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Abstract The common sole, Solea solea (Linneus, 1758),
and the Senegalese sole, Solea senegalensis (Kaup, 1858),
are two important commercial species that coexist in the
NW Mediterranean. In order to assess the species' ability to
respond to chemical insults, a comparison of activities on
enzymes involved in xenobiotic metabolism was carried out.
Juveniles of both species were sampled in winter 2011 from
the Ebro Delta region, and activities of selected enzymes
such as acetylcholinesterase (AChE), carboxylesterase
(CbE), ethoxyresorufin O-deethylase (EROD) and glutathi-
one S-transferase (GST) were determined in several tissues.
Lipid peroxidation (LP) levels in plasma were measured as
a sign of oxidative stress. In vitro exposures to selected
pesticides were contrasted, analysing AChE and CbE ac-
tivities in several tissue homogenates. Overall, enzymatic
activities were higher in S. solea except for gill GST and
CbE and kidney GST, while plasmatic LP levels were
similar. In vitro contrasts revealed lower IC50 values for
CbE activities in S. solea, suggesting a greater buffer
capacity of this enzyme to potentially reduce pesticide
toxicity over AChE.
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Introduction

The Ebro Delta is an area of 320 km2 located in the north-
west Mediterranean Sea. In this region, the main economic
interests are devoted to agricultural practices, aquaculture
production and fishing activities. Also, due to its high eco-
logical value, a significant part of its surface has been
granted some legal protection by the Directive 79/409 of
the European Commission (Mañosa et al. 2001). Concern
on the presence of anthropogenic chemicals, mostly pesti-
cides, and their effects over the local fauna has been
addressed in a few recent studies (Damásio et al. 2010;
Köck et al. 2010; Suarez-Serrano et al. 2010). Among the
pesticides, organophosphates (OP) and carbamates (CB) are
commonly used in agriculture, mostly during spring, and
reach the bays and the surrounding marine waters by the
late-spring–summer period (Gómez-Gutiérrez et al. 2006;
Köck et al. 2010). The mechanism of action of these pesti-
cides is based on the inhibition of neurotransmission acting
over acetylcholinesterase (AChE), a member of the family
of enzymes known as cholinesterases (ChE) (van der Oost et
al. 2003), but they also inhibit other classes of B-type
esterases such as carboxylesterases (CbEs) (Wheelock et
al. 2008).

Among OPs, malathion is an insecticide extensively used
in the region in the past. Despite its ban by the European
Commission since June 2007 (ECC directive 1376/07 (07/
389)), a period of grace was granted for the usage of existing
stocks until December 2008. During the period 2007–2008,
this pesticide was partly responsible for some fish mortality
episodes in the region (Köck et al. 2010). In fish, malathion
is bioactivated to the active malaoxon via oxidative desul-
furation by the cytochrome P450 (CYP). Malaoxon could
react with the hydroxyl group of serine in the active site of
AChE and affect its activity (Aker et al. 2008). Dichlorvos
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(DDVP) is another OP commonly used in the region in
agriculture as well as treatments for ectoparasites in marine
fish farms (Varó et al. 2008). Unlike malathion, it does not
require bioactivation to become toxic as it already contains
the oxon (P0O) form. Its commercialisation has also been
banned recently (ECC directive 1376/07 (07/387)).
Although under the present legislation these pesticides
might not represent an environmental threat, they were
considered in the present study as most available data on
fish toxicity are based on them, and one main interest of our
study was to contrast species sensitivity towards OPs.

B-type esterases are classed for their high sensitivity to
OP and CB pesticides, and in fish, they are well-accepted
markers of pesticide exposure (Fulton and Key 2001;
Wheelock et al. 2008). In Solea senegalensis, AChE (EC
3.1.1.7) is the predominant form in the brain and muscle
(Solé et al. 2012). On the other hand, CbE (EC 3.1.1.1) is a
heterogeneous group of isoenzymes that catalyses the hy-
drolysis of a wide range of xenobiotic esters, amides and
thioesters. CbEs are dominant in the liver and play a role in
the metabolism and subsequent detoxification of many
xenobiotics as well as endogenous compounds, and they
are also believed to have a protective role against OP toxic-
ity (Wheelock et al. 2008). Recently, they have also been
characterised in several tissues of S. senegalensis, both in
juveniles and adults (Solé et al. 2012).

