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Abstract The main objective of this work was the develop-
ment of a new modelling tool for quantification of human
exposure to traffic-related air pollution within distinct micro-
environments by using a novel approach for trajectory analy-
sis of the individuals. For this purpose, mobile phones with
Global Positioning System technology have been used to
collect daily trajectories of the individuals with higher tempo-
ral resolution and a trajectory data mining, and geo-spatial
analysis algorithm was developed and implemented within a
Geographical Information System to obtain time–activity pat-
terns. These data were combined with air pollutant concentra-
tions estimated for several microenvironments. In addition to
outdoor, pollutant concentrations in distinct indoor microen-
vironments are characterised using a probabilistic approach.
An example of the application for PM2.5 is presented and
discussed. The results obtained for daily average individual
exposure correspond to a mean value of 10.6 and 6.0–
16.4 μg m−3 in terms of 5th–95th percentiles. Analysis of
the results shows that the use of point air quality measure-
ments for exposure assessment will not explain the intra- and
inter-variability of individuals’ exposure levels. The method-
ology developed and implemented in this work provides time-
sequence of the exposure events thus making possible associ-
ation of the exposure with the individual activities and delivers
main statistics on individual’s air pollution exposure with high
spatio-temporal resolution.

Keywords Exposure assessment . Urban air pollution .
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Introduction

Exposure to air pollution is estimated to cause 1.3 million
deaths worldwide/year in urban areas, and emissions from
road traffic account for a significant share of this burden
(WHO 2011). Therefore, an accurate assessment of human
exposure is crucial for a correct determination of the associa-
tion between the traffic-related air pollutants and the negative
health outcomes (Hertel et al. 2008).

Exposure estimates to atmospheric pollutants can address
individuals (personal exposure) or large population groups
(population exposure) and can be based on direct (exposure
monitoring) or indirect methods (exposure modelling) (Zou
et al. 2009). In practice, monitoring of personal exposure is
limited to studies with a small number of individuals because of
the high costs associated with the measurements. Similarly, air
quality time series provided by a monitoring network are
frequently used as a good individual exposure indicator. Nev-
ertheless, this estimate has been found to correlate poorly with
personal exposures (Kousa et al. 2002; Koistinen et al. 2001;
Oglesby et al. 2000) as it does not capture spatial heterogeneity
in exposure to air pollution, time spent indoors and human
mobility (Koistinen et al. 2001) thus leading to inaccuracies
and underestimation of the health effects of air pollution (Szpiro
et al. 2008; Peng and Bell 2010). In addition, the presence of
individuals in direct vicinity to the emission sources may result
in higher exposure concentrations than pollution levels regis-
tered at monitoring stations (Baklanov et al. 2007).

Consequently, exposure modelling technique arises as an
alternative approach able to address the spatial and temporal
variability of individual exposure concentrations and is rec-
ommended for exposure assessment (WHO 2002; Brunekreef
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and Holgate 2002; Brauer et al. 2002). Over the past 20 years,
several exposure modelling methods have been developed
with the aim of estimating exposure at the individual level.
The major purpose of these models is to characterise air
quality concentrations to be used as surrogate of personal
exposure to air pollution and assumes that subjects within a
demographic area (e.g. census units) are equally exposed to air
pollution. Thus, over the past decade, air quality models have
been integrated with geographic information system (GIS) in
an attempt to reflect individual exposure by combining air
pollutants concentration data with residence location (e.g.
Gauderman et al. 2007; Hoek et al. 2008). To overcome some
of these issues, several personal exposure models based on a
microenvironment approach, such as AirPex (Freijer et al.
1998), SHEDS-PM (Burke et al. 2001), HAPEM (Özkaynak
et al. 2008) and APEX (US Environmental Protection Agency
2009) are available. Thesemodels are designed to simulate the
distribution of personal exposure in several microenviron-
ments (e.g. outdoors, indoor-residential, public buildings,
and workplaces) (Burke et al. 2001), by combining the esti-
mated pollutant concentrations at every microenvironment
and the time spent at visited microenvironments based on
participant’s diary or time–activity measurement databases
(Kruize et al. 2003; Georgopoulos et al. 2005; Özkaynak
et al. 2008; US Environmental Protection Agency 2006;
Health Effects Institute 2010; Klepeis et al. 2001). However,
by using this time–activity location data, the information on
the actual “activity space” of individuals required for high-
resolution exposure modelling is rarely available (Health Ef-
fects Institute 2010) and individual air pollution exposure
context can be assumed as a series of independent microen-
vironment exposures (Ballesta et al. 2008).

