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Abstract Transition-metal is known to catalyze peroxymo-
nosulfate (PMS) decomposition to produce sulfate radicals.
Here we report reactions between PMS and chloride, with-
out a need of transition metals, also can be used to degrade
organic dye pollutant (Rhodamine B, (RhB)). Some impor-
tant operating parameters, such as dosages of PMS and Cl−,
pH of solution, temperature, ionic strength, and several
common cations, were systematically investigated. Almost
complete decoloration of RhB was achieved within 5 min
([PMS]=0.5 mM, [Cl−]=120 mM, and pH 3.0), and RhB
bleaching rate increased with the increased dosages of both
PMS and chloride ion, following the pseudo-first-order ki-
netic model. However, the total organic carbon (TOC) re-
moval results demonstrated that the decoloration of RhB
was due to the destruction of chromophore rather than
complete degradation. RhB decoloration could be signifi-
cantly accelerated due to the high ionic strength. Increasing
of the reaction temperature from 273 K to 333 K was
beneficial to the RhB degradation, and the activation energy
was determined to be 32.996 kJ/mol. Bleaching rate of RhB

with the examined cations increased with the order of NH4
+

<Na+<K+<Al3+<Ca2+<Mg2+. Some major degradation
products of RhB were identified by GC-MS. The present
study may have active technical implications for the treat-
ment of dyestuff wastewater in practice.
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Introduction

A large amount of inorganic salts (e.g., NaCl and Na2SO4) are
used or produced during the dyeing process, and therefore
their effects should be necessarily considered when dye waste-
water is treated (Paprocki et al. 2010; Ramjaun et al. 2011;
Salman et al. 2006). The previous investigations indicated that
chloride ions had a detrimental effect on the treatment perfor-
mance of advanced oxidation processes (AOPs; Muthukumar
and Selvakumar 2004; Yuan et al. 2011, 2012a, b; Lachheb et
al. 2002; AlHamedi et al. 2009; Ghodbane and Hamdaoui
2010; Dong et al. 2007; Kiwi et al. 2000; Muruganandham
and Swaminathan 2006; Anipsitakis et al. 2006; Sun et al.
2009). The widely accepted mechanism is based on the
quenching effect of chloride on·OH radical that is capable of
bleaching dyes, that is, Cl− scavenges·OH radical (E0=2.8 V)
to generate less reactive chlorine radicals (E0Cl•/Cl−=2.47 V),
thus significantly decelerating the rate of dye degradation.

Even such adverse effect of chloride on AOPs wastewater
treatment has been verified in Fe(II)/H2O2, UV/TiO2, O3, and
UV/H2O2, the underlying mechanism on chloride interference
with AOPs is not comprehensively understood. Our recent
work indicated a dual role of chloride on Co(II)/PMS system
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where the sulfate radical was a dominant reactive oxidant (Yuan
et al. 2011; Wang et al. 2011b). Similar to Fenton reaction,
lower concentration of Cl− (0.05–10 mM) actually decreased
the bleaching rate of Acid Orange 7; but higher concentration
of Cl− (>50 mM) unexpectedly accelerated the rate of dye
degradation. Despite rapid decolorization, dye was not even-
tually mineralized. Instead, some refractory chlorinated com-
pounds were detected in this Co(II)/PMS/Cl− system. This
result was of great significance for applying such Co(II)/PMS
technology to treat dyes wastewater. However, the reaction
pathways involving chloride in dye degradation have not been
clearly resolved. We found the direct reaction between PMS
and Cl− should be responsible for the enhanced decolorization
under high chloride concentration (Eqs. 1, 2, 3, and 4;
Narender et al. 2002; Yuan et al. 2011).

