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Abstract This study reports the synthesis and characteriza-
tion of composite nitrogen and fluorine co-doped titanium
dioxide (NF-TiO2) for the removal of contaminants of con-
cern in wastewater under visible and solar light. Monodis-
perse anatase TiO2 nanoparticles of different sizes and
Evonik P25 were assembled to immobilized NF-TiO2 by
direct incorporation into the sol–gel or by the layer-by-layer
technique. The composite films were characterized with
X-ray diffraction, high-resolution transmission electron

microscopy, environmental scanning electron microsco-
py, and porosimetry analysis. The photocatalytic degra-
dation of atrazine, carbamazepine, and caffeine was
evaluated in a synthetic water solution and in an efflu-
ent from a hybrid biological concentrator reactor (BCR).
Minor aggregation and improved distribution of mono-
disperse titania particles was obtained with NF-TiO2-
monodisperse (10 and 50 nm) from the layer-by-layer
technique than with NF-TiO2+monodisperse TiO2

(300 nm) directly incorporated into the sol. The
photocatalysts synthesized with the layer-by-layer meth-
od achieved significantly higher degradation rates in
contrast with NF-TiO2-monodisperse titania (300 nm)
and slightly faster values when compared with NF-
TiO2-P25. Using NF-TiO2 layer-by-layer with monodis-
perse TiO2 (50 nm) under solar light irradiation, the respec-
tive degradation rates in synthetic water and BCR effluent
were 14.6 and 9.5×10−3min−1 for caffeine, 12.5 and 9.0×
10−3min−1 for carbamazepine, and 10.9 and 5.8×10−3

min−1 for atrazine. These results suggest that the layer-by-
layer technique is a promising method for the synthesis of
composite TiO2-based films compared to the direct addition
of nanoparticles into the sol.
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Introduction

Contaminants of concern (COCs), especially pharmaceuti-
cals and pesticides, are routinely detected in the effluents of
municipal wastewater treatment plants (WTPs), which pre-
sents a risk for the environment and human health
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(Andreozzi et al. 2003; Belgiorno et al. 2007; Bernabeu et
al. 2011; Castiglioni et al. 2006; Glassmeyer et al. 2005; Ho
et al. 2011; Joss et al. 2005). Carbamazepine (CMP), a
widely used anticonvulsant and mood-stabilizing drug
(WHO 2002), is frequently identified downstream of sew-
age treatment plants in several European countries
(Andreozzi et al. 2003; Bernabeu et al. 2011; Castiglioni et
al. 2006; Joss et al. 2005) as well as in the USA (Glassmeyer
et al. 2005). Likewise, atrazine (ATR) is a commonly found
herbicide in WTP effluents around the USA (Glassmeyer et
al. 2005; USEPA 2003) and Australia (Ho et al. 2011).
According to the U.S. Environmental Protection Agency,
ATR has a suspected impact on gonadal development in
amphibians. Moreover, the European Union (EU) considers
it an endocrine disruptor and, therefore, a priority substance
in the EU Water Framework Directive 2008/105/EC (EC
2008). The treatment of these compounds by conventional
biological methods, such as activated sludge process, trick-
ling filter, membrane bioreactor, and suspended-biofilm re-
actor, achieves only partial removal of these chemicals
(Andreozzi et al. 2003; Belgiorno et al. 2007; Bernabeu et
al. 2011; Castiglioni et al. 2006; Glassmeyer et al. 2005; Ho
et al. 2011; Joss et al. 2005). For this reason, the integrated
use of advanced oxidation processes (AOPs) with biological
treatment is of great interest as they have shown the capa-
bility to polish effluent streams containing biorefractory
organics (Andreozzi et al. 2003; Belgiorno et al. 2007;
Bernabeu et al. 2011; Rizzo et al. 2009). Titanium dioxide
(TiO2)-based nanotechnology has gained recognition as a
promising AOP for water remediation due to the process
high decomposition efficiency and TiO2 green characteris-
tics, e.g., low toxicity, inert nature, and relatively low cost
(Antoniou et al. 2008; Choi et al. 2007; Fujishima et al.
2000). This non-selective treatment even degrades trace
level concentrations that are difficult or expensive to remove
with conventional methods (Balasubramanian et al. 2004;
Lin et al. 2006).