In addition to B-type esterases, the activities of the
CYP1A-dependent 7-ethoxyresorufin O-deethylase activity
(EROD; EC 1.14.14.1), a phase I enzyme, and the phase II
conjugating glutathione S-transferase activity (GST; EC
2.5.1.18) were considered, as they are key enzymes in the
metabolism of endogenous molecules as well as xenobiotics
in fish (van der Oost et al. 2003). Lipid peroxidation (LP) is
a marker that integrates the negative effects caused on the
lipid membranes by reactive oxygen species (ROS). Many
xenobiotics undergoing metabolism can form intermediate
ROS, but they can also result from incomplete oxygen
reduction during the normal aerobic processes (Livingstone
2001; Valavanidis et al. 2006). LP levels in fish have been
considered in pollution monitoring studies including in sole
(Oliva et al. 2010) as well evaluating pesticide exposure under
lab conditions (Varó et al. 2007). They are mostly measured in
the muscle and liver, but they can also be reported in the
plasma (Pascoli et al. 2011).

The two fish species contrasted in this study coexist in
the NW Mediterranean and in the Ebro Delta region. Solea
solea is a temperate species distributed in the Mediterranean
Sea and in the Atlantic Ocean, from the Baltic Sea to
Senegal. Although the natural distribution of S. senegalensis
is in the tropical Atlantic waters (Quéro et al. 1986), it is
nowadays well established in the western Mediterranean Sea
according to CIESM (Atlas of Exotic Fishes in the
Mediterranean Sea). Even though its presence in the

Catalan Sea has been recognised since 1920, at present,
there are no reliable data on its abundance compared to the
common S. solea since they are not identified separately in
the market. A contrast on their diet, growth, condition index
and reproduction has been carried out in the Portuguese
coast (Vinagre et al. 2008; Teixeira and Cabral 2010). In
the Mediterranean, their growth and feeding ecology have
also been contrasted; basically, they both feed on benthic
invertebrates, such as polychaetes, bivalve molluscs and
crustaceans (Garcia et al. 1991). While S. senegalensis has
been broadly used as sentinel in field and laboratory studies
in the southern Iberian Peninsula (Fonseca et al. 2011a, b;
Oliva et al. 2012; Costa et al. 2012 and references within), the
use of S. solea is more limited and has been carried out in more
northern latitudes (Wessel et al. 2010; Trisciani et al. 2011).

The objective of the present study was to contrast the
biotransformation capacities of two closely related species
(S. solea and S. senegalensis) and relate this to potential
biochemical advantages in front of a chemical challenge. To
achieve this goal, in both species and selected target tissues,
(1) activities of AChE, CbE, EROD, GST and LP levels
were determined, and (2) in vitro exposures to selected
model pesticides were used to assess AChE and CbE inhi-
bition in tissue homogenates, the latter as an indicator of the
capacity to buffer OP pesticide toxicity.

Material and methods

Chemicals

Chemical reagents were purchased from Sigma-Aldrich
Química S.A. (Madrid, Spain), including dichlorvos (2,2-
dichlorovinyl dimethyl phosphate, CAS no. 62-73-7), 5,5′-
dithiobis(2-nitro-benzoic acid) (DTNB), acethylthiocholine
iodide (ASCh), β-nicotinamide adenine dinucleotide phos-
phate reduced tetrasodium salt (NADPH) and 1-naphthyl
acetate (αNA). The solvents used in the laboratory were
obtained from Merck Chemicals. Malathion (diethyl(dime-
thoxyphosphinothioylthio)succinate, CAS no. 121-75-5),
and malaoxon (O-O-dimethyl-S[ethoxycarbonyl], CAS no.
1634-78-2) were obtained from Dr. Ehrenstorfer Reference
Materials (Germany).

