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Abstract Species sensitivity distribution (SSD) is commonly
used in prospective risk assessment to derive predicted no-
effect concentrations, toxicity exposure ratios, and environ-
mental quality standards for individual chemicals such as
pesticides. The application of SSD in the retrospective risk
assessment of chemical mixtures at the river basin scale (i.e.,
the estimation of “multiple substance potentially affected
fractions” [msPAFs]) has been suggested, but detailed crit-
ical assessment of such an application is missing. The pres-
ent study investigated the impact of different data validation
approaches in a retrospective model case study focused on
seven herbicides monitored at the Scheldt river basin
(Belgium) between 1998 and 2009. The study demonstrated
the successful application of the SSD approach. Relatively
high impacts of herbicides on aquatic primary producers
were predicted. Often, up to 40 % of the primary producer
communities were affected, as predicted by chronic msPAF,
and in some cases, the predicted impacts were even more
pronounced. The risks posed by the studied herbicides de-
creased during the 1998–2009 period, along with decreasing
concentrations of highly toxic pesticides such as simazine or
isoproturon. Various data validation approaches (the removal
of duplicate values and outliers, the testing of different
exposure durations and purities of studied herbicides, etc.)

substantially affected SSD at the level of individual studied
compounds. However, the time-consuming validation pro-
cedures had only a minor impact on the outcomes of the
retrospective risk assessment of herbicide mixtures at the
river basin scale. Selection of the appropriate taxonomic
group for SSD calculation and selection of the species-
specific endpoint (i.e., the most sensitive or average value
per species) were the most critical steps affecting the final
risk values predicted. The present validation study provides
a methodological basis for the practical use of SSD in the
retrospective risk assessment of chemical mixtures.
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risk assessment . Mixture toxicity . Herbicides . River basin
pollution . Validation

Introduction

The contamination of aquatic ecosystems by mixtures of
industrial and household chemicals, pesticides, and other
anthropogenic contaminants is still a major environmental
problem (Fuerhacker 2009; Silva et al. 2012; Smital et al.
2012). Contaminants are known to affect ecosystem func-
tions and services but the extent and impact of the effects are
still relatively poorly characterized (Rockström et al. 2009).
To model and predict impacts of toxic chemicals on
aquatic biota, several approaches have been suggested
(Solomon et al. 2008).

One of the methods broadly used for prospective ecotox-
icological risk assessment and the setting of environmental
quality standards (EQS) is species sensitivity distribution
(SSD) (Posthuma et al. 2002; Van Straalen and Denneman
1989). This statistical model combines ecotoxicity values
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(e.g., chronic no-effect concentrations such as no observed
effect concentration [NOEC] or acute concentrations caus-
ing an effect in 50 % of organisms [EC50]), which are
available for different species in databases and public liter-
ature. The uncertainty in setting EQS using this probabilistic
risk assessment approach is then expected to be smaller in
comparison with the approach using assessment factors
applicable for a limited number of EC50 or NOEC values
(EC 2011; Vighi et al. 2006). Since SSD is a quantitative
method, it can also be applied in retrospective risk assess-
ment to predict a fraction of the community which is likely
to be impacted by a certain chemical or mixture (Fig. 1). To
describe the risk, the SSD approach uses values called the
“potentially affected fraction” (PAF) for single substances
and the “multiple substance potentially affected fraction”
(msPAF) for mixtures (Posthuma et al. 2002) and has been
employed in some case studies in Europe (Carafa et al.
2011; Comte et al. 2010; Faggiano et al. 2010) and the
USA (Schuler and Rand 2008).

Despite the fact that SSD is broadly used and
recommended by authorities for setting EQS within the
prospective risk assessment (e.g., EC 2003, 2011; Xiaowei
et al. 2012; Caquet et al. 2013), many different statistical
methods and data validation approaches have been used in
SSD (especially within the retrospective risk assessment of
mixtures), which can lead to highly variable results.

The basic approach is a classical parametric statistical
approach assuming a certain distribution of primary data.
The toxicity data are fitted, for example, to log-normal
(Wagner and Lokke 1991), log-logistic (Van Straalen and
Denneman 1989), or log-triangular (US Environmental
Protection Agency (EPA) 1985) distributions. Since some
datasets hardly fit classical distributions, nonparametric

bootstrapping has also been suggested for SSD (Duboudin
et al. 2004; Newman et al. 2000; Wheeler et al. 2002). More
recently, the use of Bayesian statistics has become a popular
approach thanks to its advantages such as the easy deriva-
tion of confidence intervals and the possibility of incorpo-
rating expert knowledge (Aldenberg and Jaworska 2000;
Grist et al. 2006; Hayashi and Kashiwagi 2010).

In addition to variability in statistical methods, the
outcomes of SSD may be affected by the application of
different data validation approaches, such as using dif-
ferent sets (NOECs vs. EC50s) and considering different
taxonomic groups and/or exposure durations. The influ-
ence of these factors on SSD is briefly described in the
following paragraphs.

It was originally recommended to use chronic NOEC
values for SSD modeling (Bachman 2009; EC 2003; Sijm
et al. 2002). However, this approach suffers from a low
number of available NOEC values; in practice, acute
ecotoxicity data (EC50) are more often available. Also, the
high uncertainties related to the way NOECs are derived
(post-analysis of variance multiple comparison tests) and the
overall NOEC concept (the derived value depends on actu-
ally tested concentrations) have been discussed critically,
and some authors suggest that NOEC should not be used
in ecotoxicology (Crane and Newman 2000; Jager 2012;
Laskowski 1995; Organization for Economic Cooperation
and Development (OECD) 2006b; Van der Hoeven 1997). It
is possible to replace NOEC with the more robust chronic
EC10 (Crane and Newman 2000; EC 2011), but these
values are in general still missing in ecotoxicity databases.
Therefore, acute EC50 values are often used in retrospective
risk assessment and they can be combined with uncertainty
factors (acute to chronic factor [ACF]) to extrapolate to
chronic effects (De Zwart 2002; Van den Brink et al. 2006).

According to European legislation (EC 2003, 2011), al-
gae, macrophytes, invertebrates, and vertebrates should all
be included in the SSD calculation, and values for at least 10
species should be used. This approach is generally accepted,
but specific recommendations differ among other agencies.
For example, the US EPA recommends at least eight spe-
cies, the Dutch RIVM recommends four species, and the
OECD recommends from five to eight species (Kefford et
al. 2005). In practice, the number of species is defined by
toxicity data, which are available in databases, and often
<10 species are used (Maltby et al. 2009; Schuler and Rand
2008). The proper representation of species and taxa within
an SSD is one of the major assumptions of this method
(Forbes and Calow 2002), and using species weighting
(Duboudin et al. 2004; Hayashi and Kashiwagi 2010) or
ecotoxicity data for ecologically relevant species has been
suggested (Hickey et al. 2008; Kefford et al. 2005; Xiaowei
et al. 2012). In the case of substances with a specific toxic
mode of action (TMoA) such as pesticides, some authors
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Fig. 1 SSD as a cumulative distribution function. The figure shows
the derivation of the concentration affecting “p%” of species (the
hazard concentration HCp, used in probabilistic risk assessment and
for the setting of EQS) as well as the estimation of the fraction of
species affected by a certain concentration (PAF—retrospective risk
assessment). Black dots denote the NOEC or EC50 values for different
biological species
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include all available species across all taxonomic groups
within a single SSD curve (Faggiano et al. 2010).
However, other authors (Maltby et al. 2005; Van den
Brink et al. 2006) recommend that only species from the
most sensitive taxonomic group should be used (e.g., pri-
mary producers for herbicides, insects for insecticides, etc.)
and that merging data from different taxonomic groups is
not correct. A slightly different approach is suggested by EC
(2011), where the most sensitive group is used only in the
case of an apparent gap between the sensitivity distributions
of the most sensitive vs. other taxa or if there is a poor log-
normal fit of the SSD. Another problem discussed in the
literature is the use of freshwater vs. marine species in SSD.
The general assumption of SSD is a random and represen-
tative selection of taxa from the target group (Forbes and
Calow 2002), which should logically distinguish between
freshwater and marine organisms. However, several studies
have shown no systematic or statistically significant differ-
ence in the sensitivities of organisms from different aquatic
compartments and, therefore, using ecotoxicity data from
both freshwater and marine taxa (which do not differ signif-
icantly) within one SSD has been recommended (De Zwart
2002; Maltby et al. 2005; Raimondo et al. 2008; EC 2011).

