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Abstract Greenhouse experiment was conducted to examine
effects of arsenic (As) on iron plaque formation, radial oxygen
loss, As accumulation, and speciation in rice. Three genotypes
were grown in soil with three different concentrations of As.
The stress of As caused a slight increase of iron plaque
formation (P >0.05) and a decrease in the rates of radial
oxygen loss (ROL; P <0.01). The results of As speciation
showed that the percentages of DMA increased from 19–
28 % to 53–58 %, while the percentages of inorganic As
decreased from 53–58 % to 36–42 % with the increasing soil
As concentrations, indicating a strong environmental influ-
ence on As species in rice grain. The present study showed
that elevated soil As may induce As toxicity towards rice
plants, leading to the decrease of ROL; environmental factors
could influence As methylation or As species transportation.
Our study provided useful information on As tolerance and
accumulation in rice which may contribute to reducing the
health risk posed by As contamination in rice.
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Introduction

Arsenic (As) contamination of groundwater has been fre-
quently reported (e.g., Stone 2008; Zhu et al. 2008a, b;
Meharg and McGrath 2009). In the As-affected areas of
Bangladesh, groundwater contains up to 2 mg As L−1 as
compared to the WHO recommended provisional limit of
0.01 mg As L−1. In areas where the arsenic-contaminated
water is used for irrigation, soil As concentration can be up
to 83 mg kg−1 (Abedin et al. 2002a, b). Three billion people,
predominantly in Asia, eat rice as a staple. However, rice
grown on As-contaminated soils usually contain high As
levels in shoots (including grains) (Meharg 2004). Rice grains
with As levels of 1.8 mg kg−1 have been recorded in the
arsenic-affected tube well areas of Bangladesh (Zhu et al.
2008b; Williams et al. 2009). Therefore, the food that sustains
half of the world’s population also increases the risk of cancer
(Stone 2008). It is crucial that the physiology and genetics of
rice uptake of As is understood to counteract this widespread
contamination of the food chain (Meharg 2004).

Waterlogging is a typical characteristic growth condition
for wetland plants including paddy rice, resulting in deficien-
cy of oxygen and essential nutrients, low redox potential, and
accumulation of Fe2+, Mn2+, H2S, S

2−, HS−, and organic acids
(McDonald et al. 2001). On the other hand, wetland plants
have developed some special features, such as root anatomy
(i.e., aerenchyma), radial oxygen loss (ROL), and the forma-
tion of iron (Fe) plaque on root surface, to cope with the
adverse environmental conditions (Armstrong 1979; Colmer
2003a, b). The formation of Fe plaque could be an adaptation
to stressed environments, as Fe hydroxides forming on roots
of wetland plants are capable of reacting with metals and may
therefore immobilize phytotoxic metals (Kuo 1986; Deng
et al. 2010; Pi et al. 2010). Transport of oxygen (O2) from
shoot to root via aerenchyma can occur in wetland plants and
O2 can diffuse from root to rhizosphere, which is termed as
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radial oxygen loss (Armstrong and Armstrong 1994; Comer
et al. 2006). ROL from root to the rhizosphere is essential for
the detoxification of phytotoxins by direct oxidation or indi-
rectly by oxidizing aerobic microorganisms maintained in the
rhizosphere regions (Revsbech et al. 1999), which presumably
contribute to the waterlogging tolerance of wetland plants
(Colmer 2003a, b).

It has been found that Fe plaque and ROL are related with
As tolerance and uptake in rice (Liu et al. 2004a, b; Chen et al.
2005; Mei et al. 2009). However, most of the previous studies
have focused on As uptake, root anatomy, and Fe plaque
conducted in solution culture (Liu et al. 2004a, b; Deng
et al. 2010), which is substantially different from the real
rhizosphere condition in the environment (Fitz and Wenzel
2002; Liu et al. 2006).Moreover, As toxicity depends not only
on its total contents, but also on its chemical speciation, with
inorganic As considered much more toxic than organic forms
(Meharg et al. 2008; Norton et al. 2009a, b). It is therefore
crucial to investigate As speciation in rice plants and grains to
assess the associated human health risks.

