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Abstract Perfluorinated compounds (PFCs) have been wide-
ly used in industrial and consumer products and frequently
detected in many environmental media. Potential reproductive
effects of perfluorooctanesulfonate (PFOS), perfluorooctanoic
acid (PFOA) and perfluorononanoic acid (PFNA) have been
reported in mice, rats and water birds. PFOS and PFOAwere
also confirmed developing toxicants towards zebrafish em-
bryos; however, the reported effect concentrations were con-
tradictory. Polyfluorinated alkylated phosphate ester
surfactants (including FC807) are precursor of PFOS and
PFOA; however, there is no published information about the
effects of FC807 and PFNA on zebrafish embryos. Therefore,
this study was conducted to determine the effects of these four
PFCs on zebrafish embryos. Normal fertilized zebrafish em-
bryos were selected to be exposed to several concentrations of
PFOA, PFNA, PFOS or FC807 in 24-well cell culture plates.

A digital camera was used to image morphological anomalies
of embryos with a stereomicroscope. Embryos were observed
through matching up to 96-h post-fertilization (hpf) and rates
of survival and abnormalities recorded. PFCs caused lethality
in a concentration-dependent manner with potential toxicity in
the order of PFOS > FC807 > PFNA > PFOA based on 72-
h LC50. Forty-eight-hour post-fertilization pericardial edema
and 72- or 96-hpf spine crooked malformation were all ob-
served. PFOA, PFNA, PFOS and FC807 all caused structural
abnormalities using early stages of development of zebrafish.
The PFCs all retarded the development of zebrafish embryos.
The toxicity of the PFCs was related to the length of the PFC
chain and functional groups.
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Introduction

Perfluorinated compounds and their polyfluorinated pre-
cursor compounds (PFCs) have been widely produced
and used as surfactants, lubricants, polishes and fire-
retardants and primarily to repel both moisture and oil.
These uses have resulted in global distribution of stable
precursors and transformation products in humans and
wildlife (Giesy and Kannan 2002), such as perfluorooc-
tanesulfonate (PFOS) and perfluorooctanoic acid
(PFOA) (Giesy and Kannan 2001; Hansen et al.
2001). At present, biomagnifications of PFCs have
aroused great concern because increasing concentrations
of PFCs have been detected in surface water, sediments
and even in wildlife from the Arctic (Butt et al. 2010).
Generally, PFOS and PFOA are the most frequently
detected PFCs in environment media (Ahrens 2011).
The concentrations of PFOS and PFOA are detected
mostly at the level of nanograms per liter in lakes,
rivers and coastal water (Saito et al. 2004; So et al.
2004; Lu et al. 2011; Zhu et al. 2011). In soils and
sediments, the levels of PFOA and PFOS ranged from
several nanograms per gram to a few hundred of nano-
grams per gram dry weight (Sepulvado et al. 2011;
Wang et al. 2011). PFCs can enter bodies and adhere
to proteins in the blood, liver and muscle, and mostly
concentrations in the blood and liver are the highest
(Giesy and Kannan 2001). PFOS and PFOA in serum
of Amur tiger (Panthera tigris altaica), loggerhead sea
turtles (Caretta caretta) and Kemp’s ridley sea turtles
(Lepidochelys kempii), and eggs of Herring Gulls (Larus
argentatus) and other water birds were in the range of
nanograms per milliliter (Gebbink et al. 2009; Keller et
al. 2005; Li et al. 2008; Wang et al. 2008). Concentra-
tion of PFOS in fish can be up to as great as 612 ng/g
dw from estuarine and coastal areas of Korea (Naile et
al. 2010) and in blood plasma of bald eagles from the
midwestern USA can even be up to 2.57 mg/L (Giesy
and Kannan 2001), which was approximately 100,000-
fold greater than the concentrations of PFOS in coastal
seawaters of Hong Kong, the Pearl River Delta, includ-
ing the South China Sea, and Korea (So et al. 2004).
Perfluorononanoic acid (PFNA) is the largest perfluori-
nated carboxylic acid surfactant. It was detected in the
Pacific and Atlantic Oceans at concentrations that were
intermediate between PFOS and PFOA (Yamashita et al.
2005). It has also been detected in blood and liver of
wildlife at the level ranging from picograms per liter to
nanograms per liter (Calafat et al. 2007; Houde et al.
2005; Moon et al. 2010; Weihe et al. 2008; Yeung et al.
2006). PFOS, PFOA and PFNA can all be detected in
the serum of human even in umbilical cord blood at the
level of nanograms per milliliter (Monroy et al. 2008;