Recently, there has been an increasing focus on using global
positioning system (GPS) technology to collect the individual
trajectory information to be used in combination with air pol-
lution levels to estimate personal air pollution exposure levels
in urban areas (Jensen 2006; Gerharz et al. 2009, 2013). How-
ever, such models are still strongly dependent on question-
naires’ information to derive individual activity profile, provid-
ing exposure estimates only if the individual resides in a mi-
croenvironment which is specified in the model (Gerharz et al.
2013) and generally only indoor and in-vehicle microenviron-
ments are identified, ignoring exposure during walking periods.

In this perspective, despite several efforts have been
expended on characterising the spatial and temporal distribu-
tions of air pollution, muchwork remains in understanding the
role of individual mobility in conditioning exposures in urban
areas. Therefore, what has risen from literature reviews is that
the time-sequence of exposure events is not preserved in
exposure assessment, and the information to evaluate possible
correlations in exposures to different pollutants because activ-
ities that are related in time are not conserved. The source–
receptor relationship, especially for “hot-spots” peak exposure

is still insufficiently addressed and the contribution of traffic-
related air pollution to the total exposure is not clear (Health
Effects Institute 2010; Wang et al. 2009). In addition, the
development of innovative models that reduce uncertainties
in exposure characterisation is required (Lioy 2010).

Recent findings highlight that the population mobility is
one of the factors that may affect significantly the exposure
(Nethery et al. 2008; Beckx et al. 2009; Dons et al. 2011;
Tchepel and Dias 2011). In this sense, the knowledge of where
individuals spend time is essential for assessment of human
exposure to air pollution and research on human behaviour or
activities is a crucial component of modern and future expo-
sure science (Lioy 2010). The predictability in human dynam-
ics by studying the mobility patterns of individuals using
mobile phones became an emerging field (Song et al. 2010),
and GPS technology presents as a promising tool by monitor-
ing real-time geographic positions.

In this perspective, the GPS-based exposure model to
traffic-related air pollution (ExPOSITION) is developed in
the present work for quantification of human exposure to
traffic-related air pollutants within distinct microenvironments
using air pollution modelling with high spatial–temporal res-
olution and a novel approach based on trajectory analysis of
individuals. Enhanced resources, such as GIS, GPS and data
mining techniques are considered by the model to analyse the
human behaviour and individual’s activities required for ex-
posure assessment. For this purpose, information on detailed
time–location data are collected for each individual at each
moment by GPS-equipped mobile phones, offering many
advantages over traditional time–location analysis, such as
high temporal resolution and minimum reporting burden for
participants (Rainham et al. 2010).

The GPS technology guarantees that there will be an in-
creasing availability of large amounts of data affecting indi-
vidual trajectories, at increasing localisation precision. How-
ever, significant uncertainties associated with the processing
and classifying of raw GPS data is one of challenging issue for
the exposure studies (Wu et al. 2010; Zheng and Zhou 2011).
Thus, a trajectory data mining and geo-spatial analysis algo-
rithm were developed and implemented within GIS to process
the trajectories obtained with GPS-equipped mobile phones to
automatically identify time–activity location in several micro-
environments, such as commuting, indoor, and outdoor loca-
tions. The time–activity patterns of each individual are finally
combined with information on pollutant concentrations that
the individuals experiences at different microenvironments.
For outdoor environment, atmospheric dispersion modelling
and different modelling tools may be used to provide this
external information on ambient concentrations for ExPOSI-
TIONmodel. Indoor concentrations are estimated considering
not only outdoor/indoor infiltration factor but also the addi-
tional contribution of indoor emissions sources. In addition, a
probabilistic approach are considered by the ExPOSITION
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model to characterise the variability of the microenvironmen-
tal parameters providing an additional knowledge on the
variation associated with microenvironmental concentrations
and its contribution to the individual exposure estimates. The
development of the ExPOSITION model is presented and
described.

Methodology—human exposure modelling

The ExPOSITIONmodel is developed to assess average short
(e.g. daily) and long-term (e.g. annual) inhalation exposures of
the individuals to traffic-related air pollutants over urban
spatial scale with high spatial–temporal resolution. For this
purpose, air pollution concentrations are estimated for differ-
ent microenvironments (described in “Microenvironmental
concentrations”) and combined with detailed time–activity
patterns obtained from data collected by mobile phones with
GPS technology (described in “Trajectory data mining” and
“Time–activity patterns”). The ExPOSITION modelling sys-
tem developed and applied in this study is schematically
presented in Fig. 1 and described in the following sections.

Personal exposure is characterised by ExPOSITIONmodel
in terms of time-weighted average exposure concentration
calculated from air pollutant concentration fields and time
spent by individuals in different microenvironments (Eq. 1).
It is important to highlight the distinction between air pollu-
tion “concentration” provided by dispersion models, and “ex-
posure concentration” defined as amount of chemicals that
comes into contact with the human body and take into account
not only pollutant concentration fields but also the location of
an individual and duration of the exposure. Thus, individual
exposure is calculated by ExPOSITION as following:

Ei ¼ 1

t2−t1

Z
t1

t2

C x; y; z; tð Þi dt ð1Þ

where (μg m−3) is the average exposure concentration for
person i , Ci(x ,y,z ,t ) (μg m−3) is the air pollutant concentra-
tion occurring at a particular point where the person i is
located during the time t and spatial coordinate (x , y, and z )
and t1 and t2 (hours) are the starting and ending times of the
exposure event.