Photocatalytic degradation employing TiO2-based
nanomaterials in slurry suspension or colloidal solution has
been carried out successfully for both ATR (Hincapie et al.
2005; Li et al. 2012; Mourao et al. 2010; Parra et al. 2004) and
CMP (Bernabeu et al. 2011; Chong and Jin 2012; Doll and
Frimmel 2004; Laera et al. 2011). However, TiO2 immobili-
zation to avoid a filtration step could appreciably improve the
cost-effectiveness of the operation (Balasubramanian et al.
2004; Goetz et al. 2009; Han et al. 2011; Miranda-Garcia et
al. 2011; Pelaez et al. 2010). Hence, among current challenges
of the TiO2-based nanotechnology for environmental applica-
tions include enhancement of the structural and the photocat-
alytic properties of the immobilized catalysts.

Satisfactory removals of ATR, as a sole contaminant
in synthetic solutions, have been achieved with TiO2

immobilized on a supporting media under UV or solar

light irradiation (Goetz et al. 2009; McMurray et al.
2006; Parra et al. 2004). However, COCs are usually
not the only substances present in effluents, so their
photocatalytic degradation may be hampered by the
presence of other organic and inorganic constituents that
exert a stronger selectivity towards the catalyst or the
oxidant species (Chong et al. 2011; Klamerth et al.
2009; Laera et al. 2011). Very few papers deal with
supported photocatalysts for the treatment of COCs in
mixtures. Miranda-Garcia et al. (2011) studied the deg-
radation of 15 COCs in simulated and real municipal
wastewater with TiO2 immobilized on glass spheres
under solar irradiation. ATR and CMP demonstrated to
be the most recalcitrant since they presented the lowest
degradation rates among the studied compounds.

The UV-restricted photoactivation of TiO2 limits the
utilization of a higher portion of the solar spectrum (i.e.,
visible light) to generate reactive oxidizing species. Sev-
eral approaches, including metal and non-metal doping,
dye-sensitization, and coupled semiconductors, have been
applied to overcome this 3.2-eV band gap energy (Pelaez
et al. 2012b). For drinking water treatment, non-metallic
dopants (e.g., nitrogen, sulfur, fluorine, or carbon) are
preferable because these elements do not show leakage
as metals or other semiconductors do (Asahi et al. 2001;
Choi et al. 2007; Lin et al. 2006; Rengifo-Herrera et al.
2009; Subagio et al. 2010). Nitrogen and fluorine co-
doped TiO2 (NF-TiO2) films with enhanced structural
properties have been synthesized using a modified sol–
gel procedure and successfully applied to the photocata-
lytic degradation of cyanobacterial toxins in water
(Pelaez et al. 2009; Pelaez et al. 2010). Additionally,
the incorporation of Evonik® P25-TiO2 nanoparticles
into the sol–gel improved the physicochemical and opti-
cal properties of the TiO2 film (Chen and Dionysiou
2008; Pelaez et al. 2011). Therefore, studying the effect
of different nanoparticles added into the NF-TiO2 sol–gel to
improve its photocatalytic efficiency is of great interest.

In this work, monodisperse anatase TiO2 nanoparticles of
various particle sizes (Han et al. 2012) were assembled to
the immobilized NF-TiO2 films by direct incorporation into
the NF-TiO2 sol–gel or by employing the layer-by-layer
technique. The performance of these composite films in
the degradation of a mixture of COCs in both synthetic
water and wastewater was evaluated under visible and solar
irradiation, and compared with the performance of NF-
TiO2-P25. The tested COCs were CMP and ATR as the
representatives of the most persistent pharmaceuticals and
pesticides typically present in WTP effluents. In addition,
caffeine (CAF) was included as one of the most commonly
detected contaminants in wastewater streams worldwide
(Bernabeu et al. 2011; Glassmeyer et al. 2005; Kolpin et
al. 2002).
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Materials and methods

Reagents and sample preparation

ATR, CAF, and CMP were obtained from Sigma-Aldrich
(USA). NF-TiO2 was prepared using a modified sol–gel
method reported by Pelaez et al. (2010). Briefly, a
flurosurfacant (Zonyl FS 300, Fluka), which served as a
pore template and fluorine dopant, was dissolved in
isopropyl alcohol (Fisher, USA). After the addition of
glacial acetic acid (Fisher, USA), ethylenediamine (Fish-
er, USA) was added as a nitrogen precursor. Titanium
tetraisopropoxide (TTIP; Sigma-Aldrich, USA, 97 %)
was added dropwise to the sol, followed by additional
acetic acid for peptidization. Monodisperse anatase titania
was synthesized by a sol–gel method described by Han
et al. (2012). In brief, CaCl2 solutions of varying con-
centrations (to provide different ionic strength for the
particle size control) were added to methanol (Tedia,
USA). After mixing, TTIP was added dropwise as the
titanium precursor.