Lien et al. 2011). The highest concentrations of PFOS
and PFOA were detected in the blood sera of employees
in the fluorochemical manufacturing industry at concen-
trations up to 12.8 and 114 mg/mL, respectively (Bossi
et al. 2005).

Polyfluorinated alkylated phosphate ester surfactants (in-
cluding FC807) are used in greaseproof food contact paper
products (Begley et al. 2005; Trier et al. 2011) and have
been found in wastewater, and they are also detected in
blood of humans (D’eon et al. 2009). Recently, polyfluori-
nated dialkylated phosphate ester surfactants (diPAPS) have
been found to degrade to form smaller perfluorinated car-
boxylic acids (PFCAs), including PFOA and PFNA (D’eon
and Mabury 2007, 2011). Precursors of PFOS and PFOA
have also been detected in waste water (Huset et al. 2008).
Thus, FC807 with the similar structure as the other diPAPS
is guessed the potential sources of PFNA, PFOA and PFOS.

Because of the persistence, potential to bioaccumulation
and global distribution of PFOS and PFOA, there has been
interest in their sources and potential to cause toxicity.
When exposed to mice, PFOS or PFOA alters the number
of circulating neutrophils and enhances the inflammatory
responses of macrophages to lipopolysaccharide (LPS)
(Qazi et al. 2009). PFOS and PFOA can alter behavior in
mice, which is manifested as reduced and/or lack of habit-
uation and hyperactivity (Johansson et al. 2008). The hypo-
thalamus–pituitary–thyroid axis could be disturbed when
zebrafish embryos are exposed to PFOS (Shi et al. 2009).
PFOA can alter expression of peroxisomal enzymes result-
ing in greater formation of 8-hydroxydeoxyguanosine in rat
liver (Abdellatif et al. 2003). PFOS or PFOA can also
induce calcium release from storage sites, which is associ-
ated with cytokinesis in the zebrafish embryo (Liu et al.
2011). PFOA can affect mice’s reproduction (Yahia et al.
2010) and causes lesser masses of both genders of Drosoph-
ila melanogaster W1118 stock and shorter life span of adult
males (Wang et al. 2010). Besides, cell apoptosis in rates
can be caused by PFNA (Fang et al. 2010). Survival rate and
development were also decreased when prenatal mice were
exposed to PFNA (Wolf et al. 2010). These results indicated
that PFOS, PFOA and PFNA could cause a number of toxic
effects in liver, the nervous system, especially on develop-
ment and on reproduction. Among PFCs, PFOA and PFOS
often had the greatest concentration in the eggs of fish
(Gebbink et al. 2009) and in the serum of humans (Bossi
et al. 2005) even in umbilical cord blood (Monroy et al.
2008; Lien et al. 2011). Superadded with the potential
developmental disrupting potency of PFCs, more attention
should be paid to the toxicities of PFCs to fish embryos.
Huang et al. reported that PFOS induced cell death at 24 hpf
in the brain, eye and tail region of zebrafish embryos and
lesions in the muscle fibers with histological examination
(Huang et al. 2010). Effects of PFOS and PFOA to zebrafish
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embryos have been studied by several researchers, but the
results were not consistent. The LC50 (96 h) values reported
for larvae of zebrafish are lower than 500 mg/L and 71 mg/L
for PFOA and PFOS (Ye et al. 2007), but Hagenaars et al.
reported that the LC50 (96 h) values were significantly
greater than 500 mg/L for PFOA and 58.47 mg/L for PFOS
(Hagenaars et al. 2011). There is some information on the
toxicity of PFNA to mammals (rats and mice) (Fang et al.
2010; Feng et al. 2010; Wolf et al. 2010), but there was no
published available information on toxicity of PFNA and
FC807 to aquatic organisms. As an excellent model to study
teratogenesis, the zebrafish embryo was used in in ovo study
to explore the developmental toxicity of PFOA, PFNA,
PFOS and FC807.