Exposure estimates are provided in μg m−3 and can be
determined for each individual as hourly, daily or annual
average and resulting data can be exported for further analysis
(e.g. epidemiological analysis and health impact assessment).

Microenvironmental concentrations

Specific microenvironments are distinguished in the exposure
model including residence, other indoors, outdoors and in-

vehicle (Table 1). Two different approaches are considered to
characterise pollution levels in these microenvironments.
Thus, outdoor concentrations are estimated using atmospheric
dispersion modelling and different modelling tools may be
used to provide this external information for ExPOSITION as
will be discussed in “Emission and air quality modelling”. For
indoors and in-vehicle microenvironments a probabilistic
approach was implemented as an integrated part of ExPOSI-
TION algorithm. In this case, it is assumed that within
a microenvironment the pollutants are homogeneously dis-
tributed and microenvironmental concentration C (x ,y,z , t )
(μg m−3) considered in Eq. 1 is calculated using a linear
regression equation based on the outdoor/indoor infiltration
factor α j (dimensionless) and additional contribution of in-
door pollution sources expressed as βj (μg m−3):

C x; y; z; tð Þ ¼ β j þ α j � C x; y; z; tð Þambient ð2Þ

where C(x ,y,z ,t )ambient (μg m
−3) is the outdoor concentration

that occurring in the immediate vicinity to the microenviron-
ment j at time t and spatial coordinate(x ,y,z ).

Microenvironmental concentrations are estimated based on
a probabilistic approach considered by the model that attempts
to capture the variability in microenvironment parameters. In
this sense, to calculate microenvironmental concentrations for
each individual the ExPOSITIONmodel randomly assigns the
parameters β and α to each indoor location from empirical
distributions taking into account the average and standard
deviation obtained from literature review for each type of
microenvironments (Table 1).

A single value is selected from the probabilistic distribution
of each microenvironmental parameter α and β . These values

Fig. 1 Conceptual framework of the ExPOSITION modelling system
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are then used in the model to produce a single estimate of
microenvironmental concentration. This process is repeated
many times, with new values for each stochastic input param-
eter and probability distribution of exposure microenviron-
ments is obtained.

Trajectory data mining

Trajectories of the individuals are required as one of the main
inputs to the exposure modelling. The time–activity patterns
are determined by the model based on an innovative approach
developed for collection and analysis of data registered by
mobile phones with GPS technology and thus providing the
precise location and time spent at different microenvironments
during the daily trajectories of individuals required for the
exposure assessment.

Collection of time–location information using GPS tech-
nology provides continuous tracking of the individuals with
high data resolution in time and in space. However, to over-
come some of the significant uncertainties associated with the
processing and classifying of raw GPS, automatic processing
of GPS raw data using the trajectory data mining is imple-
mented in ExPOSITION model.

To identify important patterns, several levels of GPS
data processing are required (Fig. 2a). First, it is necessary
to “clean” the GPS raw data to eliminate invalid entries.
Subsequently, the places where the individual was stopped
for a certain time period are distinguished from moving
activities, like driving a vehicle. Finally, it is necessary to
discover which of these points belong to the same activity/
place. For this purpose, the data clustering process is im-
plemented to distinguish significant places based on the
analysis of spatial and temporal information of GPS points
(Fig. 2a).

Thus, “significant places” are considered as those locations
that play significant role in the activities of a person, carrying a
particular semantic meaning such as the living and working
places, the restaurant and shopping mall, etc., ignoring the
transition between these places. Additionally, a “movement

activity” is a composition of movements with a frequent
regularity of location change over time which can be aggre-
gated by the purpose of the trip of an individual.

A preliminary processing of GPS data is implemented as a
first step to “clean” the data and converts it into a standard
format in preparation for the clustering approach. For this
purpose, an error-checking algorithm was developed to re-
move invalid points. This algorithm considers a measurement
as valid, if the GPS receiver is able to see at least four satellites
and if the horizontal dilution of precision value is below 6
(Fig. 2b). Otherwise the measurement is considered invalid. In
addition, the algorithm evaluates incorrect entries of the travel
speed.

GPS datasets provide information on the locations in coor-
dinate form (e.g. latitude and longitude) but contains no
semantic meaning (Zhou et al. 2007a) like the address or
characteristics of location, i.e. type of microenvironments.
Therefore, it is necessary to extract and distinguish in the
GPS data the locations where the individual stopped for a
certain time period and these locations are designated as “stay
points”. A stay point represents a geographic location in
which the individual stays for a certain time period and in
addition to a raw GPS point carries a particular semantic
meaning.

