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Abstract
Purpose In this study, we investigated the effects of mater-
nal transfer of bisphenol A (BPA) and di(2-ethylhexyl)
phthalate (DEHP) during gestational and weaning periods
on gonadal development of male offspring.
Methods Pregnant CD-1 mice were administered by gavages
in corn oil with 0.1, 1, or 10 mg/kg/day of BPA and DEHP
from gestational days (GD1–21) to the weaning period (post-
natal days (PND) 1–21).
Results Our data indicated that the exposure significantly
reduced the male-to-female sex ratio and the sizes of the
gonads of male pups as recorded at PND15. The testes of the
perinatally exposed male pups were developed less and the
expression levels of testicular anti-mullerian hormone, an-
drogen receptor, cyclin A, and StAR were significantly lesser
than the control male pups. The less developed testes were
accompanied with significant reductions in the expression
levels of Gnrh and Fsh at the hypothalamic–pituitary levels.

The negative effects were found to be persistent in the
sexually mature pups at PND42.
Conclusion Our data reveal that the maternal transfer of
BPA and DEHP may impose negative influence on the
development and functions of the reproductive system of
male pups.

Keywords Bisphenol A . Phthalate . Sex-ratio . Testes .

HPG-axis . Hormone

1 Introduction

Endocrine disrupting chemicals (EDC) are defined as any
exogenous agents that can interfere with the synthesis, me-
tabolism, and action of endogenous hormones (Phillips et al.
2008; Phillips and Foster 2008). They can affect the hor-
monal system via (but not limited to) estrogenic, androgen-
ic, anti-androgenic, and anti-thyroid mechanisms. With the
benefit of hindsight, EDCs have been shown to impose
long-term effects on animal health and development
(Anway et al. 2005; Dolinoy et al. 2007; Leranth et al.
2008). Exposure to EDCs is one of the possible causes to
explain reproductive problem worldwide as a positive asso-
ciation of body pollutant burdens with reproductive dys-
function has been reported in wildlife, animal, and human
studies (Crinnion 2009; Grellier et al. 2010; Lyche et al.
2009; Ma 2009; Wong and Cheng 2011; Yiee and Baskin
2010). Adverse biological effects to male reproductive func-
tion were firstly reported in wild animals, whereas accidental
exposure to estrogenic pollutants caused feminization or
changes in reproductive behavior in the animals (Vos et al.
2000). For example, in 1980s, the adult male alligators exposed
to agricultural wastes in Apopka Lake, produced low testoster-
one levels and presented micro-penis and disorganized testes
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(Guillette et al. 1994; 1995; Guillette and Guillette 1996). Other
reports also highlighted the patho-physiological consequences
of chemical exposures in affecting reproductive functions in
mammals, birds, amphibian, and fishes (Aravindakshan et al.
2004; Barnhoorn et al. 2004; De Guise et al. 1994; Fry 1995;
Hayes et al. 2003; Jobling et al. 2002; Mansfield and Land
2002; Oskam et al. 2003). The observed effects are thought to
be elicited by EDCs via the modulations of the effect and
metabolism of male and female sex hormones. The molecular
targets of EDCs probably are (but not limited to) the sex
hormone receptors and the process of steroidogenesis; those
are highly conserved in metazoan (McLachlan 1993; Thornton
et al. 2003; Zhang et al. 2011). Therefore, this general observa-
tion along vertebrate wildlife has highlighted the severity of the
widespread presence of EDCs in the environment as well as
their similar effects to humans.