Materials and methods

Test species

Adult wild-type zebrafish (Danio rerio) were obtained from
Model Animal Research Center of Nanjing University and
kept in a semiautomatic rearing system, with five females
and ten males in each 10-L tank at 28±1°C. Tap water was
treated to remove residual ammonia, chlorine and chlor-
amines, filtered and then treated with UV light to kill mi-
crobial pathogens. Water was exchanged at a rate of 1/3
daily. The lighting was 14/10 h light/dark and 1000 lux.
Zebrafish were fed frozen blood worms and dry food twice a
day. Nylon nets were used at the bottom of each tank to
allow eggs to settle and kept from being eaten by the adult
fish. Spawning and fertilization took place within 30 min
after the lights were turned on in the morning. Eggs were
transferred to a Petri dish. Clean embryos were cultured with
aerated embryonic rearing water, with the following charac-
ter is t ics : 24.65 mg/L MgSO4·7H2O, 58.8 mg/L
CaCl2·2H2O, 1.15 mg/L KCl, 12.5 mg/L NaHCO3 with
pH of 8.3±0.2, dissolved oxygen concentration of 6.07±
0.24 mg/L (Thermo Scientific Orion 5-Star Plus) at the
beginning and end of experiments. The test conformed to
the guidelines developed by the Organization for Economic
Cooperation and Development (OECD 1996).

Test chemicals

PFOA (C8HF15O2, CAS 335-67-1, 95 %) was provided by
TCI (Japan). PFOS (C8HF17O3S, CAS 1763-23-1, 98 %)
and PFNA (C9HF17O2, CAS 375-95-1, 97 %) were pur-
chased from Alfa (USA). FC807 (C27H25F34N2O8PS2, mo-
lecular weight: 1,246 g/mol, chemical name: Perfluoro alkyl
phosphate, trade name: FC807, 80 %) is a commercial
product, one of polyfluorinated alkylated phosphate ester
surfactants, and was obtained from Hubei Hengxin (China).

For FC807, a stock solution was prepared by dissolving the
crystals in dimethyl sulfoxide (DMSO) and stored at 4°C.
No solvent was used for the other PFCs because of their
high water solubility (PFOA, 9.5 g/L; PFOS, 500 mg/L;
PFNA, 9.5 g/L). Exposure solutions were diluted from the
stock solutions with embryonic water. Concentrations of
DMSO in the greatest concentration of exposure solution
were less than 0.05 % (v/v).

Experimental design

Embryos were transferred to exposure solutions immediate-
ly after fertilization and examined under a stereomicroscope.
Damaged or unfertilized embryos were discarded. Zebrafish
embryos were exposed in 24-well cell culture plates with 2-
mL solution per well. Twenty normally shaped fertilized
embryos were assigned to each treatment or control group.
In each plate, the remaining four wells were filled with
control solution and control eggs. For PFOS, PFOA and
PFNA, the control group was embryonic culture water while
for FC807, 0.05 % DMSO was included in embryonic
water. Before experiment, three to four times range-finding
preliminary studies were conducted to determine the effect
concentrations of PFOA (0, 150, 200, 212, 225, 240, 255,
270 mg/L), PFNA (0, 6.25, 12.5, 25, 50, 100, 200 mg/L),
PFOS (0, 6.25, 12.5, 25, 50, 100, 200 mg/L) and FC807 (0,
25, 44, 50, 100, 132, 200, 400 mg/L). All concentrations
were repeated in triple at different days with different
batches of eggs. Embryos were cultured in an incubator at
28.5°C after exposure.