The algorithm to extract stay points from GPS data is
iterative and it is based on searching for locations where the
user has spent a longer time period (Li et al. 2008). As
presented in Fig. 2b, the extraction of a stay point S from a
user’s GPS trajectory P={p1, p2, … , pK}, depends on two
scale parameters: a distance threshold (D threh) and a time
threshold (T threh). Thus, a single stay point S can be
characterised by a group of consecutive GPS points p i con-
taining latitude (p i.Lat), longitude (p i.Long) and time (p i.T):

S ¼ pif g; where m ≤ i ≤ n;
Distance pm; pið Þ≤Dthreh and
pn:T–pm:Tj j ≥ T threh

A pre-processing of the GPS data and detection of the stay
points is important to extract some important locations.

Table 1 Parameters used to de-
termine PM2.5 concentrations in
different microenvironments

Microenvironment β α Data source

Average Standard
deviation

Average Standard
deviation

Residence 5.75 3.91 0.41 0.06 Hoek et al. (2008)

Vehicle (no smoking) 33.0 7.2 0.26 0.14 Burke et al. (2001)
Office (no smoking) 3.6 1.3 0.18 0.06

School 6.8 1.4 0.60 0.09

Public access 9.0 3.6 0.74 0.18

Restaurant/bar 9.8 0.5 1.00 0.05
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However, the repetition of the same locations is not consid-
ered and each time that a location is discovered it is assumed
as a new location. To overcome this problem, a second level
analysis to group up different stay points with the same
semantic meaning is implemented using cluster analysis.

Clustering is a data mining technique focused on detecting
hidden groups, or clusters, among a set of objects (Bock
1996). In this study, to group the points belonging to the same
premises, and thus define the personally significant places, a
density-based clustering algorithm DJ-Cluster (Zhou et al.
2004, 2007a, b) was implemented. The DJ-Cluster algorithm
is selected and applied in this study, as it is less vulnerable to
noise and does not require the number of places as a param-
eter. However, the algorithm depends excessively on the den-
sity of the points and does not give importance to the time
spent in each site, i.e. duration, which will be relevant for the
exposure quantification.

In the clustering algorithm, the neighbourhoods within
distance Eps are analysed for each point. If at least a minimum
number (MinPts) of such neighbourhoods is found, the points
are either grouped as a new cluster or joined with an existing
cluster, and a significant place is created. Otherwise, the point
is labelled as a moving activity (e.g. being in vehicle micro-
environment) (Fig. 3). The following conditions define the
density-based neighbourhood of a point and density-joinable
relationships (Zhou et al. 2007a):

(a) Density-based neighbourhood of a point:
The density-based neighbourhood N of a point p ,

denoted byN(p ), is defined as:

N pð Þ ¼ q ∈Q distjf p; qð Þ≤Epsg ð3Þ

where Q is the set of all points, q is any point in the
sample, Eps is the radius of a circle around p to defines
the density. The following condition is also needs to be

satisfied for N (p ):

#N pð Þ≥MinPts ð4Þ

where MinPts is the minimum number of points required in
that circle.
(b) Density-joinable:

N (p ) is density-joinable to N(q ) denoted as J (N (p ),
N(q )), with respect to Eps and MinPts, if there is a point
such that both N (p ) and N(q ) contain it.

For the objectives of this study, the sites are identified
as personally significant places taking into account two
variables: density and duration. In this perspective, DJ-
Cluster algorithm was changed to implement additional
condition based on duration of stay, as presented in
Fig. 3. Thus, N (p ) defined in Eq. 3 needs to satisfy
simultaneously two conditions:

#N pð Þ≥MinPts ∧N pð Þ⋅duration≥MinDrt ð5Þ

where MinDrt is a parameter that represents the mini-
mum duration at a location. Thus, p can be considered as
a cluster or merged with an existent cluster in case that
has a minimum number of points required MinPts and a
minimum duration MinDrt.

These data are further analysed within GIS environ-
ment for classification of microenvironments and to ob-
tain information on time–activity patterns.

Time–activity patterns

Location of the individuals in space and in time is required to
estimate individual exposure in a combination with pollutants
concentration fields provided by air pollution dispersionmodel.

a)

b)

Fig. 2 a Schematic representation of the trajectory data mining analysis; b GPS raw data, GPS “clean” trajectory and stay points detection
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To obtain information on time–activity patterns the
significant places and movement activities extracted from
the trajectory are further analysed within GIS environment
to cross this information with other geo-spatial informa-
tion. For this purpose, geoprocessing of GPS data is
performed using ModelBuilder module provided by
ArcGis 10. ModelBuilder can be thought of as a visual
programming language for building workflows in which it
is possible to create, edit, and manage geospatial analysis
(Allen 2011).

