no. Technique Mode of action Research level References

1 Acid treatment

(a) H2SO4 and HNO3 Leaching Extensive Nnorom and Osibanjo (2009), Nnorom et al. (2010)

(b) HNO3 Leaching Extensive Strzalkowska et al. (2012), Yuan et al. (2013a, b)

(c) HCl Leaching Extensive Nagib and Inoue (2000), Svehla (2004)

(d) Acetic acid Leaching Extensive Nagib and Inoue (2000), Rybarikova et al. (2001)

2 Alkali treatment

(a) NaOH Leaching Less extensive Nagib and Inoue (2000), Svehla (2004)

3 Ligands (chelating agents)

(a) EDTA Leaching Very extensive Peters (1999), Cheikh et al. (2010), Hong et al.
(2000), Wu et al. (2010), Wenzel et al. (2003),
Niinae et al. (2008)

(b) DTPA Leaching Less extensive Elliott and Shastri (1999), Hong et al. (2002)

(c) PDTA Leaching Less extensive Hong et al. (2000), Kocialkowski et al. (1999)

(d) HEDTA Leaching Less extensive Hong et al. (2000), Kocialkowski et al. (1999)

(e) EGTA Leaching Less extensive Hong et al. (2000), Kocialkowski et al. (1999)

(f) NTA Leaching Less extensive Elliott and Shastri (1999), Hong et al. (2000)

(g) EDDS Leaching Less extensive Nortemann (2005)

(h) Citrate and oxalate Leaching Less extensive Peters (1999), Elliott and Shastri (1999)

4 Adsorbents

(a) Pyrolusite (MnO2 ore) Adsorbent Less extensive Ajmal et al. (1995)

(b) Calcite (CaCO3 mineral) Adsorbent Less extensive Reeder (1996)

(c) Kaolinitic clay Adsorbent Less extensive Orumwense (1996)

(d) Kaolinite and alumina Adsorbent Less extensive Hall (1998)

(e) Zeolites Adsorbent Less extensive Yuan et al. (1999)

(f) Glass Adsorbent Less extensive Pant and Singh (2013)

(g) Rice husk ash Sorption Extensive Naiya et al. (2009), Feng et al. (2004),
Zahra (2012), Nhapi et al. (2011), Zulkali (2006)

(h) Syzygium cumini L. dried leaves Adsorbent Less extensive King et al. (2007), Zahra (2012)

(i) Coir Sorbent Less extensive Conrad and Hansen, 2007

(j) Bamboo charcoal (iron coated) Adsorbent Less extensive Zhang et al. (2013)
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Remediation of MCGW

Table 5 represents the various biological species involved in
the remediation of MCGW. Some biological species develop
resistance mechanism to overcome Hg toxicity by
biosorption, bioleaching, and enzyme-catalyzed transforma-
tion. At neutral pH, microbial cell surface carries a net nega-
tive charge due to the presence of carboxyl, amine, hydroxyl,
phosphate, and sulfhydryl groups able to adsorb positively
charged cationic metals. Alginate immobilized mercury-
tolerant Bacillus cereus cells (Sinha et al. 2012), magnetically
modified yeast cells (Yavuz et al. 2006), alga like Spirogyra
(Rezaee et al. 2006), and autotrophic microorganism like
Thiobacillus (Lloyd 2002) are some popular microbes used
for the biosorption of mercury. Enzyme-catalyzed transforma-
tion involves the reduction of the toxic mercuric ion (Ehrlich
1997) Hg(II) to less toxic Hg(0). In some studies, elemental
mercury is trapped by using mercury-resistant bacteria like
Pseudomonads (Wagner-dobler et al. 2000; Lloyd 2002),
Bacillus , Closteridium , and Escherichia spp. (Cunningham
and Ow 1996) as biofilm in bioreactor.

Phytoremediation is widely viewed as the ecologically re-
sponsible alternative to the currently practiced environmental
methods (Meagher 2000). Plants can manage mercury by the
following three ways:

1. Phytostabilization is the involvement of roots of a plant to
limit contaminant mobility and bioavailability in the soil
(www.itrcweb.org). It can occur either by the process of
complexation, sorption, precipitation, or metal valence
reduction (Henry 2000).