Fish sampling

Sampling was carried out in February 2011 in the platform
situated in front of the Ebro Delta plain using gillnets. A
total of 21 specimens were obtained from two close
locations (coordinates, 40°39.429′ N 00°54.009′ E and
40°30.116′ N 00°55.213′ E). Fish were captured alive
and immediately transported to a nearby lab with aerated
seawater. Once in the laboratory, biological parameters were
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recorded. Handling of the fish was done according to na-
tional and institutional regulations of the Spanish Council
for Scientific Research and Directive 2010/63/EU. Blood
was taken using heparinised syringes, and 1 % aprotinin was
added to the blood extracted and thoroughly mixed. The
plasma was obtained by centrifugation (1,000×g, 15 min, 4 °C)
and stored at −80 °C until analyses. Fish were euthanized by
cervical sectioning, and the target tissues (gills, liver, gonad,
kidney and muscle) were dissected out, snap frozen in liquid
nitrogen and kept at −80 °C until analyses. After dissection,
the gonad and liver were weighted. Parameters such as
condition factor (CF 0 body weight / (body length)3 ×
100), hepatosomatic index (HSI 0 (liver weight / body
weight) × 100) and gonadosomatic index (GSI 0 (gonad
weight / body weight) × 100) were also calculated.

Sample preparation

For esterase determination, a portion of tissue (between 0.1–
0.5 g) was homogenised in ice-cold 50 mM phosphate
buffer (pH 7.4) in a 1:5 (w/v) ratio using a Polytron® blend-
er. The homogenate was centrifuged at 10,000×g for 30 min
at 4 °C, and the obtained supernatant (S10) was aliquoted
and stored at −80 °C until biochemical analyses. For EROD
and GST determinations, the homogenisation buffer
(100 mM phosphate, pH 7.4) was complemented with
1 mM dithiothreitol, 0.1 mM phenylmethylsulfonyl fluoride
and 1 mM ethylenediaminetetraacetic acid.

Biochemical determinations

Assay conditions were kept similar, and only the sample
volume was changed in order to achieve linearity in the
enzymatic measurements. All assays were carried out in
triplicate at 25 °C, except EROD which was at 30 °C, in a
96-well plate using a Tecan Infinite M200 microplate reader.

AChE activity was measured in the undiluted S10 muscle
tissue. In each microplate well, 25 μl of the sample was
mixed with 150 μl of DTNB (270 μM), and after 2 min of
pre-incubation, the reaction was started by adding 50 μl of
the substrate ASCh (1 mM final concentration). Reading
was performed in kinetic mode at 405 nm for 5 min follow-
ing the Ellman et al. (1961) protocol. Activity was
expressed in nanomoles per minute per milligram protein.

CbE activity was measured in S10, either fivefold diluted
in the kidney, gonad and gills or 20-fold diluted in the liver.
Briefly, 25 μl of the sample and 200 μl of αNA as substrate
(250 μM final concentration in the well) were measured for
5 min at 235 nm as described in the Mastropaolo and
Yourno (1981) protocol. Activity was expressed in nano-
moles per minute per milligram protein.

EROD activity was measured using 50 μl of undiluted
liver homogenate samples (S10) and incubated at 30 °C with

a reaction mixture containing the following: 0.2 mM
NADPH and 3.3 μM 7-ethoxyresorufin in 100 mM phos-
phate buffer (pH 7.4) (Burke and Mayer 1974). The reaction
was followed over resorufin formation for 10 min with a
transparent 96-well plate using the fluorescence mode at a
537-nm excitation and 583-nm emission. A six-point stan-
dard of resorufin (0–160 nM) was used to relate activity as
picomoles per minute per milligram protein. A good agree-
ment between S10 and microsomal EROD activity determi-
nations was formerly confirmed (r 0 0.951; n 0 12).

GST activity was measured in 25 μl of the fivefold-
diluted kidney, gonad and gill and 20-fold-diluted liver
S10 using 1-chloro-2,4-dinitrobenzene (CDNB) as sub-
strate. The final reaction mixture contained 1 mM CDNB
and 1 mM reduced glutathione. The activity rate was mea-
sured for 5 min at 340 nm (Habig et al. 1974) and expressed
as nanomoles per minute per milligram protein.

The biotransformation index (BTI) as proposed by van
der Oost et al. (1998) was calculated as a ratio between
EROD and GST activities in the liver.