The objectives of the present study were (1) to investigate
the effects of As levels (low, medium, and high) on growth, Fe
plaque formation, and the amount of ROL in rice; (2) to
determine As accumulation, distribution, and speciation in
rice plants grown in soils contaminated with low, medium,
and high levels of As.

Materials and methods

Plant culture

Rice seeds of three genotypes (Nanyangzhan, Yuxiang
youzhan, CNT 87059-3) were germinated on moist filter
papers and grown in Yoshida Nutrient solution (Yoshida
et al. 1976) for 2 weeks. The genotypes were chosen based
on their differences on radial oxygen loss and As accumula-
tion levels according to the previous study (Wu et al. 2011).
The plants were then transplanted into bags (30 μm nylon
mesh, 6 cm diameter, 9 cm height, with one plant per bag)
filled with acid-washed quartz sand. The sand–soil culture
system was employed to mitigate the damage to rice roots
for determination of ROL and Fe plaque, and to simulate the
soil condition (Chen et al. 2005). The nylon bags were then
transferred to a PVC pot (10 cm diameter, 14 cm height, with
one plant per pot) and the gap between nylon bag and PVC pot
was filled with 1.5 kg soil, previously air dried and sieved
through a 2-mm sieve. Figure 1 shows the rhizobag design of
the experiment. Soils were collected from a paddy field in the
campus of South China Agricultural University (sandy clay with
pH of 6.43 and average As concentration of 8.6 mg kg−1).
Arsenic was added as arsenate (Na2HASO4·7H2O) with concen-
trations of 0, 50, and 100 mg As kg−1 dry weight (treatments

designated as control, As 50, and As 100). Arsenate was added
as a solution and mixed thoroughly with soils. Soils without
arsenate amendment received the same volume of distilled water.
All the soils were equilibrated for 2 weeks. There were six
replicates in each treatment and each genotype.

Plants were allowed to grow under submerged conditions
until maturity in a greenhouse (with a temperature of 25 °C
during the day and 20 °C during the night, relative humidity of
70 %, and the natural light supplemented with sodium light
[1,200 lx], with a photoperiod of 12:12 h [day/light]).

Iron plaque extraction

Upon harvest and before drying, half of root samples were
extracted using dithionite–citrate–bicarbonate (DCB) (Otte
et al. 1989) to measure As and Fe on the root surface, while
the other half were used for determination of ROL. After wash-
ing in deionized water, 0.5 g root tissuewas incubated for 60min
at room temperature (20–25 °C) in 40 ml solution consisting of
0.03 M sodium citrate and 0.125 M sodium bicarbonate, with
addition of 0.6 g sodium dithionite. After incubation, the roots
were rinsed three times with deionizedwater which was added to
the DCB extract. The resulting solution was made up to 100 ml
with deionized water for analysis.

Measurement of ROL

ROL measurements were determined 60 days (stem elonga-
tion stage) and 90 days (grain filling stage) after transplanting.
Each nylon bag was removed carefully from the PVC pot, and
roots were washed under tap water to remove any quartz
particles adhering to the root surface. Care was taken during
this process to ensure the roots were intact and exposed to
open air for a minimal period for the determination of ROL.

The ROL rates of the entire root system of rice plants were
measured using the titanium (III) (Ti3+) citrate buffer method

Fig. 1 Design of the rhizobag system
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(Kludze et al. 1994). The method was described in more detail
in previous studies (Mei et al. 2009; Wu et al. 2011). The
released O2 was calculated using the following formula
(Kludze et al. 1994):

ROL ¼ c y−zð Þ

where ROL = radial oxygen loss, μmol O2plant
−1 day−1,

c = initial volume of Ti3+ added to each test tube, L;
y = concentration of Ti3+ in solution of control (without plant),
μmol Ti3+ L−1; and z = concentration of Ti3+ in solution after
6 h treatment with plants, μmol Ti3+ in solution plant−1 L−1.

Rate of ROL ¼ c y−zð Þ=G

where rate of ROL = rate of radial oxygen loss, μmol O2

g−1 dry weight day−1; G = root dry weight, g.