Two different ways of incorporating the nanoparticles
into the composite NF-TiO2 films were implemented. In
the first method, Evonik® P25-TiO2 or monodisperse tita-
nia nanoparticles (300 nm) were incorporated directly into
the NF-TiO2 sol–gel at 5 gL−1 and sonicated. Subsequent-
ly, the sol was deposited on the substrate by dip-coating
and immobilized as described elsewhere (Pelaez et al.
2012a). The second approach consisted in a layer-by-
layer technique employing a separate solution of monodis-
perse titania with a particle size of 10 or 50 nm. The first
coating consisted of a NF-TiO2 film followed by monodis-
perse titania one. This process of merging NF-TiO2 with
monodisperse titania on top of it was repeated three times
layer-by-layer until a final layer of monodisperse titania
was achieved (six layers in total). The procedure of immo-
bilization of the composite films is described elsewhere
(Pelaez et al. 2012a).

Characterization of the films

A Tristar 3000 (Micromeritics) porosimeter analyzer was
employed for the determination of BET surface area, pore
volume, porosity, and BJH pore size distribution of the
composite NF-TiO2 films. The films were scraped, and the
samples were collected as powder and purged with N2 for
2 h at 150 °C using Flow prep 060 (Micromeritics). The film
morphology was characterized with an environmental scan-
ning electron microscope (ESEM, Philips XL 30 ESEM-
FEG). The crystallographic structure of the synthesized
TiO2 films was determined with a X’Pert PRO (Philips)
XRD diffractometer with Cu Kα (λ=1.5406 Å) radiation.
Optoelectronic properties were derived from diffuse reflectance

spectra obtained on a UV–vis spectrophotometer (Shimadzu
2501 PC) equipped with an integrated sphere attachment (ISR
1200) with BaSO4 reference standard.

Photocatalytic experiments

The photocatalytic degradation of ATR, CAF, and CMP was
carried out both in a synthetic water solution (MilliQ-grade
water) and in the effluent of a hybrid biomass concentrator
reactor (BCR; Scott 2012), which treated a medium strength
synthetic municipal wastewater (see Table 3 for effluent
characteristics prior to spiking). Stock solutions of the
analytes were prepared in MilliQ-grade water, and all the
analytes were added together in aforementioned matrices at
4 μmolL−1. A borosilicate glass vessel reactor (i.d. 4.7 cm)
containing 10 mL of spiked solution (0.58 cm of aqueous
irradiated layer) and a composite film was sealed with
parafilm and cooled down with a fan to prevent evaporation.
The solution was irradiated with a 500-W solar simulator
(Newport Corporation) equipped with AM 1.5 and infrared
filters. The light intensity was 70 Wcm−2 and was measured
with a radiant power meter (Newport Corporation). When
the experiments were performed in the visible range (420–
700 nm), the measured light intensity was 40 Wcm−2. The
experiments were carried out in duplicates.

The COCs were analyzed by liquid chromatography–
electrospray ionization–tandem mass spectrometry with a
1200 Series rapid resolution liquid chromatograph and
6410A triple quadrupole mass spectrometer equipped with
a G1948B electrospray ionization source (Agilent, Palo
Alto, CA, USA). The ESI was operated in positive mode.
The analytes were separated with a Zorbax Eclipse XDB-
C18 (2.1×50 mm, 3.5 um) column (Agilent, Palo Alto, CA,
USA). The flow was 0.5 mL/min. The mobile phase was
comprised of water (A) and methanol (B), both containing
ammonium formate (5 mM). At time 0, the eluent compo-
sition was 90 % (A) and 10 % (B), being 36 % (A) and 64 %
(B) after 12 min. The analytes were detected in the follow-
ing selected reactions: ATR m/z 216→m/z 174, CAF m/z
195→m/z 138, and CMP m/z 237→m/z 194.