2. Phytoextraction is the use of plants to accumulate con-
taminants in their tissues. Phytoextaction can occur natu-
rally or by the addition of certain chemicals or chelating
agents to the plants.

3. Phytovolatilization is the process by which the plant
can uptake the volatile metal from the soil. This
technique is important for remediation of mercury
as some plants may naturally interact with mercury
present in the soil (Wang et al. 2012). Five plant
species Lepidium latifolium , Artemisia douglasiana ,
Caulanthus sp., Fragaria vesca , and Eucalyptus

Table 5 Bioremediation of
MCGW S. no. Biological species Role Reference

1 Microorganisms

(a) Bacillus cereus Immobilization Sinha et al. (2012)

(b) Pseudomonas species Biotransformation (Hg2+ to Hg0) Wagner-dobler et al. (2000)

(c) Klebsiella pneumoniae spp. Biosorption Al-Garni et al. (2010)

(d) Pseudomonas aeruginosa Biosorption Al-Garni et al. (2010)

(e) Saccharomyces cerevisiae
(brewer’s yeast)

Biosorption Yavuz et al. (2006)

(f) Chlorophyceae spp. (Selenastrum
minutum and Chlorella fusca )

Biotransformation (Hg2+ to Hg0) Kelly et al. (2007)

(g) Spirogyra spp. Biosorption Rezaee et al. (2006)

2 Plants

(a) Rumex induratus Phytoextraction Moreno-Jimenez et al. (2006)

(b) Marrubium vulgare Phytoextraction Moreno-Jimenez et al. (2006)

(c) Hordeum species Phytoextraction Rodriguez et al. (2003, 2007)

(d) Lens culinaris Phytoextraction Rodriguez et al. (2003, 2007)

(e) Cicer arietinum Phytoextraction Rodriguez et al. (2003, 2007)

(f) Lupinus polyphyllus Phytoextraction Rodriguez et al. (2003, 2007)

(g) Triticum aestivum Phytoextraction Rodriguez et al. (2003, 2007)

(h) Macleaya cordata L., Phytoextraction Wang et al. (2011a)

(i) Achillea millefolium L. Phytoextraction Wang et al. (2011a)

(j) Pteris vittata L . Phytoextraction Wang et al. (2011a)

(k) Silene vulgaris Phytovolatilization Perez-Sanz et al. (2012)

(l) Willow species (Salix viminalis
and Salix schwerinii)

Phytovolatilization Wang et al. (2005)

(m) Juncus maritimus Phytovolatilization Anjum et al. (2011), Marques
et al. (2011)

3 Animal

(a) Earthworm (Eisenia fetida) Chelation and complexation Sinha et al. (2008)
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globules were grown in the soil contaminated with
mercury (450–1,605 mg/kg). Among these plant
species, Caulanthus sp. showed a higher mercury
emission rate of 92.6 ng/m2/h in the daytime
(Leonard et al. 1998).

Insertion of bacterial genes to design the genetically
engineered plants for detoxifying mercury is another impor-
tant area of research (Raskin and Ensley 2000). An extensive-
ly resistance system based on clustered genes in an operon
(i.e., Mer), allows bacteria to detoxify Hg2+ into volatile
mercury by enzymatic reduction (Komura and Izaki 1971;
Summers 1986; Misra 1992; Silver 1996; Barkay et al.
2003). The organic methyl mercury (R-CH2Hg) is the most
toxic form than all the other forms of mercury. To detoxify this
toxin, transgenic plants (Arabidopsis and tobacco) are
engineered (Table 6) with bacterial genes merB (organomer-
curial lyase) and merA (mercuric ion reductase). In these
modified plants, merB catalyzes the protonolysis of the car-
bon–mercury bond with the generation of Hg2+ (100 times
less toxic than methylmercury) and subsequently MerA con-
verts Hg(II) to Hg(0), a less toxic, volatile element (Heaton
et al. 1998; Fox andWalsh 1982; Rugh et al. 1996; Bizily et al.
1999). By genetic engineering, other genes like MerC, MerF,
and MerT (membrane transporter genes) are also being intro-
duced in the plants which are involved in the process of
translocating Hg2+ into the plant cell (Bizily et al. 1999,
2000; Ruiz and Daniell 2009; Liebert et al. 2000; Morby
et al. 1995; Wilson et al. 2000; Fig. 7). Recently, two other
Mer genes, mer E and mer H (membrane bound), assisting in