The geoprocessing of GPS data is accomplished by con-
sidering analytical functions and several predefined criteria
based on speed, time and spatial location register for the
trajectory points to classify the significant places and move-
ment activities to three activity categories: indoor, outdoor and
in vehicle travel. The detailed GIS-maps are used to identify
and to classify the microenvironments.

An indoor activity is distinguished from outdoor based on
the time register. If the spending time in that point is equal or
higher than 10 min, based on several tests conducted in this
study and as presented by Ashbrook and Thad (2003), the
significant place is identified as an indoor activity, and it is
geographically located to the nearest indoor microenviron-
ment, acquiring the entire attribute data associated to this
microenvironment, such as microenvironment type (resi-
dence, workplace, restaurant, etc.). Additionally, the speed

value is analysed to distinguish outdoor activity from in
vehicle travel. However, the higher speed values registered
during driving a vehicle are not sufficient to identify a move-
ment activity. In addition, activities like being static outdoor
and in the traffic jam are difficult to distinguish based on speed
criteria only. Thus, if the speed value is less than the speed of
walking of 2 km h−1 (Transportation Research Board 1994),
the distance between the identified point and the nearest road
will be analysed. If there is no intersection with the road
network, the significant place is identified as an outdoor
microenvironment, such as being in a park, sitting on a terrace,
etc. Otherwise, vehicle microenvironment is identified.

Finally, this detailed time–activity patterns for each indi-
vidual will be linked with the pollutants concentration fields
varying in space and in time provided by air pollution disper-
sion model described in the next section, allowing to produce
exposure estimates within distinct microenvironments.

Emission and air quality modelling

Air quality modelling allows establishing the relationships
between current emissions and current air quality at particular
locations. Information on variability of air pollutant concen-
trations is essential for the exposure quantification and these
data may be provided for ExPOSITION by any modelling

Fig. 3 Flowchart of the
clustering process
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tools if it is compatible with their requirements in terms of
spatial and temporal data resolution.

In this work, hourly traffic emissions required by the air
quality model were estimated using the Transport Emission
Model for Line Sources (TREM). The emission factors con-
sidered by TREM depend on average speed, fuel type, engine
capacity and emission reduction technology. A new version
Transport Emission Model for Hazardous Air Pollutants
(TREM-HAP) prepared to calculate HAPs emissions (Tchepel
et al. 2012) has been used to provide inputs for AUSTAL2000
dispersion model.

AUSTAL2000 is the official reference air dispersion model
of the German Regulation on Air Quality Control for short-
range applications (Janicke and Janicke 2002; Janicke 2004).
The model is based on Lagrangian approach that simulates the
dispersion of air pollutants by utilising a randomwalk process.
Three-dimensional diagnostic wind fields is calculated based
on a given initial wind profile and a given terrain profile and/
or set of building shapes. Additionally, the vector of the
turbulent velocity is randomly varied for every particle by
using a Markov process (Janicke 2002; VDI 2000). The
fundamental equation for the Lagrangian atmospheric disper-
sion of a single pollutant is given by Eq. 6.

C x; tð Þ ¼
Z

0

t Z
P x; t

���x0
; t

0
� �

S x
0
; t

0
� �

dx
0
dt

0 ð6Þ

where C(x , t) is the average pollutant concentration in x at
time t , S (x′ , t′) is the source term and P (x , t |x′ , t′ ) is the
probability density function (PDF), that the hypothetical par-
cel moves from the point x′ at time t′ to the point x at time t .
Therefore, if actual paths of the portions of air can be obtained,
the simple calculation of the density of trajectories points
provides an estimate of the concentration (Graff 2002).

The main objective of AUSTAL2000 application in the
current study is the calculation of atmospheric dispersion of
substances, including PM fractions (four different classes of
the aerodynamic diameter) allowing to establish relationship
between emissions and air quality and to provide hourly
pollutants concentration fields. Additionally to input data on
emissions, a continuous time series of meteorological param-
eters, including wind direction, wind speed and atmospheric
stability are required by AUSTAL2000.

Currently, several studies using the AUSTAL2000 are
available, as well comparative analyses with other dispersion
models (Yau et al. 2010; Langner and Klemm 2011; Merbitz
et al. 2012; Gerharz and Pebesma 2012).

Model application

The Leiria urban area, situated in the central part of Portu-
gal and covering eight sub-municipality units, was selected
in this study for the model application. The study domain
covering an area of 4.5×4.5 km2 with 20-m grid resolution
and a complex orography, containing about 5,000 build-
ings considered as obstacles for the air dispersion model-
ling. The Leiria urban area and road network considered in
this study for the exposure quantification are presented in
Fig. 4.

In this study, given the huge health impacts of PM even at
levels of exposure currently being experienced by most urban
populations (WHO 2006), the new exposure modelling tool
was applied to provide a quantitative assessment of the per-
sonal exposure to PM2.5.