Results and discussion

Morphology and microstructure of the composite NF-TiO2

films

The overall surface morphology of the NF-TiO2 composite
materials was examined by ESEM. Rough and porous sur-
faces were observed in all of the studied composite films
(Figs. 1 and 2). The high surface roughness is a character-
istic of NF-TiO2 films synthesized with the abovementioned
sol–gel method. Nevertheless, a rougher surface could
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provide a larger surface area for the photocatalytic reactions
and more effective light absorbance than smoother surfaces
(Pelaez et al. 2010; Provata et al. 1998). Based on Figs. 1 and
2, the difference among films was mainly due to the surface
coverage. Higher surface coverage and more uniform distri-
bution of nanoparticle additives were achieved in those films
composed with P25 (Fig. 1a) than with the composite film
containingmonodisperse nanoparticles of 300 nm (Fig. 1b). In
the latter, the surface coverage was greatly decreased due to
the extensive aggregation of nanoparticles. Although the pres-
ence of aggregates was observed in all the catalysts cases
(Figs. 1 and 2), much larger nanoparticle clusters were formed
when monodisperse anatase titania was directly added into
the sol–gel (Fig. 1b). Nevertheless, with the layer-by-layer
technique, when the initially fairly well-distributed sol of the
monodisperse TiO2 was deposited as an even layer on top of
the NF-TiO2 by dip-coating, fewer aggregates and improved
distribution of monodisperse titania was obtained (Fig. 2). It
can be concluded that the dispersion of the monodisperse
particles is higher when employing the layer-by-layer method
than when added directly into the NF-TiO2 sol in a powdered
form after recovering the monodisperse particles from the
initial solution. The smaller particle size (50 and 10 nm) could
probably also enhance the distribution of monodisperse tita-
nia. However, no notable difference was found in the ESEM

images when using the particle size of 50 nm (Fig. 2a) or
10 nm (Fig. 2b), showing that the uniformity of the distribu-
tion of monodisperse particles is similar in the size range of 10
to 50 nm. Since the COCs degradation preferentially occurs
on the catalyst surface, a higher interaction is expected with
the film that has the highest surface area coverage (Linsebigler
et al. 1995). Therefore, since fewer aggregates and improved

aa

b

a

b

Fig. 1 ESEM images of a NF-TiO2-P25, b NF-TiO2+monodisperse
titania (300 nm) added directly to the sol

Fig. 2 ESEM images of the catalysts from the layer-by-layer method:
a NF-TiO2-monodisperse TiO2 (50 nm). b NF-TiO2-monodisperse
TiO2 (10 nm)

Fig. 3 Cross-section ESEM image of the film thickness of the com-
posite NF-TiO2 with monodisperse TiO2 by the layer-by-layer
technique
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distribution of monodisperse titania were obtained by the
layer-by-layer method, improved degradation similar to, or
higher than, the NF-TiO2-P25 could be expected.

In spite of the doubled number of layers, the films pre-
pared by the layer-by-layer method had a slightly lower film
thickness (Fig. 3) than the composite NF-TiO2-P25 (Pelaez
et al. 2012a) where nanoparticle additives were incorporated
directly into the sol. This, however, did not lead to lower
photocatalytic activity for the NF-TiO2-monodisperse com-
pared to NF-TiO2-P25 (see “Photocatalytic evaluation of the
composite NF-TiO2 films synthesized layer-by-layer with
the monodisperse TiO2” section).

According to XRD analysis, NF-TiO2-P25 films
exhibited two crystal phases, anatase and rutile (confirming
the presence of P25 nanoparticles). On the other hand,
anatase was the only form detected for NF-TiO2-monodis-
perse (300 nm) and NF-TiO2 layer-by-layer with monodis-
perse TiO2 (10 and 50 nm). Dopant-related crystal phases
were not observed since the amount of nitrogen and fluorine
does not produce significant changes in the TiO2 structure
(Pelaez et al. 2010).

The absorbance spectra of the Evonik P25, the composite
NF-TiO2-P25, and the NF-TiO2-monodisperse TiO2 are
shown in Fig. 4. While the reference sample of P25 showed
no absorption towards visible light, the composite NF-TiO2

exhibited absorption spectra extended to the visible range of
400–500 nm to a small degree. This is due to the N and F
doping, whereas the P25 and monodisperse titania additives

most likely reduce the visible light absorption capacity of
the NF-TiO2 (Pelaez et al. 2012a).