LP was determined using 100 μl of plasma, mixed with
650 μl of 1-methyl-2-phenylindole in methanol/acetonitrile
(1:3) and 150 μl of 37 % HCl. Incubation was performed at
45 °C for 40 min; the reaction was stopped in ice and further
centrifuged at 13.000×g for 10 min to precipitate proteins.
Absorbance was read at 586 nm versus a standard solution
of 1,1,3,3-tetramethoxypropane (MDA) treated in the same
manner. LP content was expressed as nanomoles of MDA
per millilitre plasma.

Total protein content of the samples for all assays was
determined by the Bradford method (1976) adapted to a
microplate, using Bradford Bio-Rad Protein Assay reagent
and bovine serum albumin as standard. Absorbance was
read at 595 nm.

In vitro exposure to pesticides

Sensitivity of AChE and CbE activities towards the pesti-
cides dichlorvos, malathion and malaoxon was evaluated in
both species. To perform the in vitro exposures, each ho-
mogenate used was obtained after centrifugation at
10.000×g for 30 min at 4 °C of the target tissue (S10). In
vitro exposures were carried out in the undiluted S10 mus-
cle, fivefold-diluted gonad and kidney and 20-fold-diluted
liver. Stock solutions of the pesticides were dissolved in
ethanol, except dichlorvos, which was dissolved in water.
The final incubation concentrations for malathion and
malaoxon were 0.01, 0.1, 1, 10, 100 and 1,000 μM, whereas
for dichlorvos, they were 0.256, 0.512, 2.56, 12.8, 64 and
320 μM. For each incubation, 120 μl of the appropriately
diluted S10 sample was mixed with 5 μl of each concentration
of pesticide. Incubation with the pesticide was done at room
temperature (22 °C) for 30 min. Subsequently, AChE
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determinations in the muscle and CbE measurements in the
gonad, kidney and liver were performed as formerly
described.

Pesticide analysis residues in muscle tissue

Pesticide analysis in fish muscle was carried out to confirm
that the fish had not been recently exposed to significant
levels of pesticides. Analysis was carried out using liquid
chromatography–tandem mass spectrometry with a previous
extraction by the QuEChERSmethod. Four samples of pooled
muscle tissue, corresponding to several individuals (7–10 g),
were generated for each sex and species. A total of 45 pesti-
cides were screened as described in Soler et al. (2007).

Statistical analysis

Data were tested for normality (Kolmogorov–Smirnov's
test) and homogeneous variance (Levenes's test) and were
log10(X)-transformed when suitable to comply with normal-
ity and homoscedasticity assumptions. A t test was used to
compare the enzyme activities of females and males. The
influence of fish size on enzyme activities was assayed
using weight as covariate when performing analysis of
covariance (ANCOVA) test to determine significant differ-
ences between species. Previously, the homogeneity of re-
gression slopes was checked including the interaction
factors (species × weight) in the model (Engqvist 2005). In
the case of no significant effect of weight on enzyme activity,
a t test was performed to check differences between species.

Data concerning the in vitro exposures to pesticides were
analysed with one-way ANOVA, followed by Dunnett's
multi-comparison test to assess which concentrations were
significantly different from the control. The values expressed
as percentages were arcsine-transformed to normalize the
variable distribution prior to ANOVA analyses and converted
back to percentages to calculate means and standard errors
(Varó et al. 2007). To calculate the 50 % in vitro inhibition
concentration values (IC50), the regression probit module of
SPSS Systems at 95 % confidence was used. Results were
presented as means ± standard error of the mean (SEM). All
statistical analyses were carried out using SPSS Systems
(SPSS Inc., 1989–1992), and the significance level was
always set at 0.05.

Results

Biological parameters

Biological data for both sole species are presented in
Table 1. All specimens were juveniles, although specimens
of S. senegalensis were bigger than those of S. solea

(p < 0.05). All fish were confirmed as immature and at a
similar developmental stage as reflected in the histological
analysis of gonads and sex hormone levels in the plasma
(data not presented). While the CF differed significantly
(p < 0.05) between species, no differences were observed
in the indexes HSI and GSI.