2Cl� þ HSO5
� þ Hþ ! SO4

2� þ Cl2 þ H2O ð1Þ

Cl2 þ H2O $ HClOþ Hþ þ Cl� ð2Þ

Cl� þ HSO5
� ! SO4

2� þ HOCl ð3Þ

HOCl ! Hþ þ OCl� ð4Þ
It is worthy to note that lots of influencing factors in real dye

wastewater may potentially affect the kinetics of these reactions
(Eqs. 1, 2, 3, and 4). Dye wastewater effluents are characterized
as broad pH value, large temperature fluctuations, as well as
abundance of other co-existing inorganic salt such as NaBr,
NaF, and Na2SO4. Frank et al. found that the high temperature
would accelerate the reactions between H2O2 and HSO3

−,
whereas the ionic strength had a dual effect. When the ion
strength was less than 1 M, the reaction rate constants would
ascend with the increase of ion strength, while there was an
inhibitory effect on the reaction rate when ionic strength was
above 1 M (Frank et al. 1999). However, the effects of these
dynamic parameters in dye wastewater on the stoichiometric
reaction between PMS and Cl− have not been examined, de-
spite its importance in evaluating the specific contribution of
this reaction to overall Co(II)/PMS treatment efficacy.

Therefore, the aim of this work was to examine the influen-
ces of PMS concentration, Cl− concentration, pH, temperature,
ionic strength, and cations on the kinetics of dye degradation in
PMS/Cl− system. Furthermore, the major reaction products
were identified by GC-MS. These results may provide valuable
insight to dyeing wastewater treatment in practice.

Materials and methods

Materials

Rhodamine B (RhB; Acros Organics), a commonly used
nonbiodegradable dye was selected as model dye pollutant.

Oxone® ([2KHSO5·KHSO4·K2SO4] salt, 95 %) was sup-
plied by Sigma-Aldrich. NaCl, NaOH, Na2SO4, NaNO2,
NH4Cl, KCl, MgCl2, CaCl2, and AlCl3 were of reagent
grade and used without further purification. All sample
solutions were prepared using deionized water from
Barnstead UltraPure instrument. Stock solutions of all
chemicals were prepared freshly. Prior to each experiment,
certain aliquots were transferred to the reactor vessel to
obtain the specific concentrations.

Experimental procedures

All oxidation reactions were performed in 50 mL conical
flask by mixing appropriate concentrations of RhB, NaCl,
and Oxone® without adjusting pH at ambient temperature,
except for considering the effects of pH and temperature.
Samples were withdrawn and measured immediately. All
UV–vis absorption spectra were carried out in time scan
mode using a Hitachi U-2900 spectrophotometer. The vari-
ation of absorbance at 552 nm was applied to evaluate the
extent of RhB degradation. The pH of solution was adjusted
by addition of NaOH. A Tekmar Dohrmann Apllo 9000
TOC analyzer was used to measure the TOC of the solutions
which were quenched by sodium nitrite. The experiments
were conducted in duplicate, and the relative error was less
than 2 %.

RhB degradation products were identified by GC/MS
analysis. Five hundred milliliters of completely decolorized
0.005 mM RhB samples was pretreated by solid-phase
extraction (SPE) method using CNWBOND LC-C18 SPE
tube. The gas chromatograph (Agilent 7890A) was
equipped with HB-5 MS capillary column (30 m×
320 μm×0.5 μm film thickness), which was interfaced
directly to the mass spectrometer (5975A inert XL MSD
with Triple-Axis Detector). The GC column was operated in
a temperature programmed mode with an initial temperature
of 40 °C held for 4 min, ramp first to 80 °C with a 10 °C/min
rate which was held for 2 min, then to 280 °C with
10 °C/min rate, and held at that temperature for 10 min.
Electron impact (EI) mode at 70 eV was used and the
spectra were obtained in a scan range of 10–400m/z. The
product analysis was consulted from the NIST08 mass spec-
tral library database.

Results and discussion

Effect of PMS concentration

The RhB degradation rates under different PMS concen-
trations (i.e., 0.1, 0.2, 0.3, and 0.5 mM) were deter-
mined to investigate the impact of PMS. As seen in Fig.
S1 (Supplementary Information), RhB degraded faster at

6318 Environ Sci Pollut Res (2013) 20:6317–6323



the higher concentration of PMS. When the concentration of
PMS varied from 0.1 to 0.5 mM, the decoloration rate of RhB
within 5 min were 21.6 %, 57.1 %, 84.2 %, and 95.7 %,
respectively. A series of linear functions were obtained
through fitting −ln(C/C0) versus reaction time, which was
shown in Fig. 1a. RhB degradation followed the pseudo-
first-order kinetic model regarding to the concentration of
PMS shown below (Huang et al. 2002):