The two well-known EDCs, bisphenol A (BPA) and di(2-
ethylhexyl)phthalate (DEHP), have been wildly used in the
production of plastics (Thompson et al. 2009). They have
been involved in many high volume products, including
food packaging, personal care, cosmetics, toys, and com-
puters (Andrady and Neal 2009), and are ubiquitous in
environment (Oehlmann et al. 2009; Teuten et al. 2009).
Both BPA and some phthalates have been identified to exert
negative effects, particularly on male reproductive functions
in both in vitro and in vivo animal studies (Habert et al.
2009; Richter et al. 2007; Scott et al. 2009; Song et al. 2002;
Talsness et al. 2009; Witorsch and Thomas 2010) as well as
in human epidemiological studies (Galloway et al. 2010;
Meeker 2010; Meeker et al. 2010). The co-existence of BPA
and phthalates are commonly identified in urine samples of
pregnant women (Becker et al. 2009; Meeker et al. 2009;
Swan et al. 2005; 2010; Ye et al. 2008; 2009). This obser-
vation implies that the maternal transfer of both BPA and
phthalates may impose potential health risk to the develop-
ing embryo, fetus, and the neonate. Potential health impacts
of BPA and phthalate exposures to pregnant women are of
increasing concern (Becker et al. 2009; Meeker et al. 2009;
Swan et al. 2005; Teuten et al. 2009; vom Saal et al. 2007;
Ye et al. 2008; 2009). In this study, we investigated the
effect of in utero and lactational exposure to both BPA and
DEHP on the birth sex ratio as well as the development and
function of the reproductive system in the male pups. Our
data reported a negative dose–response relationship between
the exposure and testicular development in the animals.

2 Materials and methods

2.1 Chemicals and experimental animals

BPA (purity >99.5%) and DEHP (purity >99.0%) were
purchased from Sigma-Aldrich, USA. All experimental

animals were housed and handled in accordance with
Guidelines and Regulations in Hong Kong Baptist Univer-
sity. Male and female mice (CD-1 strain, 8 weeks of age)
were purchased from the Laboratory Animal Service Center
of Chinese University of Hong Kong (Hong Kong, China).
The entire study was conducted in triplicate with mice that
were received in three separate batches. The animals were
acclimated for 1 week to check any apparent abnormalities.
The mice were housed in polypropylene cages with steril-
ized bedding and were maintained under controlled temper-
ature (23±1°C) and humidity (55±5%) with a 24 h light–
dark cycle (06:00–18:00, the light was on). The mice were
given ad libitum access to standard rodent food Rodentdiet
5002 (Labdiet, IN, USA) and water (in glass bottles). Mice
were bred, and female mice were checked for vaginal plugs
the following morning. The presence of a vaginal plug
defined gestational day 0. Each copulated mouse (F0) was
housed individually and was randomly assigned to one of four
groups with approximately five pregnant mice per group. The
mice were weighed and gavaged in the morning with (a) corn
oil (group 1), (b) 0.1 mg BPA+0.1 mg DEHP/kg/day (group
2), (c) 1 mg BPA+1 mgDEHP/kg/day (group 3), or (d) 10 mg
BPA+10 mg DEHP/kg/day (group 4) in corn oil. The dams
were exposed beginning on gestational day 1 until the end of
the weaning period (postnatal day, PND 21). Individual dams
were checked for birth at least twice a day, and the day when
pups were first observed was designated as PND 0. All the
pups were weaned. After weaning (from PND 21 to PND 42),
the pups were housed individually and given ad libitum access
to the standard rodent food and water (in glass bottles).

2.2 Measurement of physical parameters and sampling
procedures

Body mass of dams and neonates were measured by an
electronic balance (Shimadzu, Kyoto, Japan). Perinatal mor-
tality and number of pups per dam were recorded during the
experimental period. Records of anogenital distance (AGD)
of each pup were measured at PND 5 and were recorded
every 5 days over a period of 15 days. Individual AGD
(millimeters) was determined using a caliper to measure the
distance between base of the genital papilla and proximal
end of the anal opening with the pup held in a supine
position, tail extended (Manno 2008). Chromosomal sex
was confirmed by polymerase chain reaction (PCR) of the
genomic DNA. Sex of the pups was also determined by
visual inspection of the reproductive system (ovaries versus
testes, vagina/penis) on PND 15. The male pups were sac-
rificed by cervical dislocation in the morning of PND 15 or
PND 42. Blood samples were collected by cardiocenthesis,
and serum samples were obtained. Serum concentrations of
follicle stimulating hormone (FSH), progesterone (P4), and
testosterone (T) were measured using ELISA. Hypothalami,
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pituitaries, and testes were collected for real-time PCR assay
to determine the expression levels of reproduction-related
hormones, reproduction-receptors, reproduction-binding
proteins, and/or steroidogenic enzymes.