Another important step in data selection for SSD is
exposure duration selection. As mentioned previously,
EC50s are nowadays the most commonly used values in
SSD modeling. However, some authors require strictly acute
values from very short exposures (e.g., <1 day for algae; De
Zwart 2002), while others use different exposure duration
ranges (e.g., Van den Brink et al. 2006 used 1–7 days for
algae and 2–28 days for macrophytes; Duboudin et al. 2004
used a maximum of 2 days for algae; Brock et al. 2004 used
1–5 days for algae and 4–28 days for macrophytes; Schuler
and Rand 2008 used a maximum of 7 days for all primary
producers; Caquet et al. 2013 used 1 day or more for
primary producers). Furthermore, in some studies, the exact
exposure durations behind the ecotoxicity data used for SSD
calculations have not been exactly specified (Newman et al.
2000; Comte et al. 2010). The major problem is thus the
poor definition of “acute,” especially for some taxa such as
algae, where relative short exposures lasting a few days
represent, in fact, several generations.

Besides the three major sources of variability mentioned
previously, other validation steps may affect the final SSD
outcome such as (1) checking the purity of tested substances
(especially for pesticide preparations), (2) deleting outliers
and replicated values, which can often be found in
ecotoxicity databases, or (3) checking of variable test con-
ditions (e.g., pH, temperature).

Some studies critically investigated the impact of various
data validation approaches on SSD outcomes in prospective
risk assessment design, where SSD is commonly used for
the estimation of EQS with respect to individual chemicals

(Maltby et al. 2005; Van den Brink et al. 2006; Wheeler et
al. 2002). However, to our knowledge, no critical assess-
ment of different data validation approaches in the retro-
spective ecotoxicological risk assessment of mixtures has
been provided. Therefore, the aim of the present study was
to primarily investigate the impact of different data valida-
tion approaches on the outcomes of SSD applied in a retro-
spective case study. As a model case, seven important
herbicides (differing in their modes of action) were selected
and long-term 1998–2009 monitoring data from the Scheldt
river basin, Belgium were used to calculate msPAF values.
The objective was to assess variability in the SSD outputs
(i.e., values and ranges in msPAF) when combining real
monitoring data with various input toxicity data for different
taxa (all taxonomic groups vs. primary producers), when
using different exposure durations (selected periods vs. all
available durations), when testing the influence of different
purities of tested pesticides (pure only vs. all available data),
and when using different validation procedures (the removal
of replicates and outliers). Further, by synthesizing various
opinions discussed in the literature, we tried to outline and
discuss important steps in the data preparation and valida-
tion and demonstrate key factors affecting the SSD out-
comes when applied in retrospective design.

Materials and methods

SSD model

Seven different herbicide compounds in this study were
selected mainly because of the availability of long-term
monitoring data (1998–2009) and the availability of
ecotoxicity data covering different chemical structures and
TMoA (Reade and Cobb 2002). The selection served as a
model for the assessment of different input data on retro-
spective ERA outcomes. Bentazone (benzothiadiazinone
class) is a photosynthesis inhibitor in photosystem II, which
binds to the “C” site of D1 protein; glyphosate (glycine
derivative) is a selective inhibitor of essential aromatic
amino acid synthesis in chloroplasts; isoproturon (urea
derivative) is an inhibitor of photosynthesis in photosystem
II, which binds to a “B” site of D1 protein; 2-methyl-4-
chlorophenoxyacetic acid (MCPA) and mecoprop are
phenoxy-carboxylic acid herbicides, which act as synthetic
auxins; simazine and terbuthylazine are triazine herbicides
acting as inhibitors of photosynthesis in photosystem II
(binding to an “A” site of D1 protein).

Ecotoxicity data for these seven herbicides were obtained
from the US EPA ecotoxicity database ECOTOX (http://
cfpub.epa.gov/ecotox, last data acquired during November
2011) and from open literature (Supplementary Table S5).
The original ecotoxicity database contained a very low
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number of suitable chronic NOEC or EC10 values; often the
same NOEC value was repeatedly reported for different
species by the work of a single author. Consequently, only
EC50 values were selected for further processing. With
respect to reported endpoints, we considered only toxicity
data related to growth and biomass (for primary producers)
and mortality and immobilization (for other organisms).
Assessment of this original dataset (EC50 values) showed
no difference in sensitivities between freshwater and saltwa-
ter species (Mann–Whitney U test, Z=−0.47, p=0.64), and
data from both compartments were combined together.

Original datasets were further processed and validated
using different approaches, which resulted in 11 different
datasets used for the modeling of SSD (Table 1 and
Supplementary Table S5). Detailed explanations of the indi-
vidual datasets are provided in the “Results and discussion”
section.

Log-normal approximation was applied and SSD curves
were modeled using the Bayesian approach in R-software
and winBUGS according to Hayashi and Kashiwagi (2010).
For SSD calculations, model 1 of Hayashi and Kashiwagi
(2010) was used and no expert knowledge incorporated.

EU guidance (EC 2011) recommends a minimum of 10
species toxicity values for SSD modeling. This requirement
was fulfilled in all datasets for glyphosate, isoproturon,
simazine, and terbuthylazine and also in some subdatasets
for bentazone and MCPA (see Table 2 and Supplementary
Table S1). In the present study, a minimum of five species
EC50 values for each SSD were applied in agreement with
some previous studies (Van den Brink et al. 2006; Schuler
and Rand 2008). This minimum is also in accord with Dutch
RIVM (a minimum of four values; RIZA (1999)) and US
EPA (five to eight values). In the case of some datasets of

mecoprop (Supplementary Table S1), the number of species
EC50 values was lower than five. However, we did not
discard mecoprop from the study because this herbicide is
frequently detected in European rivers, and the potential risks
should not be overlooked. The SSD parameters of mecoprop
were, therefore, estimated according to Aldenberg and Luttik
(2002) by using the standard deviation of the substance with
the same TMoA (MCPA for mecoprop).

Monitoring data

Concentrations of herbicides were obtained from the
Flemish Environment Agency (VMM; the Flemish govern-
ment, Belgium; http://www.vmm.be) and covered chemical
monitoring in the Belgian part of the Scheldt river basin
between 1998 and 2009. The monitoring was performed in
monthly periods and included 37 sampling stations (Fig. 2).
If data were reported below the detection limit (not con-
stant), a value of half the detection limit was assigned. The
number of samples collected and analyzed per year varied
from 92 (in 1998) to 266 (in 2005). Not all stations and
herbicides were monitored each year. Between 1998 and
2000, only isoproturon, simazine, and terbuthylazine were
analyzed systematically. After 2001, other herbicides were
included, and from 2005, the total yearly number of samples
settled to around 250 (see Supplementary Table S4).