C ¼ C0 exp �ktð Þ ð5Þ
Where C is the concentration of RhB at the time t; C0 is

the initial concentration of RhB; k is the observed reaction
rate constant, which could be obtained from the slopes of the
lines in the plots of −ln(C/C0) versus reaction time. In this
study, the reaction rate constants were 6.28×10−4 s−1, 1.33×
10−3 s−1, 2.37×10−3 s−1, and 5.48×10−3 s−1 corresponding
to 0.1, 0.2, 0.3, and 0.5 mM PMS, respectively (R2>0.9).
The higher efficiency of RhB degradation at higher PMS
dosage might result from the more production of HSO5

−

which could react with chloride yielding more active chlo-
ride species.

Effect of Cl− concentration

The influence of Cl− on RhB degradation was performed
with various Cl− concentrations, keeping all other reactants
concentrations and conditions constant. The rate constant k
increased exponentially with the chloride concentrations
from 0 to 40 mM. This might be attributed to the more
active chloride species which generated from the additional
Cl−. It should be noted that RhB could not be effectively
degraded by PMS alone, which was shown in the inset of
Fig. 1b. As Cl− was added, the rate of the reaction would
increase. According to the linearity of plots of −ln(C/C0)
versus reaction time (R2>0.9), the reactions followed
pseudo-first-order kinetic model with respect to Cl−.

According to our previous reports (Wang et al. 2011b;
Yuan et al. 2011), the chloride ions should be directly
oxidized through two-electron transfer in PMS/Cl− system,

thereby producing reactive chlorine species (Cl2/HClO).
Therefore, the rates of dye bleaching by PMS/Cl− system
were positively correlated with chloride concentrations.
However, a dual effect of chloride on dye decolorization in
Co(II)/PMS/Cl− system was observed by Yuan et al. (2011).
An inhibitory effect of Cl− on dye degradation dominated at
low Cl− lever (<10 mM). This was due to that the sulfate ion
radical generated via a one-electron process was scavenged
by the less reactive chlorine radicals. At higher dosage of
Cl− (>50 mM), direct reaction between PMS and Cl− gov-
erned the overall degradation reactions. Hence, an acceler-
ating effect on dye bleaching was found. The present data
further verified our previous conclusion obtained in
Co(II)/PMS/Cl− system (Wang et al. 2011b; Yuan et al.
2011).

Effect of pH

The dyeing wastewater generally has broadly fluctuating pH
value varying from 2 to 12 (Lu et al. 2009). Therefore, it is
necessary to study the dyeing wastewater degradation at
various pHs. Four experiments of RhB degradation with
PMS/Cl− system were carried out at initial pH 3.0, 4.4,
5.3, and 6.2, respectively. Owing to the H+ from PMS, the
pH of solution was 3 without being adjusted. With the
increase of pH, the efficiency of RhB bleaching decreased,
as shown in Fig. 2a, indicating the favorable impact of
acidic conditions on reaction rate. This might be due to the
pH dependence of active chlorine speciation. Cl2 and HOCl
were the main chlorine species in water at pH 3. With pH
increased, chlorine in water would hydrolyze completely
into hydrogen chloride and hypochlorous acid. HOCl, as a
weak acid, dissociates to ClO−, which has a lower oxidation
potential (E0=0.94 V) than that of HOCl (E0=1.49 V;
Krishna et al. 2010; Gerritsen and Margerum 1990; Wang
et al. 2011a). Thus, the higher pH could lead to less HOCl
and more ClO−, resulting in weaker activity and poorer
bleaching effects (Deborde and Gunten 2008; Huang et al.
1997).