Porosimetry analysis was carried out for further charac-
terization of the films. Table 1 summarizes the structural
characteristics of all the composite NF-TiO2 films. The BET
surface area increased with the direct addition of monodis-
perse titania (300 nm) into the NF-TiO2 sol, compared to the
NF-TiO2-P25 composite film. The formation of different
aggregate sizes due to the specific properties of the mono-
disperse titania and P25 can lead to the different values of
BET area obtained. The films with monodisperse titania
added by the layer-by-layer method presented BET surface
area similar to or even smaller than the NF-TiO2-P25
(monodisperse titania of 50 and 10 nm, respectively). The
smaller monodisperse particles of 10 nm could smoothen
the surface roughness of the TiO2 film, but doing so also
decreases the available surface area. Fairly similar pore size
distribution was observed in all studied composite films.

Photocatalytic evaluation of the composite films

The photocatalytic degradation of the studied COCs
followed pseudo-first-order kinetics. Regardless of the cat-
alyst used or the aqueous matrix, CAF presented the highest
degradation rate followed by CMP and ATR (see Table 2).
ATR seemed to be more resistant at the early stages of the
photocatalytic reaction (see Figs. 5, 6, 7, and 8), probably
because of the higher persistence of ATR due to its chemical
structure and/or because of the competitive adsorption on
the catalyst surface by the other compounds in the mixture
(Zahraa et al. 2003). However, the final concentrations of all
the compounds were not substantially different after 7 h of
degradation, which shows the high efficiency of the treat-
ment under the experimental conditions.

Photocatalytic evaluation of the composite films
with nanoparticle additives directly incorporated
to the NF-TiO2 sol

Preliminary studies were carried out in synthetic water,
comparing the two composite catalysts with nanoparticle
additives directly incorporated into the NF-TiO2 sol both
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Fig. 4 Absorbance spectra of P25, composite NF-TiO2-P25, and NF-
TiO2-monodisperse TiO2

Table 1 Structural characteristics of NF-TiO2 films with different nanoparticle additives

Material SBET (m2g−1) Pore volume (cm3g−1) Porosity (%) Crystal phase

NF-TiO2-monodisperse (50 nm)a 110.6 0.189 42.4 Anatase

NF-TiO2-monodisperse (10 nm)a 99.4 0.173 40.3 Anatase

NF-TiO2-P25 111.5 0.154 37.5 Anatase/Rutile

NF-TiO2-monodisperse (300 nm)b 147.7 0.189 42.5 Anatase

aMonodisperse titania incorporated by the layer-by-layer method
bMonodisperse titania added directly to the sol–gel
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under visible and solar light (Fig. 5). Limited visible light
degradation of all COCs was observed with NF-TiO2-P25
and NF-TiO2+monodisperse titania (300 nm), indicating the
persistence of the COCs under the conditions tested.

Nevertheless, the COCs were effectively degraded under
solar light with both composite films in synthetic solution.
Higher degradation efficiency in terms of higher kinetic
constant k (minutes; Table 2) was obtained with NF-TiO2-
P25 (see Fig. 5a) when compared with NF-TiO2+monodis-
perse titania (300 nm; Fig. 5b). ATR had the lowest reaction
kinetics, the k values in the case of using P25 additive or
monodisperse TiO2 (300 nm) were 8.8 and 2.5×10−3min−1,
respectively (Table 2). In terms of removal, after 2 h of solar
light irradiation, 77 % of CAF, 72 % of CMP, and 56 % of
ATR were degraded by NF-TiO2-P25, while with NF-TiO2+
monodisperse titania of 300 nm, the percentages were 54,
50, and 24 %, respectively.

The degradation of COCs was slower in the BCR effluent
than in the synthetic water solution (Fig. 6). With NF-TiO2-
P25, the k value for the CMP degradation in synthetic water
(12.6×10−3min−1) decreased to 8.4×10−3min−1 (by about
30 %; see Table 2). This decrease of degradation rates com-
pared to the synthetic water is explained by the fact that the
BCR effluent is a complexmatrix containing several inorganic
constituents that may compete with the analytes during the
photocatalytic process (Table 3). The presence of SO4