Risk characterization

SSDs derived for individual substances (based on acute
EC50) were transformed to “chronic SSD” using an ACF
of 10, as chronic impacts could be expected with respect to
the long-lasting occurrence of several herbicides in the

Table 1 Different datasets of EC50 values used according to different data selection and validation approaches

Dataset identification number Validationa Taxa Exposure duration Purity Species EC50 averagingb

1 Yes Primary producers <1–96 All Geomean

2 Yes Primary producers 1–96 All Geomean

3 Yes Primary producers 1–4 All Geomean

4 Yes Primary producers <1–3/7c All Geomean

5a Yes Primary producers 1–7 All Geomean

5b Yes Primary producers 1–7 90 % Geomean

5c Yes Primary producers 1–7 90 % Most-sens.

6a Yes All taxa 1–7 90 % Geomean

6b No Primary producers <1–96 All Geomean

6c No All taxa <1–96 All Geomean

6d Yes All taxa 1–7 90 % Most-sens.

a New data search in the literature, replicate removal, and the correction or deletion of suspicious values
b Geometric mean used when more EC50 values exist for one species (“geomean”) or the “most sensitive” endpoint with the smallest EC50 used
when more values exist for one species (“most-sens.”)
c 3 days for algae and 7 days for macrophytes
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River Scheldt as demonstrated by monitoring data. An ACF
of 10 was used according to De Zwart (2002), who corre-
lated averaged chronic NOEC values and acute EC50 values
for 89 different compounds and derived this “average”
factor. Despite the uncertainty (the 95 % confidence interval
for ACF in the study of De Zwart 2002 ranged from 8 to 94), a
factor of 10 is generally recommended and used in the
SSD of mixtures as a median factor for different sub-
stances. For example, Van den Brink et al. (2006) justified
its use for a mixture of nine herbicides. A more appro-
priate way of transferring acute EC50 to chronic NOEC
would be to estimate the unique ACF for each substance.
However, a lack of NOEC values in the database did not
allow us to use this approach and an ACF of 10 was
used in the present study.

To characterize the potential impact of herbicides on a
community, msPAF values were calculated. msPAFs com-
bine SSDs for individual herbicides using a mixed-model
approach with concentration addition (CA) and response

addition (RA) models (De Zwart and Posthuma 2005;
Traas et al. 2002).

First, the concentration addition msPAFs (msPAFCA) were
calculated for those substances which share the same TMoA
(i.e., MCPA+mecoprop and simazine+terbuthylazine). The
CA approach assumes that substances with the same TMoA
act on the same target, that these substances’ SSDs have a
similar standard deviation, and that only the means are differ-
ent (i.e., the substances differs in their potencies) (Aldenberg
and Luttik 2002; Cedergreen et al. 2008). The CA model for
SSDs based on log-normal EC50 approximation is calculated
as follows:

msPAFCA ¼ 1

σ2TMoA
ffiffiffiffiffi
2p

p exp
� log

Pn
i¼1 HUTMoA;i

� �2

2σ2TMoA

ð1Þ
where σTMoA is the average standard deviation of SSD for
herbicides within the same the same TMoA and HUTMoA is a

Table 2 Parameters of the normal distribution fitted to the decimal logarithm of primary producer EC50 values (mean μ and standard deviation σ), HC5
values, and number of data points in SSD models derived according to different data selection; selected “most appropriate” dataset is in italic text

Dataset
number

Bentazone Glyphosate Isoproturon MCPA Simazine

μ σ HC5 [μg/l] μ σ HC5 [μg/l] μ σ HC5 [μg/l] μ σ HC5 [μg/l] μ σ HC5 [μg/l]
(N) (90 % CI) (N) (90 % CI) (N) (90 % CI) (N) (90 % CI) (N) (90 % CI)

1 3.89 0.56 952 4.23 0.58 1,874 1.57 0.32 11.1 4.04 1.08 190 2.39 0.76 13.8

(11) (234, 2,155) (14) (567, 4,080) (18) (6.47, 16.3) (8 (6.22, 1,194) (47) (6.6, 25.1)

2 3.91 0.59 870 4.16 0.53 1,992 1.56 0.32 10.9 4.04 1.08 190 2.41 0.82 11.8

(11) (198, 2,064) (14) (678, 4,021) (18) (6.3, 16.0) (8) (6.22, 1,194) (31) (4.33, 25.0)

3 3.57 1.09 61.5 4.36 0.54 3,036 1.60 0.31 12.4 4.44 0.48 4,594 2.51 0.49 51.2

(6) (0.71, 481) (8) (552, 7,585) (16) (6.92, 18.3) (4) (196, 13,177) (13) (17.3, 101)

4 3.73 1.12 109 4.46 1.05 559 1.74 0.21 24.6 – – – 2.39 0.62 24.1

(8) (4.12, 635) (4) (0.53, 5,722) (12) (15.1, 33.2) (1) (25 (10, 45.6)

5a 3.96 0.60 957 4.22 0.54 2,133 1.58 0.31 11.8 4.28 0.53 2,644 2.55 0.49 55.7

(10) (191, 2,421) (12) (604, 4,592) (16) (6.55, 17.6) (5) (185, 7,941) (24) (27.2, 94.2)

5b 3.69 0.61 497 4.22 0.54 2,133 1.61 0.34 11.0 4.28 0.54 2,524 2.48 0.48 48.8

(6) (41.4, 1,563) (12) (604, 4,592) (14) (5.44, 17.4) (5) (169, 7,719) (21) (23.3, 84.1)

5c 3.48 1.04 61.9 3.92 0.46 1,443 1.48 0.37 7.50 4.15 0.73 942 2.31 0.67 16.3

(6) (0.88, 438) (12) (492, 2,774) (14) (3.54, 12.2) (5) (25.4, 4,201) (21) (5.84, 34.4)

6a 4.28 0.90 4.58 0.59 1.61 0.34 4.66 0.54 3.63 1.36

(11) (26) (14) (11) (45)

6b 3.95 0.57 4.28 0.64 1.55 0.30 4.06 1.08 2.42 0.72

(11) (12) (14) (8) (43)

6c 3.57 0.91 4.39 0.91 1.63 0.40 4.27 1.11 3.51 1.34

(21) (37) (14) (24) (88)

6d 4.17 1.15 4.28 0.64 1.48 0.37 4.55 0.67 3.38 1.33

(11) (26) (14) (11) (45)

HC5 values are the median (90 % confidence interval) with units of micrograms per liter

μ sample mean of the log-transformed EC50 values, σ standard deviation of the log-transformed EC50 values
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hazard unit for each substance calculated by the following
equation:

HUTMoA ¼ environmental concentrationð ÞTMoA

10μ
ð2Þ

where μ is the mean of SSD for the respective chemical
substance (mean of the log(EC50) values).

In the second step, the response addition msPAFs
(msPAFRA) for herbicides (or groups of herbicides) with
different TMoAwere calculated. RA (the term “independent
action” is used for single-species dose–response models)
assumes that substances with different TMoA do not interact
and thus act independently. The final mixture effect is,
therefore, based only on the combined probabilities calcu-
lated for all substances in the mixture (Cedergreen et al.
2008; De Zwart and Posthuma 2005). The solution of the
RA model for SSD according to Traas et al. (2002) is:

msPAFRA ¼ 1�
Yn

i¼1
1�msPAFið Þ ð3Þ

where msPAFi stands for msPAFCA (for a group of herbi-
cides with the same TMoA) or PAF (for a single herbicide
with unique TMoA).