Fig. 1 a Effect of initial PMS
concentrations on RhB
degradation in PMS/Cl−

system, Conditions: RhB,
10 μM; Cl−,120 mM. b Effect
of initial Cl− concentrations on
RhB degradation in PMS/Cl−

system, Conditions: RhB,
10 μM; PMS,1 mM. Inset plots
of −ln(C/C0) versus reaction
time at various Cl− dosages
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Effect of temperature

The influence of temperature was taken into consideration, as
there was a large range of temperature fluctuation in dye
effluent. The temperature dependence was illustrated in
Fig. 2b. Increasing temperature had a positive effect on RhB
degradation. The reaction rate constants were 3.84×10−4 s−1,
8.09×10−4 s−1, 1.49×10−3 s−1, 3.55×10−3 s−1, and 5.47×
10−3 s−1 at 273 K, 293 K, 313 K, 323 K, and 333 K, respec-
tively (R2>0.9). There was nearly no degradation at 273 K,
while RhB was completely bleached in about 5 min at 333 K,
implying in practical application the treatment of dye waste-
water was more efficient in summer than in winter.
Furthermore, the apparent activation energy of RhB decom-
position by PMS/Cl− reagent was computed, according to the
apparent reaction rate constant (k) at different temperatures,
which followed Arrhenius equation (Chen and Zhu 2007):

ln k ¼ lnA�Ea RT= ð6Þ

where A is the Arrhenius pre-exponential constant; R is the
universal gas constant (8.314 J mol−1 K−1); T is the absolute

temperatures; Ea is the apparent activation energy (kJ/mol),
which is 32.996 kJ/mol according to the slope of the plot.

Effect of ionic strength

There are various kinds of ions with different concentrations in
dyeing wastewater which contribute to the ionic strength
(Guillard et al. 2003). The ionic strength was one of influenc-
ing factors for reaction rate demonstrated by Debye–Hückel–
Bronsted–Davies (DHBD) semiempirical theory (Wang and
Margerum 1994; Yu et al. 2004) (Eq. 7):

log k ¼ log k0 þ 2ZAZBA
I1=2

1þ I1=2

� �
� bI ð7Þ

where k is the observed rate constant; k0 is the rate constant at
infinite dilution; A is the Debye–Huckel constant (A=0.509
at 298 K); ZA and ZB are charges for species A and B,
respectively; I is the total ionic strength, and b is an
empirical parameter (b≈0.25).

Fig. 2 a Effect of pH on RhB
degradation in PMS/Cl−

system. Conditions: RhB,
10 μM; PMS, 1 mM; Cl−,
40 mM. b Effect of temperature
on RhB degradation in PMS/
Cl− system. Conditions: RhB,
10 μM; PMS, 1 mM; Cl−,
10 mM

Fig. 3 Effect of ionic strength (0–1.0 M) on RhB degradation in PMS/
Cl− system. Inset dependence of RhB degradation on higher ionic
strength (1.0–2.0 M). Conditions: RhB, 10 μM; PMS, 1 mM; Cl−,
10 mM

Fig. 4 Effect of various cations on RhB degradation in PMS/Cl−

system. Conditions: RhB, 10 μM; PMS, 1 mM; Cl−, 40 mM
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In our study, the ionic strength of the reaction medium
was adjusted by Na2SO4, whose concentrations ranged
from 0.018 to 1.8 M. Fig. 3 shows that the experimental
points fit well to the DHBD theory at relatively low
ionic strengths from 0 to 1.0 M, which was similar to
the previous studies (Beckwith et al. 1996; Wang and
Margerum 1994), while the dependence of reaction rate
constants on high ionic strength was shown in the inset
of Fig. 3. At higher ionic strength, an empirical relation-
ship between the rate constant and the ionic strength had
the following form:

log k ¼ b0I þ c ð8Þ

where b′ and c are experimentally determined coefficients
(Adam and Gordon 1999). The increases in k with in-
creasing I could be ascribed to a positive salt effect
(Church 1995).

Effect of cations

The amount of ions may cause different effects on dye
degradation, in addition to their influences on ionic strength.
Most previous investigations focused on the anions effect,
while the effect of cations on dye degradation was ignored
(Muthukumar and Selvakumar 2004; Hu et al. 2003;
Sohrabi and Ghavami 2008). In the present study, six kinds
of chloride salts (i.e., Na+, K+, Mg2+, Ca2+, Al3+, NH4

+)
were chosen to investigate the impact of cations, keeping
chloride concentration at 40 mM for each sample, as illus-
trated in Fig. 4. Different cations had various impacts on
RhB decoloration rate and their effects could be ranked with
an increased order of NH4