Biomarkers

Enzyme activities in the tested tissues for both species are
presented in Table 2. As no significant differences in

Table 1 Biological parameters and morphometric indexes

S. solea S. senegalensis

N (male/female) 10 (4:6) 11 (7:4)

Length (cm) 21.75 ± 0.85 25.91 ± 0.21*

Weight (g) 79.85 ± 14.7 146.6 ± 4.96*

CF 0.72 ± 0.02 0.84 ± 0.01*

HSI 0.53 ± 0.02 0.58 ± 0.03

GSI 0.22 ± 0.06 0.34 ± 0.13

Values are mean ± SEM

CF condition factor, HSI hepatosomatic index, GSI gonadosomatic
index

*p < 0.05 (indicates significant difference between species after t test)

Table 2 Enzymatic activities (mean ± SEM) on selected tissues

S. solea (10) S. senegalensis
(11)

Statistical analyses

Muscle AChEa 14.7 ± 0.7 7.6 ± 0.5 ANCOVA,
F 0 23.42*

Kidney AChEa 7.3 ± 1.1 6.6 ± 0.8 t test, n.s.

CbEa 23.9 ± 3.4 26.1 ± 1.0 t test, n.s.

GSTa 51.4 ± 4.1 64.8 ± 4.5 t test, t 0 −2.18*

Gills AChEa 3.2 ± 0.2 2.2 ± 0.2 ANCOVA, n.s.

CbEa 6.8 ± 0.4 9.9 ± 0.4 t test, t 0 −5.14*

GSTa 69.7 ± 5.7 87.9 ± 4.1 t test, t 0 −2.62*

Liver AChEa 4.3 ± 0.2 2.2 ± 0.2 ANCOVA, n.s.

CbEa 84.9 ± 9.0 50.4 ± 4.5 ANCOVA, n.s.

GSTa 413.4 ± 16.9 364.5 ± 20.0 t test, n.s.

ERODb 2.21 ± 0.3 0.62 ± 0.1 ANCOVA, n.s.

Plasma LPc 3.1 ± 0.9 3.6 ± 0.8 t test, n.s.

Number of individuals indicated in brackets beside species name

AChE acetylcholinesterase, CbE carboxylesterase, GST glutathione
S-transferase, EROD ethoxyresorufin O-deethylase, LP lipid
peroxidation, n.s. not significant (p > 0.05)
* p < 0.05 (indicates significant difference between species after t test/
ANCOVA for contrasts between species)
a nmol/min/mg protein
b pmol/min/mg protein
c nmol MDA/ml plasma
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enzyme activities were encountered between sexes in the
fish used in the present study, results were reported together
regardless of sex. Both species showed the highest AChE
activity in the muscle following the order muscle > kidney >
liver ≈ gills. Fish size (weight) had an effect in the muscle,
gill and liver AChE activity as well as in the hepatic CbE
and EROD activity. Thus, this factor was considered in the
contrasts, and muscular AChE activity was still confirmed
as significantly higher (ANCOVA, p < 0.05) in S. solea.
CbE activities in both species also followed the same trend,
liver > kidney > gills, although CbE activity in the gills was
significantly higher in S. senegalensis (t test, p < 0.05).
Hepatic EROD activity was 3.6-fold higher in S. solea than
in S. Senegalensis, but not significant (ANCOVA, p > 0.05).
Hepatic GST activity was not affected by size and was
similar in both species. Thus, the BTI calculated as a ratio
between EROD/GST was threefold times higher in S. solea
(5.34 ± 0.7) than in S. senegalensis (1.75 ± 0.4). On the
contrary, extra-hepatic GST activity in the gills and kidney
was significantly higher (t test, p < 0.05) in S. senegalensis.
As per tissue, GST showed the same trend in both species:
liver > gills > kidney. On the other hand, the marker of
effect, LP in the plasma (measured as MDA), did not reveal
significant species differences (t test, p > 0.05).

In vitro exposure to selected pesticides

The in vitro inhibitory effect of dichlorvos, malathion and
malaoxon on S10 homogenates over muscle AChE and CbE
activities of the gonad, kidney and liver of the Senegalese
sole and common sole after 30-min exposures is contrasted
(Fig. 1). No effect was due to solvent control.