Plant analysis

Plant analysis for total As

Sampling procedures followed those described by Abedin
et al. (2002a) and Liu et al. (2006). At maturity, after measur-
ing plant height, half of the plants were harvested, carefully
washed, and separated into grains, straws, and roots, then
oven-dried at 50 °C. Another half of plants were freeze-
dried, and stored at −20 °C for the analysis of As speciation.
After recording the dry weight, all plant samples were ground
to fine powder, and digested with 5 ml HNO3 until the
digestion solution became clear. The certified reference mate-
rial [(CRM) 1568a rice flour from National Institute of
Standards and Technology, USA (NIST)] was used to verify
the accuracy of metal determination. The acid digests of plant
material (grains, straws, and roots) and DCB extracts were
analyzed for total As and Fe [determined by inductively
coupled plasma spectrometer (ICP), PerkinElmer, Elan
9000] (Allen 1989). The recoveries of As in 1568a ranged
from 105.1 to 107.3 %.

Plant analysis for As speciation

Two genotypes (Nanyangzhan and Yuxiangyouzhan) were used
in this investigation. The speciation method is described in more
detail in Wu et al. (2011). Trifluoroacetic acid (TFA) extraction
method was used (Heitkemper et al. 2001; Williams et al. 2005).
Milled subsamples (0.2 g) were weighed into quartz digestion
tubes and 2mLof 2MTFAwas added. Themixturewas allowed
to stand overnight. The tubeswere then placed on a heating block
at 100 °C for 6 h. The digest was evaporated to dryness at
120 °C. The residues were resuspended in distilled water and
filtered through a 0.45 μm filter (cellulose nitrate, Micro

Filtration Systems, California, USA), then made up to 10 mL
with ultrapure (>18 MΩ) deionized water before analysis.

A Hamilton PRP-X100 10-μm anion-exchange column
(4.1×150 mm) with an appropriate precolumn (containing
the same material) and an Agilent 1100 series HPLC system
(Agilent Technologies) were used for all analyses. The mobile
phase employed for anion-exchange chromatography,
consisted of ultrapure (>18 MΩ) deionized water and
50 mM ammonium bicarbonate (from Aldrich Chemical Co.).

Each analysis was performed within 24 h of sample extrac-
tion to minimize any changes in speciation during prolonged
storage. Post-column element-specific detection of arsenic
was achieved using an ICP-mass spectrometer (PerkinElmer,
Elan 9000). NIST CRM 1568a rice flour was used to validate
the method, which was also used to characterize its speciation
(Williams et al. 2005; Liu et al. 2006). The mean total recov-
ery [(sum of species recovered from the TFA extraction/total
As from acid digestion)×100 %] ranged from 83–111 %,
which was consistent with other studies (Heitkemper et al.
2001; Williams et al. 2005).

Statistical analyses

Analysis of variance (ANOVA) on plant biomass, concentra-
tions of As and Fe, and rates of ROL was performed using the
statistical package SPSS 13.0 forWindows (SPSS Inc., USA).

Results

Effects of As on growth, iron plaque formation, and ROL
of entire roots in three genotypes of rice

Plant height varied from 84 to 98 cm among the three geno-
types. The As treatments did not exert a significant effect on
the height of rice plants (P >0.05); and there was no signifi-
cant genotypic effect on the height of rice plants (P >0.05).
Root biomass varied from 2.8 to 5.9 g pot−1, with the highest
root biomass in As 100 treatment of genotype Nanyangzhan
(Table 1). Straw biomass varied from 6.1 to 8.2 g pot−1

(Table 1). Application of As did not significantly (P >0.05)
change the biomass of root and straw, while there was a
significant genotypic effects (P <0.05) on the biomass of root
and straw. There were significant genotypic effects on grain
yield (P <0.01), but there were no significant As treatment
effects on grain yield (P >0.05, Table 1).

Iron plaque was clearly visible as reddish coatings on the
root surface when harvested. There were no significant differ-
ences (P >0.05) in the amounts of Fe plaque formed for
different genotypes and for different treatments (Table 2).
However, the increase of As led to a slight increase
(P >0.05) of Fe plaque formed on root surface. Arsenic con-
centration in Fe plaque ranged between 29 mg kg−1 in control
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treatment and 665 mg kg−1 in As 100 treatment (Table 2).
There were significant differences in As concentration in Fe
plaque between As treatments (P <0.01), while no significant
difference between genotypes (P >0.05).