For data management, SSD derivation, and msPAF cal-
culations, we used R-software 2.14.0 (R Development Core
Team, Vienna, Austria), winBUGS 1.4.3 (Imperial College
and MRC, UK), Statistica 10 (StatSoft, Tulsa, OK, USA),
and Microsoft Excel 2010.

Results and discussion

Although SSD is often used for prospective risk assessment
and setting the EQS (EC 2003, 2011), the method has been
only poorly characterized in terms of its application for the
retrospective risk assessment of mixtures at the river basin
scale. To achieve the goal of the present paper, i.e., to
characterize the impacts of different data processing and
validation approaches on the outcomes of SSD, we first

Fig. 2 Positions of the studied localities within the Belgian part of the Scheldt river basin
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assessed the selections of input EC50 data on SSD out-
comes. Five herbicides were selected for this first assess-
ment, one from each TMoA group. Further, the most
appropriate EC50 datasets were tested with respect to the
pesticide monitoring case of the Scheldt river basin.

Influence of different data validation approaches on the SSD

Different exposure durations

The exposure duration of experiments from which
ecotoxicity values (mostly EC50) are derived is one of the
most important factors, but variable ranges have been used
by different authors (De Zwart 2002; Van den Brink et al.
2006; Schuler and Rand 2008). In the present exercise,
herbicide ecotoxicity data obtained with the target organ-
isms (primary producers) were selected. Data were validated
by (1) selecting EC50 values only and (2) checking and
removing replicates and outlying values, which were com-
monly found in ecotoxicity databases. The outliers, i.e.,
EC50 values outside of the 3σ interval of the SSD distribu-
tion, were tracked back to original articles and their reliabil-
ity was assessed case by case. Finally, (3) for the species
with more EC50s, the values were averaged by a geometric
mean so that the data were equally representative among
species (a single data point for each species). Five different
categories were then defined (Table 1 and Supplementary
Table S2): dataset no. 1 combined all available ecotoxicity
data from very short—usually in vitro biochemical—exper-
iments lasting minutes to hours, up to experiments lasting
more than 3 months (96 days). The very short, ecologically
nonrelevant values (<1 day), which could bias overall risks,
were excluded in dataset no. 2, which then contained data
from 1- to 96-day-long ecotoxicological experiments. Other
datasets (nos. 3, 4, and 5a) contained different short-term
EC50 values because the term “acute” is not well defined
and substantial differences exist among primary producers
(microalgae vs. macrophytes). Two datasets did not discrim-
inate between algae and macrophytes and the categories
were 1–4 days (dataset no. 3; i.e., the general “acute” range
in ecotoxicology) and 1–7 days (dataset no. 5a, selected for
pragmatic reasons as more ecotoxicity values were avail-
able). Dataset no. 4 included exposure durations reflecting
OECD guidelines (OECD 2006a, 2011) with data from <1
to 3 days for algae and from <1 to 7 days for macrophytes.

Example comparisons of the SSD curves for five herbi-
cides and three exposure categories are presented in Fig. 3,
and detailed characteristics of the modeled SSD values
(number of data points [N], mean, standard deviation, and
hazard concentration predicting the impact on 5 % of the
community [HC5]) are presented in Table 2. As is apparent,
for example, with bentazone, glyphosate, and MCPA, the
narrower the range of exposure durations, the smaller the

number of EC50 values and the higher the uncertainty of
SSD (demonstrated by broader 90 % confidence intervals,
especially on the left tail of the curve; see Fig. 3 and HC5
values in Table 2). For these statistical reasons, the largest
number of values in dataset no. 1 (<1–96 days) could be the
best choice. However, it is obvious (for example, with
simazine or MCPA; Fig. 3 and Table 2) that many long
(>7 days) and/or too short exposures (<1 day) increased
the standard deviation of the SSD curve. Large uncertainties
and standard deviations were also observed for datasets with
very small numbers of EC50 values (dataset nos. 3 and 4; an
extreme case was, for example, MCPA—only a single EC50
value was available for dataset no. 4). Therefore, dataset no.
5a (exposure durations, 1–7 days) was found to be a good
compromise representing short-term acute exposures by a
sufficiently large number of data and reasonably small con-
fidence intervals.

Purity of the herbicide formulation

Many ecotoxicological experiments tested pesticides as
commercial formulations, which, apart from the active in-
gredient, contain also various additives such as detergents or
stabilizers, and the final EC50 value may not necessarily
represent the effect of the pesticide itself (Beggel et al. 2010;
Cedergreen and Streibig 2005; Pereira et al. 2000). To check
the influence of this bias within the original ecotoxicity
database, the data from the selected dataset no. 5a (1–7 days)
were further validated and only the values for pure herbi-
cides (≥90 % active ingredient) were selected for dataset no.
5b. As shown in Table 2, no major differences were ob-
served between SSDs from dataset nos. 5a vs. 5b, except for
bentazone. For this herbicide (Fig. S1), better normality was
achieved with dataset no. 5b (the p value of Anderson–
Darling goodness of fit increased from 0.09 to 0.54), while
the HC5 value decreased by approximately two times
(Table 2). Taken together, it is recommended to perform
detailed data validation which considers also the purity of
herbicides used in the original ecotoxicological experi-
ments. This validation step provided more relevant data
(effects of additives in the pesticide formulation excluded),
and the statistical assumptions (the normality) were not
affected or even improved.

Dealing with more ecotoxicological data values for one
species

The compilation of ecotoxicity data (EC50 values) for SSD
modeling assumes that all taxa (species) are equally repre-
sented in the dataset (Van den Brink et al. 2008), and it is
recommended to use only a single toxicity value (EC50) for
each species (Suter et al. 2002). However, two different
approaches regarding the EC50 have been discussed. The
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first approach, which was also used in the present study,
considers intraspecies and interlaboratory variability and
estimates the “average” sensitivity of the species by using
the geometric mean of all available EC50 values—dataset
no. 5b (Maltby et al. 2005; Raimondo et al. 2008). Another
approach focuses on the worst case by selecting the “most
sensitive” endpoint—i.e., the lowest EC50 values for each
species (Hayashi and Kashiwagi 2011; Schuler and Rand
2008). To assess the actual differences, a specific dataset no.
5c (“the most sensitive” approach) was prepared and com-
pared with the corresponding dataset no. 5b. It should be
mentioned that neither of these approaches in the present
study considered differences in life stages or test conditions
(such as pH, hardness, or dissolved organic carbon)
(Hayashi and Kashiwagi 2011). As expected, using lower
EC50 values in dataset no. 5c shifted SSDs to lower con-
centrations (see HC5 values in Table 2 and Fig. S2 in the
Electronic supplementary material). With respect to the nor-
mality distribution, we recorded one improvement (with
glyphosate, where the p value of Anderson–Darling good-
ness of fit increased from 0.16 to 0.64) and four worsenings

(e.g., with bentazone and others). Both approaches appar-
ently lead to different SSD outcomes. Using only the
smallest EC50 values gives more weight to sensitive life
stages and clones; thus, it seems to be more conservative.
However, it could also overestimate the actual risk because
not using all available data gives more weight to potential
outliers (see, for example, bentazone and glyphosate in
Supplementary Fig. S2). The use of the “averaged”
all-species values (geometric mean) is probably less
conservative, but it may minimize the influence of ex-
perimental errors from experimental ecotoxicity tests
(Wheeler et al. 2002).