2− and
Cl− (316 and 59 mgL−1, respectively) and a total alkalinity of
156 mgL−1 (usually caused by the bicarbonates in great ex-
tent) were most likely the reason for the decrease in the
degradation rates. Those inorganic species are reported to
inhibit the TiO2 photocatalysis, principally as competitors
for the adsorption on the catalyst surface or as the scavengers
of ●OH radical (Burns et al. 1999; Yalap and Balcioglu 2009).
Furthermore, the higher pH of the BCR effluent (7.9) com-
pared to the synthetic solution at 5.7 could also affect the

photocatalytic reactions (Barndõk et al. 2012). As the surface
of NF-TiO2 is negatively charged at pH values above ∼6.0 as
well as CMP (Achilleos et al. 2010; Pelaez et al. 2009), the
adsorption of the compound on the surface of the catalyst is
hindered by the action of repulsive electrostatic forces.

The negative effect of the BCR effluent on the degradation
was even greater when monodisperse TiO2 (300 nm) was
directly incorporated to the sol (Table 2). For CAF, that
exhibited the highest degradation kinetics in both water ma-
trices, the k values in the synthetic water decreased in the BCR
effluent by about 20 % when using P25 additive, but more
than 50 % when employing TiO2 (300 nm). In terms of

Table 2 First-order kinetic constants of the photocatalytic degradation of COCs under solar light irradiation in (a) synthetic solution and (b) BCR
effluent

Catalyst NF-TiO2-monodisperse(50 nm)a NF-TiO2-monodisperse (10 nm)b NF-TiO2-P25 NF-TiO2-monodisperse (300 nm)b

Compound t1/2min k·103min−1 R2 t1/2min k·103min−1 R2 t1/2min k·103min−1 R2 t1/2min k·103min−1 R2

Synthetic solution

CAF 47.4 14.6 1.00 54.8 12.6 1.00 60.9 11.4 0.99 105.7 6.56 1.00

CMP 55.5 12.5 0.99 59.1 11.7 1.00 55.1 12.6 0.99 116.9 5.93 1.00

ATR 63.6 10.9 1.00 70.2 9.9 0.99 78.7 8.8 0.97 275.4 2.52 0.99

BCR effluent

CAF 72.8 9.52 1.00 70.8 9.79 1.00 76.1 9.11 0.99 199.4 3.48 1.00

CMP 77.3 8.97 0.95 79.4 8.73 0.93 82.4 8.42 0.99 245.2 2.83 0.99

ATR 118.8 5.83 0.99 104.8 6.61 0.99 134.2 5.17 0.99 685.2 1.01 1.00

aMonodisperse titania incorporated by the layer-by-layer method
bMonodisperse titania added directly to the sol–gel
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Fig. 5 Photocatalytic degradation of COCs in synthetic solution under
visible and solar irradiation by a NF-TiO2-P25, b NF-TiO2+monodis-
perse titania (300 nm) added directly to the sol
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removal efficiency, after 2 h of degradation, 71 % of CAF,
59% of CMP, and 44% of ATRwere removed with NF-TiO2-
P25 (Fig. 6a); however, with NF-TiO2+monodisperse TiO2

(300 nm), the removal percentages were only 37, 32, and 12%
for CAF, CMP, and ATR, respectively (Fig. 6b). The superior

photocatalytic performance by NF-TiO2-P25 compared to
NF-TiO2+monodisperse titania (300 nm) was mainly due to
the different properties of the material. Although the compos-
ite film containing monodisperse nanoparticles of 300 nm
presented a higher surface area than those prepared with P25
(Table 1), a higher surface coverage was achieved in the film
composed with P25 (Fig. 1a). The more uniform dispersion of
P25 was a reason for the better photocatalytic activity of NF-
TiO2-P25, while the highly aggregatedmonodisperse particles
brought along poor surface area coverage and, thus, inferior
photocatalytic efficiency. Such lower activity in photocatalytic
degradation was accentuated in the more complex nature of
the BCR effluent.
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Fig. 7 Photocatalytic degradation of COCs in synthetic solution under
solar irradiation by catalysts from the layer-by-layer method: a NF-
TiO2-monodisperse TiO2 (50 nm), b NF-TiO2-monodisperse TiO2

(10 nm)