the membrane transport of mercury has been reported in the
bacteria (Kiyono et al. 2009; Schue et al. 2009).

Animal remediation of mercury mainly involves the use of
earthworms to biotransform the metals to its less harmful form
(Ireland 1983, 1979). They generate and exude carboxylic
acid which acidify soil and activate heavy metals. Many
earthworm species such as Eisenia fetida , Eisenia tetraedra ,
Lumbricus terrestris , Lumbricus rubellus , and Allobophora
chlorotica have been used for this purpose (Sinha et al. 2008).
Relevant concentration of metal in tissues might prove earth-
worms as efficient bioindicator of soil contamination by heavy
metals (Suthar et al. 2008). Hartenstein et al. (1980) reported
that earthworms can bioaccumulate high concentration of
metals in their tissues without affecting their physiology.

Remediation of LCGW

Table 7 represents the various biological species involved in
the remediation of LCGW. Microbes like Acidithiobacillus
ferrooxidan , Acidithiobacillus thiooxidans , Aspergillus niger,
Penicillium bilaiae and other Penicillium sp., and Aspergillus
fumigates can efficiently leach out Pb from LCGW (Ehrlich
1997; Pant 2013b).

Phytoremediation techniques are found to be effective for
the removal of lead from various contaminants (Blaylock and
Huang 2000). In 2005, business associated with
phytoremediation received 214–370 million dollars in the
USA (Henry 2000). Brassicaceae plays a key role in
phytoremediation (Blaylock et al. 1997; Kumar et al. 1994);
in a report by Henry (2000), Brassica juncea is capable of

MerB

R−CH2 −Hg + + H +

R−CH3 + Hg 2+

R−CH3 + Hg 2+

Hg 0

MerA

Hg Hg

Phytovolatilization

MerC MerF MerT

Membrane transporter genes

Plant cell

Hg 2+

Hg 2+

Translocation

Hg 2+

Fig. 7 Involvement of bacterial
genes in phytoremediation of
mercury

Table 6 Genetically modified plants involved in phytovolatilization of mercury

MerA modified MerB modified MerC modified

Arabidopsis thaliana , Liriodendron tulipifera , Arachis hypogaea ,
Populus deltoides , Oryza sativa , Spartina alterniflora and Chlorophyta
(Huang et al. 2006; Czako et al. 2006; Rugh et al., 1996, 1998; Yang et al. 2003)

A. thaliana
(Bizily et al. 1999)

A. thaliana and Nicotiana tabacum
(Sasaki et al. 2006)
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removing 11,550 kg of lead per acre. Some other plant species
like Ageratum houstonianum Mill., Potamogeton oxyphyllus
Miq. and Petris vittata (Ha et al. 2011), Zea mays and
Ambrosia artemisiifilia (Huang and Cunningham 1996), and
Atriplex halimus L. (Manousaki and Kalogerakis 2009) can
also be used for this purpose. Perveen et al. (2011) studied Pb
phytoremediation in Jasminum saambac and found that the
plant accumulate Pb in the root, leaf, and stem. A recent study
on the comparison of lead phytoremediation by two plant
species Picea abies and Pinus sylvestris was performed.
The result showed that P. sylvestris is more suitable for Pb
phytoremediation than P. abies (Maddah and Moraghebi
2013). The phytoremediation potential of a Mediterranean
saltbush A. halimus L. was investigated for Pb removal from
saline lead-contaminated soils (Manousaki and Kalogerakis
2009). Rhizofiltration is a process to remove toxic substances
through the mass of roots from contaminated aqueous samples
by absorption, concentration, and precipitation of the metal
(Dushenkov et al. 1995). Various wetland species of plants
like Carex pendula (Yadav et al. 2011), Pistia stratiotes L.,
Salvinia auriculata AubL, Salvinia minima Baker, and Azolla

filiculoides Lam (Vesely et al. 2011) can efficiently remove
lead from contaminated waste water.