Toxicological endpoints included time until hatching,
whether eggs were clear or opaque at 4, 8, 12, 24, 48 and
72 hpf, edema at 48 hpf and structural malformations at 72
or 96 hpf (Table 1). Malformations of the spine crooked
were defined as scoliosis and curvature of the tail.

Statistical analyses

The proportion of normal embryos in the control group
was >80 %. The normality of each sample set was assessed
with the Kolomogrov–Smirnov one-sample test before para-
metric analysis. Then Duncan’s multiple comparisons test
was used if appropriate. A Student t-test was used to test the
null hypothesis that there was no significant difference
between the parallelisms of each treatment. One-way
ANOVA was used to test the null hypothesis that there
was no significant difference between the mean of each
parameter measured in the treated group and the control
group. Differences were considered significant if p<0.05.
Probit model or logistic model was used to calculate the
EC50/LC50 of the endpoints that appeared in the develop-
ment stages of zebrafish embryo. The software of Sigma
plot 11.0 was used to draw figures.
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Results

Developmental toxicity of PFOA

PFOA was acutely toxic to zebrafish embryos, with LC50

values of 262 mg/L PFOA, at 8 and 72 hpf, respectively.
The number of opaque embryos did not increase between
8 and 72 hpf. PFOA was more toxic during early develop-
ment of zebrafish embryos and caused a non-specific lethal-
ity. At 8 hpf, the proportions of opaque and deformed
embryos were approximately equal, which indicated that
the lethality was the primary effect. PFOA can also bring
on 48 hpf edema and series malformations after hatching.
The 96-hpf EC50 value of spine crooked malformations was
198 mg/L.

A small amount of edema occurred at 48 hpf, and hatch-
ing delays and spine crooked malformations occurred at
72 hpf, but these effects occurred only at 200 mg/L or at
greater concentrations (Fig. 1). Almost 100 % mortality

occurred when exposed to 270 mg/L PFOA. The LOEC
based on edema observed at 48 hpf, hatching delay and
spine crooked malformations at 72 hpf were 225, 212 and
212 mg/L, respectively. At concentrations greater than
these, PFOA caused significant effects relative to the con-
trols. Spine crooked malformation was the most sensitive
toxicological endpoint. At 72 hpf, the rate of spine crooked
malformations increased until 96 hpf; the rate of spine
crooked malformations was significantly different from that
of the controls and exhibited a concentration-dependent
relationship.

Developmental toxicity of PFNA

Exposure to PFNA caused toxicity at several time points
(Table 2). The proportion of opaque embryos was propor-
tional to concentration with an LC50 of 84 mg/L at 72 hpf.
PFNA also delayed hatching. The EC50 based on hatching
rate at 72 hpf was 214 mg/L. At 8 hpf, some embryos were
disintegrating that embryos stopped cleavage and became
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Fig. 1 A 48-hpf pericardial-sac and yolk-sac edema malformation, 72-
hpf hatching delay and spine crooked malformations caused by PFOA

Table 1 Toxicological end-
points at different stages of de-
velopment of zebrafish embryos
(hours post-fertilization)

“+” indicates that the morpho-
logical changes parameters are
selected as toxicological end-
points at different stages of
development

4 hpf 8 hpf 12 hpf 24 hpf 48 hpf 72 hpf 96 hpf

Opaque embryo + + + + + +

Gastrula not start +

Completion of gastrulation +

Extension of the tail + +

Spontaneous movements within 20 s + +

Development of the eye + +

No heartbeat +

Edema +

Delay of hatching +

Malformation of hatching + +

Table 2 EC50/LC50 of toxicological endpoints of zebrafish embryo
result from PFNA

Toxicological endpoints EC50/LC50 (mg/L) 95 % confidence
interval (mg/L)

4 hpf opaque 193 150–309

8 hpf gastrula not start 126 93–197

8 hpf opaque 161 120–254

12 hpf opaque 120 95–162

12 hpf abnormal 106 92–123

24 hpf opaque 99 86–114

48 hpf opaque 86 61–129

72 hpf opaque 84 60–125

72 hpf hatch rate 214 –
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opaque. There were no significant differences in rates of
edema malformations at hatching between the control and
treatments.