Rice plants showed relatively higher rate of ROL on day 60
compared with day 90, showing the decrease of ROL in
mature stage of rice compared with stem elongation stage.
Yuxiangyouzhan showed the highest total amount of ROL in
all treatment groups, while Nanyangzhan and CNT 87059-3
had relatively lower amounts in all treatments. On days 60 and
90, increasing As concentration caused a decrease in total
ROL rates (P <0.01; Fig. 2). This suggested that total ROL
was inhibited by arsenic stress. Total ROL on entire roots
varied significantly referred to genotypes × treatments com-
bination (P <0.05) according to the two-way ANOVA
(Fig. 2). There were significant differences between genotypes
in ROL rates only in As 100 treatment (P <0.05).

Arsenic uptake and speciation in rice plants

Arsenic concentration in root increased significantly
(P <0.001) with the increase of soil As concentration, and
As concentrations in rice straws or grains showed significant

Table 1 Biomass (g pot−1, DW) and As concentrations (mg kg−1) in roots,
straws, and grains of three genotypes of rice grown in soils amended with
different concentrations of arsenic (0, 50, and 100 mg kg−1)

Genotypes Root dry
mass (g)

Straw dry
mass (g)

Grain yield
(g)

Nanyangzhan Control 4.3±1.3 6.1±1.1 1.6±0.50

As 50 4.6±0.53 6.9±1.3 1.8±0.68

As 100 5.9±1.9 7.0±0.63 1.9±0.31

CNT 87059-3 Control 2.9±0.39 7.8±0.02 4.1±0.78

As 50 2.8±0.43 7.4±0.61 5.4±2.3

As 100 4.0±0.62 8.0±1.2 3.6±1.3

Yuxiangyouzhan Control 3.3±0.53 7.4±1.3 5.3±0.29

As 50 4.9±1.2 7.5±0.69 4.7±1.0

As 100 3.9±1.1 8.2±0.76 5.2±0.96

Analysis of variance

Genotypes (G) P<0.01 P<0.05 P<0.01

Arsenic treatment (A) NS NS NS

G×A NS NS NS

Genotypes As in roots As in straws As in grains

Nanyangzhan Control 10±2.4 7.8±1.2 0.15±0.02

As 50 30±9.7 13.4±4.2 1.8±0.46

As 100 46±13 29.5±9.6 1.7±0.09

CNT 87059-3 Control 16±0.59 10±2.6 0.25±0.08

As 50 35±11 20±1.5 1.4±0.78

As 100 358±152 17±4.5 1.1±0.47

Yuxiangyouzhan Control 28±5.2 15±0.50 0.09±0.01

As 50 104±18 35±11 1.5±0.45

As 100 169±8.2 39±16 1.6±0.30

Analysis of variance

Genotypes (G) NS P<0.01 P<0.05

Arsenic treatment (A) P<0.001 P<0.01 P<0.01

G×A P<0.05 NS NS

Table 2 Concentrations of Fe (g kg−1) andAs (mg kg−1) in DCB extracts
of three genotypes of rice grown in soils amended with different concen-
trations of arsenic (0, 50, and 100 mg kg−1)

Genotypes Fe (g kg−1) As (mg kg−1)

Nanyangzhan Control 41±5.6 44±12

As 50 35±9.3 77±8.3

As 100 46±16 143±15

CNT 87059-3 Control 32±2.0 33±8.2

As 50 42±6.3 335±3.1

As 100 41±21 400±304

Yuxiangyouzhan Control 19±7.6 29±5.4

As 50 39±5.8 177±14

As 100 33±11 665±391

Analysis of variance

Genotypes (G) NS NS

Arsenic treatment (A) NS P<0.01

G×A NS NS
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(P <0.01) differences between As treatments. Arsenic concen-
tration in grains remained statistically similar in As 50 and As
100 treatments, which implicated a lower translocation from
straws to grains for rice as a protection process. There were
significant genotypic effects on As concentrations in the straw
and grain but not root (P <0.05; Table 1).