Cellular membranes of the plant are lipophilic in nature so
the Pb ion cannot move freely across it. For its movement, it
requires transporter proteins and chelating agents like
phytochelatin (PC), metallothioniens (MT), and organic acids
present within the plant. These transporter molecules consist
of extracellular binding domains (–COOH) to which Pb ion
binds and forms complexes. This facilitates the transfer of Pb
from extracellular to the intracellular environment of the plant
cell (Blaylock et al. 1997, 1999; Kagi 1991). A fraction of the
metal absorbed in the roots may either be sequestered in the
root vacuole or it may pass through xylem and gets
translocated from the root to the aerial parts (stem and leaves)
of the plants (Figs. 8 and 9).

Many marine algae such as Laminaria japonica and
Ecklonia radiate ; green seaweed such as Ulva , Cladophora
crispate , andCaulerpa lentillifera ; and freshwater green algal
species such as Chlamydomonas reinhardtii , Spirogyra spe-
cies , and Cladophora fascicularis can also be used for the
removal of lead through biosorption.

Table 7 Bioremediation of LCGW

S. no. Biological species Role Reference

1 Microorganisms

(a) Acidithiobacillus ferrooxidans Leaching Pacholewska (2004), Brandl et al. (2001),
Bayat and Sari (2010a, b), Baba et al. (2011),
Sari (2012)

(b) Acidithiobacillus thiooxidans Leaching Pacholewska (2004), Brandl et al. (2001)

2 Fungi

(a) A. niger Leaching Brandl et al. (2001), Mulligan and Kamali (2003)

(b) Penicillium bilaiae Leaching Arwidsson and Allard (2009), Wasay et al. (1998)

(c) Penicillium sp. Leaching Arwidsson and Allard (2009), Wasay et al. (1998),
Elliott and Shastri (1999)

(d) Aspergillus fumigates Leaching Ramasamy et al. (2011)

3 Algae

(a) Freshwater green algae species
(Chlamydomonas reinhardtii ,
Spirogyra species , Cladophora
fascicularis)

Biosorption Wehrheim and Wettern (1994),
Schmitt et al. (2001),
Tien (2002), Tuzun et al. (2005),
Gupta and Rastogi (2008), Deng et al. (2007)

(b) Marine algae species
(Laminaria japonica ,
Ecklonia radiate)

Biosorption Jalali et al. (2002), Luo et al. (2007),
Matheickal and Yu (1996),
Vilar et al. (2005), Holan and Volesky (1994),
Yu et al. (1999)

(c) Seaweeds (Ulva, Cladophora crispate ,
Caulerpa lentillifera)

Biosorption Suzuki et al. (2005), Ozer et al. (1994),
Pavasant et al. (2006)

3 Plants

(a) Indian mustard (Brassica juncea) Phytoextraction Kumar et al. (1995)

(b) Corn (Zea mays) Phytoextraction Huang and Cunningham (1996)

(c) Ragweed (Ambrosia artemisiifilia) Phytoextraction Huang and Cunningham (1996)

(d) Atriplex halimus L. Phytoextraction Manousaki and Kalogerakis (2009)

(e) Cyperus laevigatus Biosorbent Al-Qahtani (2012)

4(a) Earthworm Chelation, complexation and bioaccumulation Wu et al. (2010), Ireland (1979), Sinha et al. (2008)
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Earthworm species like as L. rubellus , E. fetida ,
Eudrilus eugeniae , and Perionyx excavates (Udovic
and Lestan 2007; Sinha et al. 2008; Pattnaik and
Reddy 2011) are also used for the remediation of lead
by the formation of Pb–metallothionein complex which
gets concentrated in chloragogen cells of the animal
(Ireland 1979).