Developmental toxicity of PFOS

LC50 values at 24, 48 and 72 hpf for PFOS were 69, 68 and
68 mg/L, respectively (Table 3). At this range of concen-
trations, embryos were disintegrated by 4 hpf. The most
sensitive endpoint was spine crooked malformations ob-
served at 72 hpf, with an EC50 of 37 mg/L. The LOEC
based on malformations was 12.5 mg/L. PFOS also caused
edemas and delayed hatching but no significant difference
(Fig. 2). The LOEC based on incidence of edemas at 48 hpf
was 50 mg/L, and the LOEC based on hatching delay at
72 hpf was 6.5 mg/L.

Developmental toxicity of FC807

Embryos exposed to FC807 displayed no visible abnormal-
ities from 0 to 48 hpf. The most sensitive endpoint was
edema observed at 48 hpf (Table 4). At 48 hpf, 25 mg/L
FC807 resulted in a significant difference of 19 % of em-
bryos with pericardial-sac or yolk-sac edema (Fig. 3), rela-
tive to the controls. In the group exposed to 44 mg/L FC807,
61 % of embryos were abnormal. The NOEC based on
edema at 48 hpf was less than 25 mg/L. The severity of
edema was greater with concentrations increasing, and ede-
ma ultimately resulted in lethality. The LC50 based on
opaqueness at 72 hpf was 211 mg/L.

Discussion

Although the concentrations of PFCs in surface water most-
ly ranged from several nanograms per liter to several

hundreds of nanograms per liter, the level of PFCs in the
area of manufacture can be very high. The total PFCs con-
centrations in surface water samples of discharge following
perfluorinated material ranged from <10 to 17,000 μg/L
(Moody et al. 2002). A bioaccumulation factor (BAF) range
of 6300–125000 was calculated for PFOS based on concen-
trations in fish liver and surface water (Moody et al. 2002).
The concentrations in human blood can even get up to
hundreds of milligrams per milliliter (Bossi et al. 2005).
So it was significative to study PFCs in milligrams per
milliliter range. Zebrafish is considered as a model organism
for the study of teratogens in vertebrates (Nagel 2002; Yang
et al. 2009). Thus, for comparative purposes the concentra-
tions studied in the study with zebrafish were appropriate.

All the PFCs caused significant effects of development in
in ovo experiments, upon which we report here. The physical
and chemical properties of PFCs determined that they can be
biomagnified (Loi et al. 2011). Assuming that concentrations
in our in ovo experiments can be compared with maximal
estimated blood concentrations in humans (Bossi et al. 2005),
in ovo developmental effects by PFCs would not be expected
at current concentrations in the environment.

Generally, the order of potency based on the LC50 value
at 72 hpf was PFOS > FC807 > PFNA > PFOA. The length
of the perfluorinated tail of PFC molecules has been identi-
fied as an important factor in determining toxicity. Based on

Table 3 EC50/LC50 of toxicological endpoints of zebrafish embryo
result from PFOS

Toxicological endpoints EC50/LC50 (mg/L) 95 % confidence
interval (mg/L)

4 hpf opaque 182 143–191

4 hpf abnormal 113 102–126

8 hpf opaque 121 98–160

8 hpf gastrula not start 76 56–113

12 hpf opaque 86 68–112

24 hpf opaque 69 52–98

48 hpf opaque 68 49–101

72 hpf opaque 68 49–101

72 hpf malformation 37 31–44
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Fig. 2 A 48-hpf edema malformation and 72-hpf hatching delay
caused by PFOS

Table 4 EC50/LC50 of toxicological endpoints of zebrafish embryo
result from FC807

Toxicological endpoints EC50/LC50 (mg/L) 95 % confidence
interval (mg/L)

48 hpf edema 34 32–70

72 hpf opaque 211 261–263
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LC50, EC50, NOEC and LOEC values, PFCs with eight
carbons in the PFC tail tend to be more toxic than those
with four carbons (Hagenaars et al. 2011; Qin et al. 2010).
Hydrophobic properties of PFCs may illustrate this phenom-
enon well because molecules with longer carbon chains tend
to be more hydrophobic than the shorter one. In this study,
PFNA, which has one more carbon than PFOA, was more
toxic than PFOA.