Table 3 Characterization of the BCR effluent

Effluent characteristic Measure Unit

pH 7.9

Total alkalinity 156 mgL−1

Total hardness 64 mgL−1

Turbidity 0.13 NTU

Conductivity 1,055 μS

COD <3 mgL−1

TOC 4.1 mgL−1

Cl− 59 mgL−1

NO3
− 14 mgL−1

PO4
3− 2.8 mgL−1

SO4
2− 316 mgL−1

time, hour
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Fig. 8 Photocatalytic degradation of COCs in BCR effluent under
solar light employing catalysts from the layer-by-layer method: a
NF-TiO2-monodisperse TiO2 (50 nm), b NF-TiO2-monodisperse
TiO2 (10 nm)
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Fig. 6 Photocatalytic degradation of COCs in BCR effluent under
solar light employing a NF-TiO2-P25, b NF-TiO2+monodisperse tita-
nia (300 nm) added directly to the sol
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Photocatalytic evaluation of the composite NF-TiO2 films
synthesized layer-by-layer with the monodisperse TiO2

The catalysts synthesized with the layer-by-layer method
achieved higher degradation rates than those where nanopar-
ticle additives were directly incorporated into the NF-TiO2 sol.
As shown in Fig. 7, in the synthetic water solution, the
photocatalysts comprising of monodisperse titania of 50 and
10 nm (Fig. 7a and b, respectively) yielded slightly higher
degradation than NF-TiO2-P25 (see Table 2). The k values for
ATR were 10.9 and 9.9×10−3min−1 using NF-TiO2 layer-by-
layer with monodisperse TiO2 of 50 and 10 nm, respectively.
In terms of removal, after 2-h period of exposure, 83 % of
CAF, 77 % of CMP, and 69 % of ATR were removed when
using monodisperse particles of 50 nm (Fig. 7a), and 78 % of
CAF, 72 % of CMP, and 63 % of ATR were removed when
using monodisperse particles of 10 nm (Fig. 7b).

With the catalysts from the layer-by-layer method, the
degradation of COCs was also slower in the BCR effluent
compared to the synthetic water solution (Table 2). With
NF-TiO2-monodisperse TiO2 (10 nm), the k value for the
COCs degradation was decreased by about 3×10−3min−1

when compared with the kinetics in synthetic water. In terms
of removal efficiency, after 2 h, 73 % of CAF, 67 % of CMP,
and 52 % of ATR were removed when adding monodisperse
particles of 10 nm by the layer-by-layer technique and 67 %
of CAF, 68 % of CMP, and 48 % of ATR were removed
using monodisperse particles of 50 nm (Fig. 8a, b). As
witnessed in the characterization of the composite films
(“Morphology and microstructure of the composite NF-
TiO2 films” section), the difference between the catalyst
materials was mainly due to the surface area coverage. Based
on the ESEM images (Fig. 2), there was no remarkable
variation in the surface coverage between the films made by
the layer-by-layer technique. In the 10- to 50-nm range, a
change in size of the monodisperse particles did not induce a
relevant modification in the distribution of nanoparticles and,
thus, in the coverage of the merged catalyst surface. Hence,
NF-TiO2 films synthesized by the layer-by-layer method with
monodisperse TiO2 with either 10 or 50 nm of particle size
possess similar photocatalytic activities.

Conclusions

The incorporation method of the monodisperse titania to
NF-TiO2 played a significant role in the final physicochem-
ical and photocatalytic properties of the composite film.
Fewer nanoparticle aggregates and improved distribution
of monodisperse TiO2 were obtained with the layer-by-
layer technique compared to the direct addition of monodis-
perse particles into the sol. The COCs were effectively
degraded under solar light with NF-TiO2-monodisperse (10

and 50 nm size) from the layer-by-layer technique as well as
with NF-TiO2-P25, whereas monodisperse TiO2 of 300 nm
directly incorporated into the NF-TiO2 sol only achieved
partial COCs degradation. Due to the presence of several
inorganic components and higher pH, slower degradation
was observed in the BCR effluent than in the synthetic solu-
tion (k values decreased by about 3–4×10−3min−1). NF-TiO2-
monodisperse (10 and 50 nm) presented the best performance
in both aqueous matrices (in the first 2 h, about 80, 75, and
70 % removal in synthetic water and about 70, 70, and 50 %
removal in the BCR effluent was obtained for CAF, CMP, and
ATR, respectively). These results imply that the layer-by-layer
technique is a promising technique for the synthesis of com-
posite TiO2-based films as opposed to the direct addition of
nanoparticles into the prepared sol–gel, and further optimiza-
tion of the method is warranted.
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