In both species, dichlorvos had a significant inhibitory
effect on muscular AChE and CbE activities in the gonad,
kidney and liver. The IC50 values (Table 3) clearly stated a
higher sensitivity of CbE to this OP pesticide in S. solea,
while the inhibitory effect on muscle AChE was similar in
both species. By contrast, in vitro exposure to malathion
only caused a significant inhibition on esterase activities at
the highest concentrations (100 and 1,000 μM) and had no
effect on gonadal CbE in S. senegalensis (Fig. 1). This
insensitivity is also reflected in the IC50 values (Table 3).
Malaoxon, malathion's metabolite, had a significant inhibi-
tory effect on AChE and CbE activities in all tissues exam-
ined of both species, except on CbE in the gonad of S.
senegalensis. As seen for dichlorvos, muscle AChE was
equally sensitive in both species, while CbE was more
sensitive in S. solea, also reflected in the IC50 values for
this chemical (Table 3).

Chemical analysis of pesticide residues in muscle tissue

Four pools of muscle tissue, representing each species
and sex, were analysed. Out of the 45 pesticides ana-
lysed, only 6 were detected and at very low levels
(0.13–0.65 ng/g wet weight (ww)) in the muscle of the
pool corresponding to S. senegalensis males. The OP
pesticides were as follows: diazinon, dimethoate and
omethoate, triazines (propazine and terbuthryn) and car-
bamate (methiocarb). Diazinon was the only OP com-
monly present in the four fish groups, and its
concentration ranged from 1.38 to 3.25 ng/g ww. The
pesticide residues found are considered low and much
below those regulated for human consumption and

Fig. 1 Muscular AChE and gonad, kidney and liver CbE inhibition after in vitro 30-min exposures to selected pesticides. Each bar corresponds to
n 0 4. Asterisk denotes p < 0.05 after contrast versus the control group
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considered as safe (<10 ng/g ww.). These results confirmed
that no significant recent pesticide exposure had occurred.

Discussion

The common sole (S. solea) and the Senegalese sole (S.
senegalensis) are commercially valuable fish species
that, although they have different origins, presently co-
exist in the Mediterranean. In this study, these two
closely related sympatric soles, S. solea (temperate)
and S. senegalensis (subtropical), were collected from
the Ebre Delta region, a relatively clean area as far as
certain organic pollutants are concerned, and during the
winter period, when pesticides are found less present in
this ecosystem (Köck et al. 2010). The latter was further
confirmed by pesticide chemical analysis on the fish
muscle. Moreover, presence of certain organic contami-
nants in the local sediment, collected simultaneously to
the fish sampling, confirmed they correspond to low
background levels reported in the Mediterranean (Gómez-
Gutiérrez et al. 2007; Cardellicchio et al. 2007; Eljarrat
et al. 2005), that is levels in the sediment (in ng/g dry
weight) were for polycyclic aromatic hydrocarbons
(PAHs), 72.50; PCBs, 15.05; and PBDEs, 1.12 (data pro-
vided by the Catalan Water Agency-ACA). Thus, under
these premises of low background chemical exposure, the
measure of biochemical defences of enzymes involved in
xenobiotic metabolism and in vitro species sensitivity to
selected pesticides was contrasted.

In general, enzyme activities in S. solea were higher
than those in S. senegalensis. This supports the concept
of higher enzymatic activities usually reported in species
adapted to cooler environments against those from warm-
er climates, which is also applicable to xenobiotic-