Finally, the approach based on the geometric means of
validated EC50 values from primary producers with an
exposure duration of 1–7 days (dataset no. 5b) was selected
for the present case study on the Scheldt river basin as
described in the following sections. This, in our opinion,
was the most appropriate dataset and was used for msPAFs
calculation; the results were then compared with msPAFs
derived by other approaches suggested in the literature (the
use of nonvalidated datasets, the use of complete ecotoxicity
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data for taxa other than primary producers alone, and the use
of the most sensitive EC50 endpoint).

Risks of herbicide mixtures for the Scheldt river basin
localities

Rather than assessing the complex ecotoxicological status in
the Scheldt river basin, the objective of the present study
was to investigate SSD suitability in the retrospective
ERA by testing the influence of input data on the range
and variability of predicted msPAF (see the “The role of
different data validations on retrospective risk assessment—
msPAFRA” section). Nevertheless, the described approach
provided simple comparisons of relative risks between lo-
calities and years. In spite of uncertainties (e.g., a limited
number of herbicides, a relatively low number of EC50s for
some compounds, a single ACF for all substances, the
selected statistical method or data validation approach), pre-
dicted msPAF values for herbicide mixtures provided rea-
sonable prioritization of localities and the identification of
the most affected ones (see also Supplementary Table S3).

Estimated risks (msPAF) for individual monitored sites,
months, and years within the Scheldt river basin, Belgium
during the 12-year monitoring period are presented in
Fig. 4. As is apparent, a clear decrease in estimated
risks (the lowering of msPAFs) was observed during the

years 1998–2009 (Figs. 4 and 5, Supplementary Table S3),
which reflected the decreasing concentrations of some herbi-
cides (isoproturon and simazine). Yearly means of msPAFRA
(all localities taken together) were significantly correlatedwith
simazine and isoproturon concentrations (Spearman rank
order correlation RS=0.7 and 0.67, respectively, p<0.05).

Until 2004, the monthly levels of predicted risk often
exceeded an msPAF of 0.05 at several sites. This 5 % thresh-
old is used in the prospective SSD for deriving predicted no-
effect concentrations–HC5 (the hazardous concentration of a
substance affecting 5 % of species). If the msPAF exceeds
0.05, the ecosystem is considered significantly affected (EC
2011). The present study shows that, at many localities, the
msPAF reached 0.4 and, for seven localities, the predicted
risks were even higher (Supplementary Table S3). Less pro-
nounced effects were derived for the more recent years 2005–
2009, where none of the msPAFs exceeded 0.3. The highest
values were found at localities 28–36, which are mostly
situated in regions with higher proportion of arable land
(Supplementary Table S3 and Fig. 1). Clear relationships
between msPAF and the periods of herbicide application were
recorded, with elevated msPAFRA values from March to July
and in October and November (Fig. 4).

The derived msPAFRA corresponded to previous studies.
For example, Schuler and Rand (2008) investigated the
acute effects of 11 PSII inhibitors (+norflurazon) on aquatic

Fig. 4 Calculated risks (chronic msPAFRA values) for 37 localities
within the Scheldt river basin; a presentation of the results during the
1998–2009 monitoring, b time dependency of msPAF for localities
with at least one msPAF>0.05 and for the years 2007–2009 (split into

two plots for better differentiation). Each point represents the calculated
msPAF (monitoring was not done each month); the red line indicates
msPAFRA=0.05
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primary producers in Florida and predicted impacts on up to
27 % of the community (msPAF=27 %). In the Scheldt river
basin, Comte et al. (2010) predicted the acute effects of
chemical mixtures on invertebrates with maximum
msPAFs up to 25 %. Carafa et al. (2011) predicted the acute
effects of the mixture of 60 different contaminants in

Catalonia, Spain, with maximum msPAF up to 100 %.
Lower msPAFs (<5 %) were reported by Faggiano et al.
(2010), who predicted the acute effects of 26 pesticides at
the Adour-Garonne basin, France.

In our study, the importance of actual herbicide
ecotoxicity for the prediction of risk was clearly revealed.
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While the measured concentrations (yearly means) differed
by a maximum of two orders of magnitude across all
sampling sites, the SSD curves of individual herbicides
differed up to three orders of magnitude (see Table 2 and
Supplementary Table S4). The final msPAFRA value com-
bining the measured concentrations with ecotoxicity indices
clearly provides more realistic risk prediction than concen-
trations alone.

The investigated samples contained herbicide mixtures
with highly variable concentrations and ratios. Our further
investigation aimed to elucidate the influence of individual

chemicals on the overall msPAF, thus identifying hazardous
compounds with the highest contribution to overall risk. A
subset of the monitoring data was selected to cover periods
of elevated pesticide concentrations (March to July+
November) during two particular years with different levels
of contamination (1999 vs. 2009), and the relative impor-
tance of each herbicide (or class with the same TMoA) was
calculated as a weighted rank. For each sample, the PAFs of
individual herbicides (or TMoA classes) were ranked (the
higher the PAF value, the bigger the influence of the respec-
tive compound on msPAF). The obtained rank values (i)

Fig. 7 Predicted risks
(msPAFRA values) at 37
localities of the Scheldt river
basin (2007, April to June)—
influence of the EC50 datasets
on the SSD outcomes (EC50
values for primary producers
vs. all taxa; validated vs.
nonvalidated datasets;
“geomean” vs. “most sensitive”
endpoint approach)
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were then weighted by dividing by the number of herbicides
(n) that were actually determined in the specific sample (not
all pesticides were present in each sample). The final value
(weighted rank= i/n) indicates the relative contribution of
the individual compound (or TMoA class) to the total
msPAF (the smaller the value of the weighted rank, the
higher the importance of an individual herbicide; see
Fig. 6). During 1999, monitoring data for only three indi-
vidual pesticides from two TMoA classes were available
(isoproturon and simazine+ terbuthylazine), and as is
apparent from Fig. 6, the influences of these herbicides on
the msPAFRA were clearly comparable. During 2009,
simazine+terbuthylazine still had the highest importance
(the lowest weighted ranks), while the group of MCPA+
mecoprop appeared to be the least hazardous. For
isoproturon, two peaks in the distribution of ranks were
observed (Fig. 6), which can be linked to the specific appli-
cation of this herbicide during the autumn months.

The role of different data validations on retrospective risk
assessment—msPAFRA

Risk predictions described in the previous paragraphs were
based on the selected—and, in our opinion, the most
appropriate—dataset of ecotoxicity values (i.e., dataset no.
5b), which included only validated acute data (exposure of
1–7 days, purity ≥90 %, a single geometric mean EC50 for
each species, and the exclusion of replicates and outliers) with
respect to a group of primary producers (i.e., the most sensi-
tive target taxa). However, other authors have suggested dif-
ferent approaches (Comte et al. 2010; Faggiano et al. 2010;
Schuler and Rand 2008), and the major objective of the
present paper was to investigate actual changes in the retro-
spectivemsPAFs after the use of different ecotoxicity datasets.
For this exercise, values of msPAF were calculated for the
years 2007, 2008, and 2009, which are relevant to the current
exposure situation. The results are shown in Figs. 7 and 8.

Comparison of validated vs. nonvalidated datasets for
primary producers (dataset no. 5b vs. 6b—Figs. 7 and 8)
showed no significant major difference in the final msPAFs,
although slightly lower msPAF values were determined
using nonvalidated data. With respect to individual com-
pounds, the mean sensitivity (mean of the SSD) shifted to
either higher (e.g., bentazone, glyphosate, terbuthylazine) or
lower concentrations (other compounds), and the variability
increased (higher standard deviation of the SSD) when
using larger datasets for nonvalidated primary producers
(for example, with MCPA, where the standard deviation
almost doubled; see Table 2).