Thermal remediation

Thermal treatment processes are commonly used to treat
mercury-contaminated pollutant by thermal desorption,
retorting/roasting (Washburn and Hill 2003; George et al.
1995; Kunkel et al. 2006), or distillation under controlled

temperature, pressure, and reactor conditions (Yamaguchi
et al. 2005). The resultant mercury vapor thus obtained is
condensed and collected (Morris et al. 1995). Table 8 repre-
sents mercury removal rate at different experimental sites.
This table reveals that thermal desorption of mercury is started
at 100 °C but for efficient removal, the temperature should be
>460 °C. Chang and Yen (2006) performed onsite pilot plant
thermal desorption experiments on mercury-contaminated soils
from alkali chlorine factory in Taipei at a cost of 834/m3 US
dollar.

Solar energy can also be used for thermal remediation of
mercury from contaminants (Navarro et al. 2009). Two ther-
mal desorption systems, constituting low-temperature solar
furnace (28–280 °C) and a middle-temperature solar furnace
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(20–502 °C) were designed for this purpose with removal rate
of 4.5–76 and 12.1–87 %, respectively.

Nanotechnology

The advantages of nanotechnology in the field of environ-
mental remediation are inevitable. Nanoparticles have unique
properties like their size (10–100 nm), larger surface area,
high surface reactivity, and adsorptivity along with photoelec-
tronic and photocatalytic properties which assists in analytical
detection and effective remediation of environmental pollut-
ants (Cabrejo and Phillips 2010; Stone et al. 2010; Wang et al.
2010; Nurmi et al. 2009; Liu et al. 2011). Many researchers
proved significance of nanoscale zerovalent iron particles for
remediation of various heavy metals including lead and mer-
cury, using redox reaction (Eqs. 1, 2, and 3), where metals are
reduced while nanoparticles get oxidized ( Zhang 2003;
Tratnyek and Johnson 2006; Karn et al. 2009). Iron sulfide
(FeS) nanoparticles can be used to immobilize mercury in the
mercury-contaminated sites (Wang et al. 2012; Fig. 10). As
the standard reduction potential (E0) of mercury (Hg2+/Hg) is
0.85 V which is more than zerovalent iron nanoparticles
(Fe2+/Fe=−0.44 V) so it can be reasonably reduced by
zerovalent iron nanoparticles.

Fe0→Fe2þ þ 2e− ð1Þ

Hg2þ þ Fe0→Fe2þ þ Hg0 ð2Þ

Pb2þ þ Fe0→Fe2þ þ Pb0 ð3Þ

According to Xiong et al. (2009), FeS nanoparticles (molar
ratio of 26.5 FeS to Hg) has the potential to reduce the
concentration of mercury up to 97 % in mercury-
contaminated substrates, while nanosorbent Fe3O4–silica
shows a removal efficiency of 97.34 and 90 % for Pb(II) and
Hg(II), respectively (Ambashta and Sillanpaa 2010).
Nanoscale formulations of S, Se, Cu, Ni, Zn, Ag, and WS2
were used for in situ capture of Hg vapor from broken CFLs. It
is found that unstabilized nanoselenium in two forms (dry
powder and impregnated cloth) gave the best result over the
other sorbents (Johnson et al. 2008). Functionalized
nanoporous ceramic sorbents (mercaptopropyl–trismethoxy
silane) having pore sizes (2–10 nm) and very high surface
areas (∼1,000 m2/g) are used for the removal of mercury from
aqueous waste streams (Mattigod et al. 2006). Citrate-coated

Table 8 Thermal removal of mercury from the contaminated sites

S. no. Source Temperature (°C) Removal parameter Reference

1 Soil from mining and metallurgical treatment of cinnabar 700 4 h, 99 % Massacci et al. (2000)

2 Contaminated soil from chlor-alkaline industry 460 20 min, 99 % Taube et al. (2008)

3 Leachetes of waste sludge from chlor-alkaline industry ≥400 Hg content below the
US EPA regulations

Busto et al. (2011)