metabolising enzymes (Fitzsimmons et al. 2007).
Nevertheless, the influence of factors such as sex and
weight that can modulate these enzyme activities in fish
(van der Oost et al. 2003), including sole (Solé et al.
2012), was considered. No sex differences were seen in
this age group. However, as weight differed in both
groups, this variable was considered as a cofactor in
the contrast of activities and was seen relevant for
esterases and EROD determinations. As in the present
study, higher growth and CF for S. senegalensis in con-
trast to S. solea were also seen on the Portuguese coast
in specimens of the same age (Vinagre et al. 2008).
Thus, considering weight as a relevant factor in the
contrasts of size-dependent activities, ANCOVA results
confirmed that muscular AChE activities were still sig-
nificantly higher in S. solea. Yet, AChE activity in the
muscle in both sole species is low if contrasted to other
teleost fish (Solé et al. 2010) although comparable to
activities reported elsewhere for S. senegalensis (Solé et
al. 2012). Despite even lower AChE activities in the
gills, this tissue was considered as it was seen to be
highly sensitive to exposure to antifoulants (López-
Galindo et al. 2010a, b) and surfactants (Alvarez-Muñoz
et al. 2007, 2009) in studies with S. senegalensis. Other
tissues such as the kidney, gonad and liver also express
AChE activity, although in these, this enzyme is likely to
have roles other than neurotransmission (Karczmar 2010).
They were also included in this study due to their key
role in physiological processes and xenobiotic metabo-
lism; thus, any alterations on their activities could have
detrimental metabolic consequences. Other esterases, such
as CbE activities, were dominant in the liver, but they
were also measurable in other tissues such as the kidney,
gonad and gills. The activities reported in this study
fully coincide with a former study of juvenile and adult S.
senegalensis (Solé et al. 2012).

The liver is the body's principal detoxification organ
and processes the xenobiotics to which an animal is
exposed in order to make them more readily excretable
(van der Oost et al. 2003). An increase in EROD
activity is usually used as a reliable biomarker of
dioxin-like chemical exposure. In the present study,
however, the pollution load of these classes of chem-
icals (e.g. PAHs) was low and equivalent for both
species as they were simultaneously sampled from the
same locations. Thus, EROD activity accurately corre-
sponded to species differences, and although despite an
apparent higher activity in the temperate S. solea (2.21 ± 0.3)
than in the subtropical S. senegalensis (0.62 ± 0.3), once
the fish weight was considered, these differences disap-
peared (ANCOVA, p > 0.05).

In addition to EROD, GST activity is of great impor-
tance in the detoxification of electrophilic xenobiotics

Table 3 Pesticide concentration that reduce activity by half (IC50)

IC50 (μM)

AChE CbE

Muscle Gonad Kidney Liver Species

Dichlorvos 0.586 0.029 0.354 0.032 S. solea

1.345 1.906 1.961 1.068 S. senegalensis

Malathion 218.0 4611 184.3 880.2 S. solea

239.5 n.e. 5126 6126 S. senegalensis

Malaoxon 0.203 15.05 14.72 4.237 S. solea

0.188 1311 239.5 17.87 S. senegalensis

AChE in the muscle or CbE in the gonad, kidney and liver in S. solea
and S. senegalensis

n.e. no effect
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although its use in pollution monitoring is more contro-
versial (van der Oost et al. 2003). GST activity in the
liver of both species from the Ebre Delta region was
similar and around 400 nmol/min/mg protein. These
results are in sound agreement with the GST values
(200–600 nmol/min/mg protein) found for S. senegalensis
from the Ria de Aveiro and the Tejo estuary (Fonseca et
al. 2011a, b), but they are lower than those reported for
S. solea in a PAH-polluted site (Trisciani et al. 2011). In
contrast to hepatic GST, a non-negligible but eight and
5.6 times lower GST activity was found in the kidney of
S. solea and S. senegalensis, respectively, supporting its
given role in the detoxification processes. Moreover, GST
activity in the kidney and gills was significantly higher
in the Senegalese sole than in the common sole. This
fact, together with its previously reported higher CbE
activity in the gills, predicts a significant extra-hepatic
detoxification defence system in the Senegalese sole.
Moreover, the BTI index (van der Oost et al. 1998) also
confirmed species singularities.