More pronounced differences were observed when EC50
values for all taxa (validated data—dataset no. 6a) were
included in the risk calculations. Smaller msPAF values
(i.e., msPAF<0.1 derived originally with the primary

producer dataset no. 5b) generally increased when using
the larger dataset no. 6a (see Fig. 7; Wilcoxon matched pair
test, p<0.05). In contrast, the bigger original msPAFs cal-
culated with dataset no. 5b (msPAF>0.1) were lowered
when dataset no. 6a was used (Fig. 8). Similar trends were
also observed when all available ecotoxicity data (all taxa,
all exposure durations, nonvalidated—dataset no. 6c) were
used for msPAF estimation. The pronounced differences in
msPAFRA can be attributed to changes in the SSD parame-
ters of individual herbicides. Use of dataset no. 6a instead of
no. 5b resulted in an increase in both the mean sensitivity
distribution and variability of single SSDs (see example of
simazine in Supplementary Fig. S3). The only exception
was the SSD for isoproturon, where mostly ecotoxicity data
for primary producers were available (see Table 2).
Differences observed between these two approaches (dataset
no. 5b vs. 6a) were statistically significant and they may
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have a strong impact on predicted risks (large numerical
differences in msPAFRA).

Differences in msPAF values were also observed between
datasets based on mean sensitivity values (“geomean”
dataset no. 5b—primary producers, no. 6a—all taxa) and
the “most sensitive” values (dataset nos. 5c and 6d). For
primary producer data, msPAFRA from dataset no. 5c were
on average two times higher than values predicted from
dataset no. 5b (see Fig. 8). Less pronounced differences
were observed when data for all taxa were used (“geomean”
dataset no. 6a vs. the “most sensitive” dataset no. 6d).

Overall, testing different datasets within the retrospective
risk assessment of herbicides clearly confirmed the critical
influence of taxa selection on the final msPAF values. This
is in agreement with previous discussions of prospective
SSD and HC5 calculations (Maltby et al. 2005; Van den
Brink et al. 2006; Wagner and Lokke 1991) as well as
studies of species weighting (Duboudin et al. 2004;
Hayashi and Kashiwagi 2010). Duboudin et al. (2004)
suggested weighting taxa according to their relevant envi-
ronmental proportions, and Hayashi and Kashiwagi (2010)
developed a Bayesian model which in addition to taxa
weighting gives specific means and variance with respect
to different taxonomic groups. Our study also confirmed the
importance of another factor, which affects the predicted
risk value, i.e., the decision to use “average” or “the most
sensitive” data for individual species. While the average
sensitivity (the “geomean” in our study) is often used in
SSD, use of the “most sensitive” data is required by some
conservative guidance documents for probabilistic risk as-
sessment. No simple recommendation can be derived at this
point, and case by case evaluation is needed. Possible im-
provements could be achieved by the preselection of
ecotoxicity data according to experimental conditions such
as using appropriate hardness of water, pH, organic matter,
or temperature (EC 2003; Hayashi and Kashiwagi 2011).
However, practical use of this demanding approach is lim-
ited because the required experimental details are often
missing from both databases and original research studies.

In contrast, the present study with herbicide mixtures
demonstrated that data validation (i.e., the manual deletion
of replicates and outliers in the database, searching for new
data in public literature, the detailed selection of exposure
duration, or the checking of pesticide purity) has only a
minor influence on the predicted msPAF values in practice,
and these time-consuming procedures can eventually be
omitted.

Conclusions

The present study demonstrates the application of the SSD
approach for the retrospective risk assessment of herbicides

at the river basin scale. Relatively high impacts of herbicide
mixtures on aquatic primary producers were predicted by
chronic msPAF (often up to 40 % or more of the community
affected) but the risk appeared to decrease during the 1998–
2009 period. It was found that different approaches to val-
idating the original EC50 datasets (e.g., testing different
exposure durations, investigating different purities of the
studied herbicides, removing outlying and replicate values)
substantially affected the sensitivity distributions at the level
of individual studied herbicides. However, these demanding
validation procedures had only a minor impact on the out-
come in the retrospective risk assessment of the mixtures in
the field case study. Therefore, for practical applications of
SSD in retrospective ERA, the use of rough nonvalidated
data seems to provide robust results, especially when few
ecotoxicity values are available for certain compound(s). It
was demonstrated that (1) the selection of the appropriate
taxonomic group for the SSD calculation and (2) the deci-
sion whether to use “average” or the “most sensitive” data
for individual species are the critical factors affecting the
retrospective risk msPAF values.

Acknowledgments The research was supported by the EU FP7
project AQUAREHAB. Infrastructure was supported by the European
Regional Development Fund project CETOCOEN (no. CZ.1.05/
2.1.00/01.0001). The monitoring data were kindly provided by the
Flemish Environment Agency (VMM; the Flemish government,
Belgium; http://www.vmm.be) with support of Dr. Pieter Jan Haest
(VITO NV, Mol, Belgium). The authors are also grateful to the three
independent reviewers of the paper for their valuable comments and
recommendations, to Mr. Ondrej Sanka for technical support with
graphics, and to Mr. Matthew Nicholls for reviewing the English
during the preparation of the manuscript.

References

Aldenberg T, Jaworska JS (2000) Uncertainty of the hazardous con-
centration and fraction affected for normal species sensitivity
distributions. Ecotoxicol Environ Saf 46:1–18. doi:10.1006/
eesa.1999.1869

Aldenberg T, Luttik R (2002) Extrapolation factors for tiny toxicity
data sets from species sensitivity distributions with known stan-
dard deviation. In: Posthuma L, Suter GW II, Traas TP (eds)
Species sensitivity distributions in ecotoxicology. Lewis, Boca
Raton, pp 103–118

Bachman J (2009) Use of probabilistic methods in environmental risk
assessment—species sensitivity distribution (SSD) and HC5.
Position paper. German Federal Environment Agency, Dessau

Beggel S, Werner I, Connon RE, Geist JP (2010) Sublethal toxicity of
commercial insecticide formulations and their active ingredients
to larval fathead minnow (Pimephales promelas). Sci Total
Environ 408:3169–3175. doi:10.1016/j.scitotenv.2010.04.004

Brock TCM, Crum SJH, Deneer JW, Heimbach F, Roijackers RMM,
Sinkeldam JA (2004) Comparing aquatic risk assessment
methods for the photosynthesis-inhibiting herbicides metribuzin
and metamitron. Environ Pollut 130:403–426. doi:10.1016/
j.envpol.2003.12.022

6082 Environ Sci Pollut Res (2013) 20:6070–6084

http://www.vmm.be
http://dx.doi.org/10.1006/eesa.1999.1869
http://dx.doi.org/10.1006/eesa.1999.1869
http://dx.doi.org/10.1016/j.scitotenv.2010.04.004
http://dx.doi.org/10.1016/j.envpol.2003.12.022
http://dx.doi.org/10.1016/j.envpol.2003.12.022


Caquet T, Roucaute M, Mazzella N, Delmas F, Madigou C et al (2013)
Risk assessment of herbicides and booster biocides along estua-
rine continuums in the Bay of Vilaine area (Brittany, France).
Environ Sci Pollut Res 20:651–666. doi:10.1007/s11356-012-
1171-y