Hourly PM2.5 emissions from road traffic were estimated
by TREM based on the traffic volume for each road. For this
purpose, data reported by Pinto et al. (2008) were used to

Fig. 4 a Data recording screen
from mobile phone; b spatial
visualisation of the GPS raw data
recorded
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characterise the number of vehicles for each road link. To
estimate PM2.5 concentrations hourly simulations were con-
ducted with AUSTAL2000 model taking into account hourly
meteorological conditions, such as prevailing wind direction
and wind speed and background concentrations measured at
one monitoring station located in sub-urban area of the city
with a temporal resolution of 15 min. In addition, the model
system includes a diagnostic wind field model to account for
terrain profile and buildings structures.

To characterise the variability in input parameters used to
calculate microenvironmental concentrations (Eq. 2), a set of
random inputs characterising the infiltration factor α and the
contribution of indoor pollution β are generated for each
microenvironment. The PDF for both parameters is deter-
mined using the information presented in Table 1. A combi-
nation of random values is used to create 625 independent
inputs for each microenvironment to be considered by ExPO-
SITION for the exposure estimations.

TTGPSLogger tracking system (TTGPSLogger 2012) was
used to collect GPS data providing trajectories of five individ-
uals during a working day in November 2010. TTGPSLogger
is a GPS logger software for Symbian S60 allowing to store
detailed time–location information on geographic coordinates,
speed and time at regular time intervals during its use over the
daily activities of individuals. In addition, information on

the positioning accuracy of GPS receiver is provided (number
of satellites, position dilution of precision, etc.). The GPS
tracking log can be written in NMEA, GPX or KML format.
For proper implementation of the trajectory data mining
analysis, the GPS data was collected in one-second intervals.

Results and discussion

In this section, the results obtained with newly developed
modelling tool for short-term PM2.5 exposure quantification
are presented and discussed.

GPS data processing

TTGPSLogger tracking system installed on mobile phone is
used to collect real-time latitude-longitude position of individ-
uals, speed and time during their daily activities (Fig. 4a). This
information was stored in a GPX file format that is compatible
with GIS systems presenting very useful to analyse the spatial
distribution of large amount of GPS raw data collected. Thus,
during a typical working day of one of the individuals
analysed in this study, 30,179 GPS raw points with a temporal
resolution of 1 s are collected by TTGPSLogger tracking
system. However, some of the collected GPS data points with
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Fig. 5 Example illustrating the data processing applied to GPS raw data
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invalid information, such as incorrect entries of speed values
achieving maximum of 650 km h−1, are identified.

Most of the invalid measurements observed in this study
are from areas where the individual has stayed indoors due to
the obstruction of the GPS signal inside of buildings. Further-
more, there are some situations where the GPS receiver locat-
ed inside buildings does not lose the signal but the data
collected are affected by significant errors achieving about
60 m of distance from the actual position. Another limitation
observed is a gap of GPS information during some periods
(from 15 s to 10 min) depending on the GPS status.

Taking into account the limitations detected during the anal-
ysis of GPS raw data, cleaning of the data and their processing
are required to predict the time–activity patterns (Fig. 5).

In Fig. 5, a sequence of images with a zoom to the work-
place of the individual 4 is presented to illustrate the formation
of three clusters detected from the data. The first image corre-
sponds to the raw GPS points recorded. Subsequently, the data
cleaning allows to remove invalid points from collected GPS
raw points. However, this approach is only a pre-processing to
detect errors and inconsistencies in data. The stay point detec-
tion algorithm reduces significantly the number of GPS points
that are consequently used for the clustering. In the example
presented in Fig. 5, one significant place and two movement
activity clusters are identified from the set of stay points.

The locations resulting from the clustering algorithm are
further analysed within GIS environment to cross this infor-
mation with other geo-spatial information and to obtain de-
tailed time–activity patterns classified by different types of
microenvironments. Thus, in the case of individual 4, 30,179
collected GPS raw points resulted in 15,978 stay points,
originating 295 locations that are linked with the pollutants
concentration in distinct microenvironments to assess its indi-
vidual exposure.

Emission, air quality and meteorological data

To estimate human exposure to PM2.5, hourly traffic emis-
sions and air pollutants concentrations were estimated.
Figure 6a illustrates the spatial variations in hourly traffic-
related emissions across the study area obtained by linking
TREM-HAP outputs to GIS maps. As could be seen in the
figure, higher emission values are observed for main city
entrances.

Apart from road transport, other emission sources that play
an important role for the study area are characterised in the
current study by considering the background concentrations
of PM2.5. As mentioned in “Model application” the back-
ground concentrations of PM2.5 andmeteorological data were
monitored in a sub-urban location at one fixed monitoring
station. It should be mentioned that the study period was
analysed and selected for this work as the PM2.5 concentra-
tions observed for this sampling period were not affected by
long-range transport.