PFOS is generally more toxic than PFOA (Ye et al. 2007;
Hagenaars et al. 2011). In those studies, PFOS was more
potent than PFOA and even PFCs with nine carbons in the
perfluorinated tail. FC807 with two sulfonate groups was
more toxic than PFOA or PFNA. Hagenaars et al. reported
that PFCs with a sulfonate group have a larger toxic poten-
tial than those with a carboxyl group (Hagenaars et al.
2011). Therefore, the results of this study were consistent
with those of the previously conducted studies.

FC807, which contains two PFOS precursor molecules
and a phosphoric acid molecule, has been confirmed as a
precursor of PFOS. There were no significant differences in
the amount of edema between treated and control groups
within 48 hpf, but the rates increased significantly from 48 h
and embryos became opaque at 72 hpf. Although both
PFOS and FC807 have sulfur element, they seemed to have
different mechanisms of action. Lethality was the main
toxicity of PFOS while pericardial edema and yolk-sac
edema were the most severe malformation caused by
FC807 (Fig. 3). It was reported that many biochemical and
molecular mechanisms occur among cell, tissues and organs
during embryogenesis, and a great number of pollutants
could specifically influence these mechanisms (Fraysse et

al. 2006). Pericardial edema was often considered as the
result of heart failure or circulatory failure (Fraysse et al.
2006; Merrill 1946), so FC807 seemed to hurt heart func-
tions significantly.

PFCs especially FC807 can also result in yolk-sac edema
at 48 hpf (Fig. 3). Edema rates of PFOS, PFOA and PFNA
did not follow a concentration–response relationship, but
there was a standard concentration–response relationship
in the effect of FC807 (data not shown). In freshwater
fishes, there is a water barrier around the membrane to
maintain the intracellular hyperosmotic fluids compared to
the surrounding water, so a barrier must be maintained in
order to minimize water entry and excrete excess water (Hill
et al. 2004). FC807 might have the similar effects as TCDD
to produce defects in kidney development and/or function
and disturb this water permeability barrier and let water in to
cells to cause yolk-sac and pericardial edemas (Hill et al.
2004). In this study, FC807 tended to cause more severe
edemas than the smaller PFCs. PFOS, PFOA and FC807
can result in spine crooked malformation in hatched larva in
a concentration-dependent manner (Fig. 4). Embryos ex-
posed to PFOS showed the most severe acute toxicity that
was in accordance with other reports (Hagenaars et al. 2011;
Shi et al. 2008).

Conclusions

PFOA, PFNA, PFOS and FC807 were all toxic to
zebrafish embryo. All of lethality, 48-hpf edemas and
72-hpf spine crooked malformations occurred throughout
the duration of the study. Based on the LC50 value,
PFOS was the most potent of the four PFCs, and PFNA
was more potent than PFOA. Although all the PFCs
tested caused malformations, FC807, with the larger

Fig. 3 Photomicrographs of embryos. a Normal embryo at 48 hpf. b
Embryo with pericardial-sac edema and yolk-sac edema at 48 hpf
(arrows). c Normal larva at 72 hpf. d Embryo with spine crooked
malformation and pericardial-sac edema (arrows)
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and FC807, and curves based on logistic curve
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ester molecule, caused more yolk-sac and pericardial-sac
edemas than other PFCs. FC807 might more easily
disturb the water barrier around the embryos and disturb
heart functions to cause edemas.
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