According to the World Health Organization’s 10 μg l−1

limit for As in drinking water, 0.05 mg kg−1 As in rice
contributes about 60 % of dietary As exposure (WHO
2001). The maximum contaminant levels for inorganic As in
rice grains was set at 0.2 mg kg−1 in China (Chinese Food
Standards Agency 2012). In this investigation, As concentra-
tions in grains of rice grown in soils spiked with different As
levels exceeded 0.2 mg kg−1. It reflects a great risk when
growing rice with As-contaminated soils in the field.
However, the situation in the field may be different, due to
the combination of different environmental factors, soil As
speciation and behavior, water management, cultural prac-
tices, and genetic differences.

Arsenic species, As(III), As(V), DMA, and MMA were
analyzed in different parts of rice for two genotypes
(Yuxiangyouzhan and Nanyangzhan). There were genotypic
differences (P <0.05) in levels of DMA and inorganic As (Asi)

in the grain, with Yuxiangyouzhan having higher inorganic As
in grains than Nanyangzhan. The percentages of inorganic As
decreased with increasing As concentrations, while percent-
ages of DMA increased (Fig. 3). Inorganic As was the pre-
dominant As species in the root and straw, accounting for 94–
99 % of the total As, whereas grains contained substantially
higher DMA, accounting for 53–70 % of the total As in As
100 treatment (Fig. 3).

Discussion

Lower shoot biomass of rice subjected to high arsenate treatment
has been observed byMarin et al. (1993) andAbedin et al. (2002a).
However, stimulation of growth by arsenate addition has also been
reported for rice (Marin et al. 1992; Carbonell et al. 1998). The
present study showed no significant reduction in plant biomass
when subjected to different As levels, possibly because of the
different growth conditions. Arsenate addition may displace phos-
phate from the soil in certain situations, increasing plant P availabil-
ity (Jacobs et al. 1970).

The waterlogged anoxic conditions of wetland plants
would cause the accumulation of potentially toxic, reduced
solutes, such as Fe2+, Mn2+, and Pb2+ in the pore water. On the

Fig. 2 Total amounts of radial oxygen loss (ROL) from entire root
systems of three genotypes of rice growing in treatments amended with
different concentrations of arsenic (0, 50, and 100 mg kg−1) for 60 days
(a) and 90 days (b). All data are shown as means ± standard deviation;
different letters in each genotype indicated that they were significantly
different in three treatments at P<0.05 determined by Tukey’s HSD test

Fig. 3 As speciation a in grains of rice plants grown in soils amended
with different concentrations of arsenic (0, 50, and 100 mg kg−1); b in
different parts of rice plants grown in soils with 100 mg As kg−1. White
bar inorganic arsenic, hatched bar DMA, gray bar MMA. All data are
shown as means − standard deviation
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other hand, wetland plants can develop some special features,
such as radial oxygen loss, root anatomy, and the formation of
Fe plaque on root surface, to cope with the adverse environ-
ments (Armstrong 1979; Visser et al. 2000). Iron plaque could
serve as a barrier to prevent excess pollutants entering roots of
wetland plants (Pi et al. 2010; Liu et al. 2004a, b). A slight
increase of Fe plaque formed in As added treatments was
observed in the present study. This might be due to the
tolerance strategy demonstrated by wetland plants and rice
to cope with pollutants (Pi et al. 2010). Pi et al. (2009)
observed significantly higher amounts of Fe plaque formed
on the root surface in two mangrove plants treated with
wastewater discharge. This was due to aerobic degradation
of nutrients and organic matter by microorganisms, leading to
a more anaerobic soil environment and induced more ROL
around the rhizosphere to oxidize ferrous ions, thus formed
more Fe plaque. Hu et al. (2007) reported the sulfur-induced
enhancement of plaque formation, probably due to an increase
in concentrations of Fe2+ and Mn2+ resulting from S transfor-
mation in soil. In the present study, the stress of As caused a
slight increase of iron plaque formation, but there was no
significant difference between As treatments and control. It
may be due to the fact that As has influenced the rhizosphere
microbial activities. However, more investigations are needed
to further our understanding of the mechanism. Garnier et al.
(2010) have shown that the As contents of roots and Fe plaque
raise to 1,000–1,500 mg kg−1 towards the middle of the
growth season, then decline to ∼300 mg kg−1 in the field.
The As contents in roots and Fe plaque in the present study
were within this range in the field (Table 2).