Carafa R, Faggiano L, Real M, Munné A, Ginebreda A et al (2011)
Water toxicity assessment and spatial pollution patterns identifi-
cation in a Mediterranean River Basin District. Tools for water
managment and risk analysis. Sci Total Environ 409:4267–4279.
doi:10.1016/j.scitotenv.2011.06.053

Cedergreen N, Streibig JC (2005) The toxicity of herbicides to non-
target aquatic plants and algae: assessment of predictive factors
and hazard. Pest Manag Sci 61:1152–1160. doi:10.1002/ps.1117

Cedergreen N, Christensen AM, Kamper A, Kudsk P, Mathiassen SK,
Streibig JC, Sorensen H (2008) A review of independent action
compared to concentration addition as reference models for mix-
tures of compounds with different molecular target sites. Environ
Toxicol Chem 28:1621–1632. doi:10.1897/07-474.1

Comte L, Lek S, de Deckere E, De Zwart D, Gevrey M (2010)
Assessment of stream biological responses under multiple-stress
conditions. Environ Sci Pollut Res 17:1469–1478. doi:10.1007/
s11356-010-0333-z

Crane M, Newman MC (2000) What level of effect is a no observed
effect? Environ Toxicol Chem 19:516–519. doi:10.1897/1551-
5028(2000)019<0516:WLOEIA>2.3.CO;2

De Zwart D (2002) Observed regularities in species sensitivity distri-
butions for aquatic species. In: Posthuma L, Traas TP, Suter GW
II (eds) Species sensitivity distribution in ecotoxicology. Lewis,
Boca Raton, pp 133–154

De Zwart D, Posthuma L (2005) Complex mixture toxicity for single
and multiple species: proposed methodologies. Environ Toxicol
Chem 24:2665–2676. doi:10.1897/04-639R.1

Duboudin CP, Ciffroy P, Magaud H (2004) Effects of data manipula-
tion and statistical methods on species sensitivity distributions.
Environ Toxicol Chem 23:489–499. doi:10.1897/03-15

EC (2003) Technical guidance document on risk assessment, part II.
Bureau EC, Ispra

EC (2011) Technical guidance for deriving environmental quality
standards. Guidance Document No. 27:204

US EPA (1985) Guidelines for deriving numerical national water
quality criteria for the protection of aquatic organisms and their
uses. PB85-227049. US Environmental Protection Agency
National Technical Information Service, Springfield

Faggiano L, De Zwart D, García-Berthou E, Lek S, Gevrey M (2010)
Patterning ecological risk of pesticide contamination at the river
basin scale. Sci Total Environ 408:2319–2326. doi:10.1016/
j.scitotenv.2010.02.002

Forbes VE, Calow P (2002) Species sensitivity distributions revisited:
a critical appraisal. Hum Ecol Risk Assess 8:473–492.
doi:10.1080/20028091057033

Fuerhacker M (2009) EU Water Framework Directive and Stockholm
Convention—can we reach the targets for priority substances and
persistent organic pollutants? Environ Sci Pollut Res 16:92–97.
doi:10.1007/s11356-009-0126-4

Grist EPM, O’Hagan A, Crane M, Sorokin N, Sims I, Whitehouse P
(2006) Bayesian and time-independent species sensitivity distri-
butions for risk assessment of chemicals. Environ Sci Technol
40:395–401. doi:10.1021/es050871e

Hayashi TI, Kashiwagi N (2010) A Bayesian method for deriving
species-sensitivity distributions: selecting the best-fit tolerance
distributions of taxonomic groups. Hum Ecol Risk Assess
16:251–263. doi:10.1080/10807031003670279

Hayashi TI, Kashiwagi N (2011) A Bayesian approach to probabilistic
ecological risk assessment: risk comparison of nine toxic sub-
stances in Tokyo surface waters. Environ Sci Pollut Res 18:365–
375. doi:10.1007/s11356-010-0380-5

Hickey GL, Kefford BJ, Dunlop JE, Craig PS (2008) Making species
salinity sensitivity distributions reflective of naturally occurring
communities: using rapid testing and Bayesian statistics. Environ
Toxicol Chem 27:2403–2411. doi:10.1897/08-079.1

Jager T (2012) Bad habits die hard: the NOEC’s persistence reflects
poorly on ecotoxicology. Environ Toxicol Chem 31:228–229.
doi:10.1002/etc.746

Kefford JB, Palmer PG, Jooste S, Warne MSJ, Nugegoda D (2005)
What is meant by “95 % of species”? An argument for the
inclusion of rapid tolerance testing. Hum Ecol Risk Assess
11:1025–1046. doi:10.1080/10807030500257770

Laskowski R (1995) Some good reasons to ban the use of NOEC,
LOEC and related concepts in ecotoxicology. Oikos 73:140–144.
doi:10.2307/3545738

Maltby L, Blake N, Brock TCM, Van den Brink PJ (2005) Insecticide
species sensitivity distributions: importance of test species selec-
tion and relevance to aquatic ecosystems. Environ Toxicol Chem
24:379–388. doi:10.1897/04-025R.1

Maltby L, Brock TCM, Van den Brink PJ (2009) Fungicide risk
assessment for aquatic ecosystems: importance of interspecific
variation, toxic mode of action, and exposure regime. Environ
Sci Technol 43:7556–7563. doi:10.1021/es901461c

Newman MC, Ownby DR, Mezin LCA, Powell DC, Christensen TRL
et al (2000) Applying species-sensitivity distributions in ecolog-
ical risk assessment: assumptions of distribution type and suffi-
cient numbers of species. Environ Toxicol Chem 19:508–515.
doi:10.1897/1551-5028(2000)019<0508:ASSDIE>2.3.CO;2

OECD (2006a) Guidelines for the testing of chemicals no. 221: Lemna
sp. growth inhibition test. Organization for Economic
Cooperation and Development, Paris

OECD (2006b) Series on testing and assessment no. 54: current ap-
proaches in the statistical analysis of ecotoxicity data: a guidance
to application. Organization for Economic Cooperation and
Development, Paris

OECD (2011) Guidelines for the testing of chemicals no. 201: fresh-
water alga and cyanobacteria, growth inhibition test. Organization
for Economic Cooperation and Development, Paris

Pereira T, Cerejeira MJ, Espírito-Santo J (2000) Use of microbiotests to
compare the toxicity of water samples fortified with active in-
gredients and formulated pesticides. Environ Toxicol 15:401–405.
doi:10.1002/1522-7278(2000)15:5<401::AID-TOX7>3.0.CO;2-H

Posthuma L, Traas TP, Suter GW (2002) Species sensitivity distribu-
tions in ecotoxicology. Lewis, Boca Raton

Raimondo S, Vivian DN, Delos C, Barron MG (2008) Protectiveness
of species sensitivity distribution hazard concentrations for acute
toxicity used in endangered species risk assessment. Environ
Toxicol Chem 27:2599–2607. doi:10.1897/08-157.1

Reade JPH, Cobb AH (2002) Herbicides: modes of action and metab-
olism. In: Naylor REL (ed) Weed management handbook. British
Crop Protection Enterprises, Banchory, pp 134–170

RIZA (1999) Effect factors for the aquatic environment in the frame-
work of LCA. RIVM, Netherlands

Rockström J, Steffen W, Noone K, Persson Å, Chapin FS et al (2009)
Planetary boundaries: exploring the safe operating space for human-
ity. Ecol Soc 14:32. Available at http://www.ecologyandsociety.org/
vol14/iss2/art32

Schuler LJ, Rand GM (2008) Aquatic risk assessment of herbicides in
freshwater ecosystems of South Florida. Arch Environ Contam
Toxicol 54:571–583. doi:10.1007/s00244-007-9085-2