4 Waste sludge from chlor-alkaline industry 800 1 h, Hg content below the
US EPA regulations

Busto et al. (2011)

5 Mercury-contaminated soil >550 99 % Huang et al. (2011)

6 Contaminated soil from Guizhou Organic Chemistry Company 270 2 h, 50–90 % Qu et al. (2004)

7 Contaminated soil from chemical production facility, Poland 100 10 days, 32 % Kucharski et al. (2005)

8 Contaminated soil from floodplain Soils of Lower
East Fork Poplar Creek

600 90 % Morris et al. (1995)

9 Used fluorescent lamp glass 600 100 % Wijesekara et al. (2011)
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Fig. 10 Nanotechnology for the
management of MCGW and
LCGW
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gold nanoparticles are used as scavengers for removal of
mercury (II) from polluted water (Ojea-Jimenez et al. 2012).
In a study by Parham et al. (2012), a method was proposed for
fast and efficient removal of mercury from water samples
using magnetic iron oxide nanoparticles modified with 2-
mercaptobenzothiazole.

The E0 of lead (Pb2+/Pb) is −0.13 V which is more than
zerovalent iron (Fe2+/Fe) −0.44 V hence it is possible to
reduce lead of LCGW by using zerovalent iron nanoparticles
(Fig. 10). Kaolinite-supported nanoscale zerovalent iron can
be used to remove high concentration of Pb2+ from aqueous
solution with 98 % removal efficiency (Zhang et al. 2010).
Resin-supported zero-valent iron nanoparticles (Ponder et al.
2000, 2001) rapidly separate and immobilize Pb(II) from
aqueous solution reducing Pb(II) to Pb(0). It was found that
the maximum adsorption capacity for Pb(II) ions was
36.0 mg/g by Fe3O4 nanoparticles, which was much higher
than that of reported low-cost adsorbents (Nassar 2010).

In addition to self-aggregation, nanoparticles could associ-
ate with suspended solids or sediment, thereby can
bioaccumulate and enter the food chain or drinking water
sources (Karn et al. 2009; Xu et al. 2012). Such uncertainties
complicate the assessment of the risks involved in technology
over environment and human health (Kotnala 2009).

Hybrid technique

Both chemical and biological remediation of heavy metals
have their own limitations as biological leaching (involving
microbes) is time taking and complete recovery of metal alone
is not possible; on the other hand, chemical leaching have its
own environmental consequences. These problems can be
overcome by a compatible combination of chemical with
biological techniques and these techniques are proposed to
be hybrid (Pant et al. 2012). Various chemicals such as EDTA,
sodium thiosulfate, thiosulfate, aqua regia, iodide and nitric
acid, hydrochloric acid, sodium hydroxide, and potassium

iodide have been tested for their ability to uptake and transport
mercury from plants (Wang et al. 2011b; Moreno et al. 2004,
2005a; Wallschlger et al. 1998; Wang and Greger 2006).
Some possible combinations of hybrid technique for mercury
removal are as follows:

1. Chemical leaching (HCl and FeCl3) and volatilization of
mercury by bacteria (Nakamura et al. 1999).

2. Addition of 1 mM KI to mercury-contaminated soil in-
creased the mercury concentration in Willow plant by a
factor of 5, 3, and 8 times in the leaves, branches, and
roots, respectively (Wang and Greger 2006).

3. Chemicals as sodium thiosulfate, ammonium thiocyanate,
potassium iodide, EDTA, NTA, dimercaptosuccinic acid,
mercaptopropionic acid, mercaptoethanol, thiourea, thio-
cyanate and hydrogen peroxide, ammonium thiosulfate,
and urease for chelating mercury have been used widely
to enhance the plant uptake of mercury (Meers et al. 2009;
Moreno et al. 2004, 2005a, b; Wang et al. 2011b, Ohki
et al. 2003). These chemicals increase the solubility of
mercury and enhance the plant uptake of mercury from
the soil (Table 9).