The meteorological data obtained during the sampling
period are presented in the Fig. 7a. As could be seen, the
higher wind intensities are achieved with winds blowing from
the North, which is also the predominant wind direction,
although there is a significant contribution of the East direc-
tion. As regards the variation throughout the day, generally the
wind speed gradually increases, reaching maximum values at
6 p.m. and minimum values during the night. Therefore, this
information on prevailing wind direction and wind speed for
each hour, terrain profile and building shapes of the city are
explicitly considered by the meteorological module and
reflected in the modelled PM2.5 concentrations.

The time series of hourly background concentrations of
PM2.5 measured from fixed monitoring station is presented
in the Fig. 7b evidencing a gradually decrease for PM2.5

Fig. 6 Spatial distribution of a hourly PM2.5 emissions (g.km-1), b daily average PM2.5 concentration (μg m−3) and time spent by the individual in
each microenvironment
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concentrations during the night-time period. The lower con-
centrations of PM2.5 are observed for 11 a.m., affected by the
lower emissions that were observed during the same time
period, thus influencing consequently PM2.5 concentrations.
Conversely, the hourly maximum value of 29.1 μg m−3 are
reached at 12 a.m.

The spatial distribution of the air pollutants concentration
obtained by theAUSTAL2000 is presented in Fig. 6b showing
that distribution of pollution levels within the study domain is
not homogeneous. In addition, time–activity patterns obtained
for one of the individuals are presented in the figure as an
example. The analysis of results examines the PM2.5 concen-
tration variation in space and in time provided by air pollution
dispersion model and the influence of time spent in each
microenvironment type. Thus, these findings enhance the
importance of taking into account the high spatial and tempo-
ral variations in outdoor concentrations, the “microenviron-
mental” variations imposed by a variety of indoor and outdoor
locations and the time spent indoors to obtain accurate per-
sonal exposure estimates to air pollution.

Personal exposure modelling

The individual exposure assessment performed by the ExPO-
SITION model is presented in this section. For better

understanding of the contribution of different microenviron-
ments to the daily average PM2.5 exposure in the study area at
a typical working day, several statistical parameters, including
average individual exposure, 5th and 95th percentiles and
extreme values were analysed (Table 2).

As could be seen in Table 2, the largest variability in the
exposure concentration is identified for outdoor and resi-
dence microenvironment. Exposure concentration calculated
for in vehicle are characterised by smaller variability range
but higher absolute values in comparison with the other
types of microenvironments. In addition, it is possible to
verify that the variability in the PM2.5 exposure concen-
tration in each microenvironment type is significant show-
ing the importance to consider this variability in individual
exposure modelling.

As expected, the indoor microenvironments represent a
great relevance for the exposure of individuals (Fig. 8). Con-
versely, it is possible to verify that being outdoors represents a
very low contribution to the exposure because corresponds
only about 2 % of the time spent by individuals during their
daily activities, which suggests that outdoor concentrations
measurements should be used carefully for human exposure
quantification. However, outdoor concentrations represent an
important part of the pollution levels estimated for indoor
microenvironments because of outdoor/indoor infiltration.

Table 2 Exposure concentration
for PM2.5 (μg m−3) in different
microenvironments

Microenvironment Average Percentile 5 Percentile 95 Minimum Maximum

Residence 10.2 7.7 17.8 7.0 18.1

Workplace 8.7 4.5 11.7 4.5 16.1

Public access 14.5 13.5 16.3 13.5 26.1

Bar/restaurant 16.7 15.2 17.9 15.0 18.0

Vehicle 35.2 34.6 37.4 20.2 44.6

Outdoor 7.5 5.2 12.7 4.8 41.6
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Fig. 7 a Hourly wind speed obtained from measurements as a function of wind direction; b temporal variation of hourly background PM2.5
concentrations
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To better understand the individual exposure obtained dur-
ing the simulation period, a temporal variation of the exposure
concentration was analysed as presented in Fig. 9. Several
statistical parameters, including hourly average exposure con-
centration, 5th and 95th percentiles are analysed for each
individual.

The results show that the five individuals are exposed to
different PM2.5 concentrations during their daily activities,
and a significant variability in PM2.5 exposures across the
individuals is evident in Fig. 9. Analysing the individual
exposure concentrations during night time (between 9 p.m.
and 7 a.m., approximately), when the people stay in residence,
the hourly exposure concentrations presents a similar trend
with the outdoor concentrations but different magnitude.
However, throughout the day and depending on the daily
activity of the individuals the hourly average exposure con-
centrations tend to be more variable. The highest exposure

Fig. 9 Temporal variation of individual exposure concentrations and outdoor concentrations of PM2.5

55
51

27
22

12
15

2 32 82 1
0

10

20

30

40

50

60

Time spent Average contribution to the daily
individual exposure

%
Residence

Workplace

Public Acess

Bar/Restaurant

In Vehicle

Outdoor

Fig. 8 Distribution of time spent by individuals and average contribution
of different microenvironments to daily individual exposure

3568 Environ Sci Pollut Res (2014) 21:3558–3571



levels are related with both the magnitude of pollutant con-
centrations and the time spent in specific microenvironments
as, for example, could be seen in Fig. 9 for the individual 1 at
4 p.m.