Sijm DTHM, Van Wezel AP, Crommentuijn T (2002) Environmental
risk limits in the Netherlands. In: Posthuma L, Traas TP, Suter
GW II (eds) Species sensitivity distribution in ecotoxicology.
Lewis, Boca Raton, pp 221–254

Silva E, Mendes MP, Ribeiro L, Cerejeira MJ (2012) Exposure
assessment of pesticides in a shallow groundwater of the
Tagus vulnerable zone (Portugal): a multivariate statistical approach

Environ Sci Pollut Res (2013) 20:6070–6084 6083

http://dx.doi.org/10.1007/s11356-012-1171-y
http://dx.doi.org/10.1007/s11356-012-1171-y
http://dx.doi.org/10.1016/j.scitotenv.2011.06.053
http://dx.doi.org/10.1002/ps.1117
http://dx.doi.org/10.1897/07-474.1
http://dx.doi.org/10.1007/s11356-010-0333-z
http://dx.doi.org/10.1007/s11356-010-0333-z
http://dx.doi.org/10.1897/1551-5028(2000)019%3C0516:WLOEIA%3E2.3.CO;2
http://dx.doi.org/10.1897/1551-5028(2000)019%3C0516:WLOEIA%3E2.3.CO;2
http://dx.doi.org/10.1897/04-639R.1
http://dx.doi.org/10.1897/03-15
http://dx.doi.org/10.1016/j.scitotenv.2010.02.002
http://dx.doi.org/10.1016/j.scitotenv.2010.02.002
http://dx.doi.org/10.1080/20028091057033
http://dx.doi.org/10.1007/s11356-009-0126-4
http://dx.doi.org/10.1021/es050871e
http://dx.doi.org/10.1080/10807031003670279
http://dx.doi.org/10.1007/s11356-010-0380-5
http://dx.doi.org/10.1897/08-079.1
http://dx.doi.org/10.1002/etc.746
http://dx.doi.org/10.1080/10807030500257770
http://dx.doi.org/10.2307/3545738
http://dx.doi.org/10.1897/04-025R.1
http://dx.doi.org/10.1021/es901461c
http://dx.doi.org/10.1897/1551-5028(2000)019%3C0508:ASSDIE%3E2.3.CO;2
http://dx.doi.org/10.1002/1522-7278(2000)15:5%3C401::AID-TOX7%3E3.0.CO;2-H
http://dx.doi.org/10.1897/08-157.1
http://www.ecologyandsociety.org/vol14/iss2/art32
http://www.ecologyandsociety.org/vol14/iss2/art32
http://dx.doi.org/10.1007/s00244-007-9085-2


(JCA). Environ Sci Pollut Res 19:2667–2680. doi:10.1007/s11356-
012-0761-z

Smital T, Terzic S, Loncar J, Senta I, Zaja R et al (2012) Prioritisation
of organic contaminants in a river basin using chemical analyses
and bioassays. Environ Sci Pollut Res. doi:10.1007/s11356-012-
1059-x

Solomon KR, Brock TCM, Zwart DD, Dyer SD (2008) Extrapolation
in the context of criteria setting and risk assessment. In: Solomon
KR, Brock TCM, De Zwart D, Dyer SD, Posthuma L et al (eds)
Extrapolation practice for ecotoxicological effect characterization
of chemicals. CRC, Boca Raton, pp 2–31

Suter GW II, Traas TP, Posthuma L (2002) Issues and practices in the
derivation and use of species sensitivity distributions. In:
Posthuma L, Traas TP, Suter GW II (eds) Species sensitivity
distributions in ecotoxicology. Lewis, Boca Raton, pp 437–474

Traas TP, Van de Meent D, Posthuma L, Hamers T, Kater BJ et al
(2002) The potentially affected fraction as a measure of ecological
risk. In: Posthuma L, Suter GW II, Traas TP (eds) Species sensitivity
distributions in ecotoxicology. Lewis, Boca Raton, pp 315–344

Van den Brink PJ, Blake N, Brock TCM, Maltby L (2006) Predictive
values of species sensitivity distributions for effects of herbicides
in freshwater ecosystems. Hum Ecol Risk Assess 12:645–674.
doi:10.1080/10807030500430559

Van den Brink PJ, Sibley PK, Ratte HT, Baird DJ, Nabholz JV,
Sanderson H (2008) Extrapolation of effects measures across

levels of biological organization in ecological risk assessment.
In: Solomon KR, Brock TCM, De Zwart D, Dyer SD, Posthuma L
et al (eds) Extrapolation practice for ecotoxicological effect char-
acterization of chemicals. CRC, Boca Raton, pp 105–133

Van der Hoeven N (1997) How to measure no effect. Part III: statistical
aspects of NOEC, ECx and NEC estimates. Environmetrics
8:255–261. doi:10.1002/(SICI)1099-095X(199705)8:3<255::
AID-ENV246>3.0.CO;2-P

Van Straalen NM, Denneman CJ (1989) Ecotoxicological evaluation of
soil quality criteria. Ecotox Environ Safe 18:241–251.
doi:10.1016/0147-6513(89)90018-3

Vighi M, Finizio A, Villa S (2006) The evolution of the environmental
quality concept: from the US EPA red book to the European Water
Framework Directive. Environ Sci Pollut Res 13:9–14.
doi:10.1065/espr2006.01.003

Wagner C, Lokke H (1991) Estimation of ecotoxicological protection
levels from NOEC toxicity data. Water Res 25:1237–1242.
doi:10.1016/0043-1354(91)90062-U

Wheeler JR, Grist EPM, Leung KMY, Morritt D, Crane M (2002)
Species sensitivity distributions: data and model choice. Marine
Pollut Bull 45:192–202. doi:10.1016/S0025-326X(01)00327-7

Xiaowei J, Gao J, Zha G, Xu Y, Wang Z, Giesy JP, Richardson KL
(2012) A tiered ecological risk assessment of three chlorophenols
in Chinese surface waters. Environ Sci Pollut Res 19:1544–1554.
doi:10.1007/s11356-011-0660-8

6084 Environ Sci Pollut Res (2013) 20:6070–6084

http://dx.doi.org/10.1007/s11356-012-0761-z
http://dx.doi.org/10.1007/s11356-012-0761-z
http://dx.doi.org/10.1007/s11356-012-1059-x
http://dx.doi.org/10.1007/s11356-012-1059-x
http://dx.doi.org/10.1080/10807030500430559
http://dx.doi.org/10.1002/(SICI)1099-095X(199705)8:3%3C255::AID-ENV246%3E3.0.CO;2-P
http://dx.doi.org/10.1002/(SICI)1099-095X(199705)8:3%3C255::AID-ENV246%3E3.0.CO;2-P
http://dx.doi.org/10.1016/0147-6513(89)90018-3
http://dx.doi.org/10.1065/espr2006.01.003
http://dx.doi.org/10.1016/0043-1354(91)90062-U
http://dx.doi.org/10.1016/S0025-326X(01)00327-7
http://dx.doi.org/10.1007/s11356-011-0660-8

	Validation...
	Abstract
	Introduction
	Materials and methods
	SSD model
	Monitoring data
	Risk characterization

	Results and discussion
	Influence of different data validation approaches on the SSD
	Different exposure durations
	Purity of the herbicide formulation
	Dealing with more ecotoxicological data values for one species

	Risks of herbicide mixtures for the Scheldt river basin localities
	The role of different data validations on retrospective risk assessment—msPAFRA

	Conclusions
	References