Table 10 represents various hybrid combination for Pb
removal with either chemical with microbial or plant combi-
nation. Chemical and microbial combinations involving the
use of EDTA (Wasay et al. 1998) with either Acidithiobacillus
ferrooxidans (Cheikh et al. 2010) or bacterial strain DSM
9103 (Satroutdinov et al. 2000). Many fungi (A. niger, P.
bilaiae , and other Penicillium sp.) secrets various organic
acids like citric, tartaric, and oxalic acids which can act as
chelating agents hence employed for the extraction of Pb
(Arwidsson and Allard 2009; Wasay et al. 1998; Elliott and
Shastri 1999). Oxalate along with ammonium citrate can be
used for the extraction of Pb (Wasay et al. 1998); the efficien-
cy of this process is reasonably enhanced by adding A. niger
or Penicillium species (Arwidsson and Allard 2009). Hybrid

Table 9 Hybrid technique for
remediation of MCGW Name of the plant Chemical added Mercury concentration in

plant (mg/kg)
Reference

Lepidium sativum EDTA and urease 20 % of Hg from soil Smolinska and
Cedzynska (2007)

Willow (Salix sp.) 0.05 M EDTA (40 %) and
citric acid (60 %)

42 % Hg from soil Henry (2000)

Willow 1 mM KI Leaves—5 times Wang and Greger
(2006)Branches—3 times

Roots—8 times

Bush bean
(Phaseolus
vulgaris)

Sodium thiosulfate Shoots—9.5 mg/kg Moreno et al. (2005b)
Roots—113 mg/kg

Indian mustard
(Brassica juncea)

Sodium thiosulfate Shoots—15.2 mg/kg Moreno et al. (2005b)
Roots—69 mg/kg

Environ Sci Pollut Res (2014) 21:2414–2436 2427



combination involving chemically assisted phytoextraction is
nowadays in practice for the removal and detoxification of Pb
from the contaminated sites (Ghosh and Singh 2005; Blaylock
and Huang 1999). In order to enhance the availability of Pb in
soil and translocation from root to shoot, chelating agents are
applied in small doses such as EDTA, DTPA, NTA, CDTA,
EDDS, and citric acid (Huang et al. 1997; Saifullah et al.
2009; Grcman et al. 2001, 2003; Puschenreiter et al. 2001;
Shen et al. 2002; Kos and Lestan 2003; Luo et al. 2006a, b;
Meers et al. 2004, 2005; Tandy et al. 2006). EDTA being the
most efficient chelator for Pb is used widely to solubilize Pb in
the soil (Salt et al. 1998; Marschner 1995; Vassil et al. 1998).
The order of effectiveness in increasing Pb desorption from
the soil was EDTA > HEDTA > DTPA > EDDHA
(ethylenediamine di(o -hyroxyphenylacetic acid) (Huang

et al. 1997). There was a twofold increase in the accumulation
of Pb by applying EDTA with acetic acid in Indian mustard
shoots as compared with the application of EDTA alone
(Blaylock et al. 1997). Plant waste adsorbents like rice husks,
spent grain, sugarcane bagasse, fruit wastes, and weeds can be
modified chemically by mineral and organic acids, bases,
oxidizing agents, and organic compound for the removal of
Pb from wastewater (Ngah and Hanafia 2008).

Conclusion

Management issues of heavy metal pollutant from HG are still
unimpaired and require special attention due to its hazardous
nature. This research proposes possible plans for the manage-
ment of hazardous glass waste (Fig. 11) by pollutant recovery
techniques followed by mechanical treatment. Pollutant re-
coveries are broadly chemical or biological techniques and
can be modified by thermal, nano, and/or hybrid combination.
Furthermore, the study has the following outcomes:

1. Mercury pollutants can be managed by dry crushing and
heating technology in a fluidized bed reactor, while
reduction melting process and mechanochemical
sulfidization technique are proposed to recover Pb from
funnel glass of CRT.