ROL could be affected by environmental factors, such as
the oxygen content, light condition, redox potential, and mi-
crobial oxygen demand (Laskov et al. 2006). Rahman et al.
(2007) revealed that the content of photosynthetic pigments
were reduced, and subsequently affect photosynthesis, under
As treatments. Furthermore, Connell et al. (1999) indicated
that photosynthesis can affect ROL ofHalophila ovalis roots.
The decrease of ROL might be due to the decrease of the
photosynthetic pigments and photosynthesis, which further
affected rates of ROL in rice. However, this should be clarified
further in future studies. Cheng et al. (2010) suggest that ROL
from root tip is a potential biomarker of environmental pollu-
tion (such as heavy metals). The decreases of ROL observed
in rice are mainly related to the alteration of root anatomical
structure and decreased root porosity induced by heavy metals
(Liu et al. 2009; Mei et al. 2009; Cheng et al. 2010). The
reduced permeability of the roots which are induced by the
pollutants seems to be a defense response to prevent excessive
toxins entering the root and causing possible fungal infection
(Hose et al. 2001; Armstrong and Armstrong 2005).

The concentration of Fe plaque is profoundly influenced by
the amount of the ROL of plant roots, the more ROL present
around the rhizosphere would induce more Fe plaque

formation on the root surface of wetland plants (Armstrong
1979; Otte et al. 1991). However, Møller and Sand-Jensen
(2008) found that if excessive Fe plaque formed on the root
surface of Lobelia dortmanna , it may act as a ‘barrier’ and
prevent oxygen from being released from the root, leading to
lower ROL around rhizosphere. Another study also showed
that the concentration of Fe plaque formed in two mangrove
plants was negatively correlated with the rate of ROL along
the lateral root when treated with wastewater (Pi et al. 2010).
The present results of the significantly decreased ROL and
slightly increased Fe plaque formation in As treatments indi-
cated that the increased Fe plaque might inhibit oxygen re-
lease from the roots.

Zavala and Duxbury (2008) speculated that As speciation in
rice grain is under genetic control. However, it has been demon-
strated that As speciation in rice grain can be strongly influenced
by the environmental conditions such as watering regime and As
bioavailability in soils (Xu et al. 2008; Arao et al. 2009; Li et al.
2009). Zhao et al. (2013) reviewed past literature and indicated
that grain As speciation are primarily attributed to environmental
factors, and methylated As species in rice are derived from the
soil, while rice plants lack the Asmethylation ability. The present
study demonstrated that As speciation varied between different
genotypes and As treatments. The genotypic variation of As
speciation may be due to the variation in the root uptake or the
internal translocation efficiency of methylated As of different
genotypes (Zhao et al. 2013).

Studies showed that the majority of As present in rice grain
were DMA or inorganic As, while in roots and straws the
majority of As were inorganic As (Smith et al. 2008; Zavala
et al. 2008; Zheng et al. 2011). Zheng et al. (2011) reported
that the unloading of inorganic As and DMA into rice grain
are different, with the latter accumulating mainly in the
caryosis before flowering and inorganic As mainly
transported into the caryopsis during grain filling. Moreover,
inorganic As is considered more toxic than methylated As
(Abedin et al. 2002a, b; Zhu et al. 2008a, b; Zhao et al. 2009),
indicating As speciation exerts important implications for
human health.

Conclusions

The stress of As caused a slight increase of iron plaque
formation (P >0.05), a decrease in the rates of ROL (P <
0.01). The results of As speciation showed that the percent-
ages of DMA increased from 19–28 to 53–58 %, while the
percentages of inorganic As decreased from 53–58 % to 36–
42 % with the increasing soil As concentrations, indicating a
strong environmental influence on As species in rice grain.
The present study provided useful information on As toler-
ance and accumulation in rice to reduce the health risk posed
by As contamination in rice.
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