Pesticide sensitivity was contrasted in vitro as an
adequate proxy of in vivo responses (Laguerre et al.
2009), and the IC50 values for selected pesticides were
calculated for muscular AChE and CbE in the gonads,
kidney and liver of both Soleidae species. Both species
displayed a similar response to AChE inhibition (by
dichlorvos and malaoxon). However, CbE activity in S.
Solea was more sensitive to exposure to all three pesti-
cides (Table 3). Thanks to the protective role attributed
to CbE in front of AChE inhibition (Sogorb and
Vilanova 2002), a lower CbE IC50 value would indicate
higher affinity for the pesticides tested in S. solea that
could potentially imply a higher protection in front of a
pesticide-polluted environment. Dichlorvos is one of the
model OP pesticides more frequently used in neurotoxic
sensitivity assessment. In a former study with sea bass
(Dicentrarchus labrax) juveniles, muscle IC50 for
AChE was 44.8 μM (Varó et al. 2003). This value
greatly differs from muscle AChE IC50 obtained here
for both sole species (0.586 μM for S. solea and
1.345 μM for S. senegalensis) and could be due to
the low contribution of butyrylcholinesterase activity in
the sole muscle (Solé et al. 2012) as opposed to the sea
bass (Varó et al. 2003). Other OPs contrasted were
malathion (parental form) and malaoxon (metabolite),
and as expected for both sole species, the oxon form
was more toxic as indicated by about 103 times lower
AChE IC50 in the muscle. This chemical-form depen-
dence on the inhibition power contrasts with studies on
a freshwater fish, Ictalurus furcatus, in which IC50 for
malathion and malaoxon only differed by twofold, 50
and 21.6 μM, respectively (Aker et al. 2008). However,
more recent studies carried out with juveniles of S.

senegalensis also revealed that the IC50 values for
muscular AChE and hepatic CbE exposed to chlorpyr-
ifos and its oxon were even lower than those of mala-
thion/malaoxon, confirming the oxon form as the most
toxic, a high species sensitivity to these pesticides and a
protective role of hepatic CbE. That is, IC50 (μM) to
chlorpyrifos exposure for AChE was 271.14; for CbE, it
was 13.22; and for the oxon derivate, it was much
lower: 0.025 in the muscle and 0.006 in the liver.

In addition to species differences, each tissue showed a
particular toxicant response. In fact, CbEs represent a large
family of isoenzymes that expresses species, age, tissue and
chemical class specificity (Wheelock et al. 2008). In this
sense, it was seen that hepatic CbE displayed a lower IC50
value than the kidney, and this value was, in turn, much
lower for dichlorvos than for malaoxon in both tissues.
Gonad responsiveness to pesticides also varied according
to the OP pesticide and the species tested, and with the
exception of dichlorvos, the gonad tissue proved to be rather
insensitive to OP inhibition. Overall, the lower IC50 values
of CbE after in vitro exposure to dichlorvos, chlorpyrifos
and chlorpyrifos oxon support the protective role given to
CbE in front of AChE inhibition, which is consistent with in
vivo and in vitro studies carried out in the marine fish
Sciaenops ocellatus (Ru et al. 2003). Conversely, a lower
IC50 for CbE with respect to AChE was not confirmed for
malathion and malaoxon. Nonetheless, this discrepancy
in the response to two similar OP chemicals has also
been reported in the Nile tilapia Oreochromis niloticus
(Pathiratne and George 1998).

In short, considering a higher basal muscular AChE
activity in S. solea than in S. senegalensis, a similar IC50
value after in vitro pesticide exposure in the muscle but a
significantly lower IC50 value in the other tissues for CbE in
S. solea, the common sole may be more resistant to AChE
inhibition in front of a pesticide challenge. Further in vivo
studies would be required to confirm the observation
pointed out by in vitro results.

Conclusions

Enzymatic activities were, in general, higher in juveniles of
S. solea as a species adapted to cooler waters, although S.
senegalensis seemed to be better equipped in extra-hepatic
defences as indicated by higher gill CbE activity and gill and
kidney GST activities. In vitro exposure to pesticides also
suggested that S. solea juveniles could be potentially more
protected from OP exposures as expressed by higher AChE
in the muscle, a similar IC50value for AChE in the muscle
but a lower IC50 for CbE, the latter suggesting higher
protection in front of pesticide toxicity. However, the final
outcome resulting from the balance between their biochemical
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differences should be confirmed under in vivo laboratory
exposures to the same xenobiotic insult. In addition, the
present study provides baseline data on enzymatic activities
in juveniles of two closely related species of high economic
value that could be of use in future monitoring studies.
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