2. High elemental mercury content can remediate by
stabilization/solidification and immobilization involving
chemical reactions between the stabilizing agent and the
contaminants to reduce Hg mobility.

3. For mercury detoxification, transgenic plants
(Arabidopsis and tobacco) are engineered with bacterial
genes merB and merA. In these modified plants, merB

Hazardous Glass Waste

Pulverization

Hazardous metal removal
(Chemical, Biological, Thermal, 

Nanotechnology and Hybrid technique)

Material recovery

Glass ceramics, glass matrix 
composites, flux, cement, clay brick, glass 

beads, foam glass and decorative purposes

Fig. 11 Hazardous glass waste management

Table 10 Hybrid technique for the remediation of LCGW

S. no. Chemical Biological References

1 Chemical reagent + microbe

(a) EDTA Acidithiobacillus ferrooxidans Cheikh et al. (2010)

(b) EDTA Bacterial strain DSM 9103 Satroutdinov et al. (2000)

(c) Citrate Penicillium bilaiae, Penicillium sp. Wasay et al. (1998), Arwidsson and Allard (2009)

(d) Tartrate Penicillium sp., Aspergillus niger Arwidsson and Allard (2009)

(e) Oxalate + ammonium-citrate Aspergillus niger, Penicillium sp. Arwidsson and Allard (2009), Wasay et al. (1998)

(f) DTPA Candida albicans Hong et al. (2000)

2 Chemical reagent + plant

(a) EDTA + acetic acid Indian mustard (Brassica juncea L.) Blaylock et al. (1997)

(b) EDTA Indian mustard (Brassica juncea L.) Vassil et al. (1998), Kumar et al. (2011), Meers et al. (2009)

(c) EDTA Rainbow pink (Dianthus chinensis) Lai and Chen (2005, 2007),

(d) EDTA Vetiver grass Lai and Chen (2004)

(e) EDTA and EDDS Chinese cabbage Grcman et al. (2003)

(f) EDDS Sunflower Tandy et al. (2006)

(g) EDTA Sunflower (Helianthus annuus L.) Azhar et al. (2006)
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catalyzes the protonolysis of the carbon–mercury bond
with the generation of Hg2+ (100 times less toxic than
methyl mercury) and subsequently MerA converts
Hg(II) to Hg(0) a less toxic, volatile element.

4. Transporter proteins and chelating agents like PC, MT,
and organic acids present within the plant facilitates the
transfer of Pb from extracellular to the intracellular en-
vironment of the plant cell. These transporter molecules
consist of extracellular binding domains (–COOH) to
which Pb ion binds and form complexes.

5. In chemical remediation technique, the use of sodium
hypochlorite, EDTA, KI/I, coal and coal fly ash, and rice
fly ash are found to be more applicable.

6. Thermal treatment processes that are commonly used to
treat volatile metals like mercury from contaminated
wastes are thermal desorption, retorting/roasting, at a
cost of around $834/m3.

7. Solar furnace, constituting low temperature (28–280 °C)
and a middle temperature (20–502 °C) have mercury
removal capacity of 4.5–76 and 12.1–87 % respectively.

8. Nanoparticles efficiently remove heavy metals by im-
mobilization; for example, nanoscale formulations of S,
Se, Cu, Ni, Zn, Ag, and WS2 were used for in situ
capture of Hg vapor from broken CFLs, while
kaolinite-supported nanoscale zero-valent iron can be
used to remove high concentration of Pb2+ from aqueous
solution with 98 % removal efficiency.

9. Hybrid combination involves various compatible com-
bination techniques for better and safe removal of metal
pollutant from glass. These techniques are found to be
most promising both in terms of efficiency and environ-
mental issues. For example, there was a twofold increase
in the accumulation of Pb by applying EDTAwith acetic
acid in Indian mustard shoots as compared with the
application of EDTA alone.

10. Plant waste adsorbents like rice husks, spent grain, sug-
arcane bagasse, fruit wastes, and weeds can be modified
chemically by mineral and organic acids, bases, oxidiz-
ing agents, and organic compound for the removal of Pb
from wastewater.
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