+<Na+<K+<Al3+<Ca2+<Mg2+.
The maximum change (89 %) in degradation was observed
in the case of Mg2+ within 3 min, whereas only 45 % of RhB
was decolored in the case of NH4

+. For NH4
+, it would

hydrolyze into neutral amine which might react with HOCl
forming chloramines (Eqs. 9, 10, and 11), which were much

Table 1 Intermediates of Rhodamine B formed in PMS/Cl− system

No. Name Structure

1 benzoic acid O

OH

2 propane-1,2,3-triol
HO OH

OH

3 phthalic acid

O

OH

O

OH

4 terephthalic acid

O

HO

O

OH

5 dibutyl phthalate

O

O

O

O

6 2-((2-ethylhexyloxy)carbonyl)benzoic acid O

OH

O

O
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weaker oxidants than HOCl/OCl− (Deborde and Gunten
2008; Pinkston and Sedlak 2004). The increasing rate with
the addition of K+ might be related to its weaker interactions
with Cl− than Na+ (Millero et al. 1995). The accelerated
bleaching rates with the addition of Mg2+, Ca2+, and Al3+

could be attributed to the dihydrolysis between them and
OCl−, which would produce more HOCl to bleach RhB.
However, the detailed mechanism is still need to be further
clarified.

NH3 þ HOCl ! NH2Cl þ H2O ð9Þ
NH2Cl þ HOCl ! NHCl2 þ H2O ð10Þ

NHCl2 þ HOCl ! NCl3 þ H2O ð11Þ

TOC analysis

TOC removal efficiency was set as a general index to evaluate
dye mineralization in PMS/Cl− system. Although the RhB was
bleached quickly within a fewminutes, the removal of TOCwas
much more slowly than the RhB decoloration. Only 5.34 % of
RhB could be mineralized without the addition of NaCl after
120 min, and 14.9 % of TOC was removed in the presence of
120 mM Cl− under the similar conditions. The lower minerali-
zation and higher decolorization of treated dye in PMS/Cl−

system indicated that the bleaching of RhB was due to the
destruction of chromophore rather than complete degradation.

Intermediates identification

GC-MS method was performed in order to further investigate
the major degradation intermediates of RhB in PMS/Cl− sys-
tem. The major intermediates could be divided into two
groups: the aromatic compounds with different substituent
groups and the resultants with relatively lower molecular
weights, which were shown in Table 1. The molecular struc-
tures and MS spectra of all the identified intermediates were
shown in Fig. S2–S8 (Supplementary Information). From all
the identified products we concluded that the oxidation pro-
cess of RhB could be described by a series of consecutive
decomposition reactions. RhB was firstly degraded to aromat-
ic compounds, and then oxidized to ring opening products and
organic acids. However, chlorinated products such as 4-
chlorophthalic acid, 1,2-dichlorobenzene proposed by other
investigator (Yuan et al. 2011) were not detected in our re-
search. This might be due to the different pathways of selected
dyes towards chemical oxidation and chlorination.

Conclusion

Effects of system parameters on dye degradation by PMS/Cl−

system were investigated in this study. Positive effects of PMS

and chloride concentrations on dye bleaching kinetics were
observed, which were fitted for the pseudo-first-order. The
lower pH could accelerate the decoloration of dye under acid
condition. The temperature effect implied a favorable perfor-
mance of PMS/Cl− system at higher temperature, and the
apparent activation energy for RhB degradation in PMS/Cl−

system was determined to be 32.996 kJ/mol. The quantity and
kinds of ions in dye effluence might cause ionic strength and
cations impacts on dye decomposition. The results showed that
higher ionic strength had positive effect on RhB degradation.
The presence of cations had significant effects on RhB decol-
oration with an increasing sequence of NH4

+<Na+<K+<Al3+

<Ca2+<Mg2+. In addition, there was little TOC removal in
PMS/Cl− system. However, RhB could be degraded to aro-
matic compounds with different substituent groups and the
resultants with relatively lower molecular weights, identified
by GC-MS. Since most of these intermediates are biodegradable,
this kind of chloride-induced PMS oxidative degradation of dye
can be used to pre-treat saline dye wastewater to enhance its
biodegradability, as well as reduce its toxicity.
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