Overall, the daily average exposure to PM2.5 predicted by
the ExPOSITION model correspond to 10.6 μg m−3 in terms
of the mean value for all individuals and 6.0–16.4 μg m−3 in
terms of 5th–95th percentiles. Comparing the mean value
obtained by the model and estimated from air quality mea-
surements at a fixed point (11 μg m−3) represented in Fig. 6b,
an agreement between the approaches is evidenced. However,
the ExPOSITION model reveals additional inter- and intra-
variability of individuals' exposure levels, suggesting limited
representativeness of air quality concentrations obtained from
point measurements to characterise individual exposure to
urban air pollution.

The results obtained from the ExPOSITION model are in
good agreement with the daily average exposure reported for
other European cities such asHelsinki (9.9μgm−3) (Koistinen
et al. 2001) and Amsterdam (14.5 μg m−3) (Janssen et al.
2005). The current study shows that high PM2.5 exposure is
mainly attributed to indoor microenvironments rather than
outdoor, as also presented by Georgopoulos (2005). In this
context, individual time activities patterns and time spent at
different microenvironments during the day should be of
prime concern in addition to the variability in the pollution
levels, as presented by Burke et al. (2001).

Conclusions

Under this work, a GPS-based personal exposure model
based on an innovative approach for trajectory analysis was
developed. For this purpose, a time–activity pattern discov-
ery sequence, based on trajectory data mining and geo-
spatial analysis within GIS, was developed to extract useful
time–location information from GPS raw data collected by
a mobile phone with a GPS tracking system carried by the
user during their daily activities. Taking into account the
limitations detected during the analysis of GPS raw data,
the results obtained during the several levels of GPS data
analyses indicate that this approach could be used to ana-
lyse the human behaviours and activities required for ex-
posure assessment.

Time series of individual exposure concentrations to
PM2.5 are presented for the entire study area characterising
a person’s contact with a given pollution levels at different
microenvironments. The results show a significant contribu-
tion of indoor microenvironments to the total exposure values
thus stressing that individual exposure depends not only on
the exposure pollution levels but also on the time spent in the
microenvironment during the day. In addition, the low contri-
bution of outdoor environment to the daily individual

exposure suggests that the concentration peaks of air pollution
are not co-located in time and space with the time period that
the individual spend outdoors.

The uncertainty of the exposure estimates are not addressed
in the current application of the ExPOSITION model. Uncer-
tainties in indoor and outdoor concentrations could be both
relevant and should be taken into account in ExPOSITION
model as they contributed to the total exposure uncertainties
with varying strengths depending on the time people spent in
different environments. However, as mentioned before, the
uncertainty related to the human mobility during the exposure
assessment period is overcome by the exposure modelling
approach developed in this study.

Overall, by comparing the personal exposure modelling
results with fixed-point measurements, the ExPOSITION re-
sults clearly outperforms the traditional approach of using
urban background measurements as proxy for the personal
exposure.

In contrast to exposure model approaches currently avail-
able (STEMS (Gulliver and Briggs 2005); Beckx et al. 2009;
Gerharz et al. 2009, 2013), our model approach focuses not
only on the indoor, outdoor or journey-time exposure to
outdoor concentration but provides exposure estimates for
the whole activity profile including the contribution of indoor
emission sources and the variability of microenvironmental
parameters. Additionally, current exposure models lack the
temporal and spatial resolution of the presented approach that
can therefore be considered for application areas different
from those of the existing models, focussing on the exposure
at the individual level.

The methodology developed and applied in this study
allows to estimate and analyse the magnitude, frequency and
the inter- and intra-variability of personal exposure levels, as
well the contribution of different microenvironments, clearly
addressing the time-sequence of the exposure events and
source–receptor relationship, which is essential for health
impact assessment and epidemiological studies. The ExPOSI-
TION model contributes to better understanding of individual
exposure in urban areas, by providing information on individ-
ual exposure taking into account where individuals actually
spend their time and the high spatial and temporal variations
of the “microenvironmental” concentrations imposed by a
variety of indoor and outdoor locations, essential in the selec-
tion of strategies to reduce exposure to urban air pollution and
related health effects.

An application of the ExPOSITION model developed in
this study to benzene and validation of the modelling ap-
proach against individual exposure measurements will be
presented in the future work.
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