2.3 Determination of chromosomal sex

Mouse tail DNA was extracted with commercially available
DNeasy Blood & Tissue Kit (Qiagen, Valencia, CA, USA),
using the manufacturer’s protocols, and was eluted with
100 μl of elution buffer. The concentrations of the extracted
DNAwere evaluated by OD260 absorbance (NanoDrop 1000
Spectrophotometers, Thermo Scientific Inc., Waltham, MA).
Primers specific for Sry 5′-TCATGAGACTGCCAA
CCACAG-3′, 5′-CATGACCACCACCACCACC AA-3′ and
Myog 5 ′ -TTACGTCCATCGTGGACAGC-3 ′ , 5 ′ -
TGGGCTGGGTGTTAGTCTTA-3′ were synthesized
(Koopman et al. 1991; McClive and Sinclair 2001). Standard
PCR reactions with a final volume of 20 μl, containing 100 ng
DNA, 0.5U Platinum® Taq DNA polymerase (Invitrogen),
0.25 μM each primer set, 0.25 mM dNTP mix, and 1.5 mM
MgCl2were run in aMJResearch PTC-200 ThermoCycler (MJ,
USA). Amplicons were analyzed on 1% agarose gels stained
with ethidium bromide.

2.4 Evaluation of total epididymal sperm count

Epididymis was surgically removed from the sexually ma-
ture mice (PND 42) and was minced in 600 μl KSOM-3%
bovine serum albumin for 20 min at 37°C to release the
sperm into the medium. The total epididymal sperm count
was assessed using a hemocytometer with a serial dilution of
sperm suspension.

2.5 Quantification for gonadotropin and steroid hormones

Serum concentrations of FSH were quantified by a clinical
DELFIA® time-resolved fluoroimmunoassay kit (PerkinElmer,
Turku, Finland). The assay was run as outlined in the protocol
supplied by PerkinElmer. Two hundred microliters of the reac-
tion buffer and 25μl sample/standard were added into the wells
andwere incubated at room temperature (RT) for 3 h. The wells
were rinsed two times with the washing buffer and were added
with 200 μl of tracer dilution buffer followed by 30 min
incubation without shaking at RT. The wells were rinsed six
times with the washing buffer, and then, 200 μl of enhance
buffer were added followed by a 5-min incubation. The signal
was measured using Eu-enhanced assay method by Victor® X4
2030 Multiplate reader, PerkinElmer. T and P4 in sera were
quantified using ELISA kits (MP Biomedicals, OH, USA).
Total 100 μl working hormone–HRP conjugate reagent,
50 μl rabbit anti-hormone reagent, and 25 μl sample/standard
were added in wells and incubated at 37°C for 90 min. The

wells were rinsed five times with distilled water and
mixed with 100 μl TMB solution followed by 20 min
incubation at room temperature. The reaction was then
stopped by 1 N HCl solution, and the absorbance was
read at 450 nm within 15 min.

2.6 Real-time PCR

Gene expression levels were measured by quantitative real-
time polymerase chain reaction. Primers were synthesized
(Table 1), and PCR products were cloned into pCRII-TOPO
(Invitrogen, Carlsbad, CA) and were subjected to dideoxy
sequencing for verification. Total RNA was extracted by
TRIzol Reagent (Invitrogen, Paisley, UK) according to the
manufacturer’s instructions. Real-time PCR was conducted
for mRNA quantification. Briefly, 150 ng total RNA was
reverse-transcribed using High Capacity cDNA synthesis
Kit (Applied Biosystems, USA). Quantified standards
(104–108) and sample cDNA were analyzed by StepOne
real-time PCR detection system (Applied Biosystems,
USA) using Fast SYBR®Green Master mix (Applied Bio-
systems, USA). The copy number for each sample was
calculated, and the data were normalized using the expres-
sion level of Gapdh mRNA. The PCR conditions were 95°C
for 20 s and 40 cycles of 95°C for 3 s, 56°C for 10 s, and
72°C for 30 s. Fluorescent signals were captured at 72°C;
the occurrence of primer dimers and secondary products was
inspected using melting curve analysis. All apparatus was
treated with diethyl pyrocarbonate and autoclaved. The copy
number of the transcripts was calculated in reference to the
parallel amplifications of known concentrations of the re-
spective cloned PCR fragments. Standard curves were con-
structed and amplification efficiencies were found to be
between 0.9 and 0.95. Based on melting curve analysis,
there was no primer dimer or secondary product formed.
Control amplifications were done either without RT or with-
out RNA.

2.7 Western blot

For Western blotting, samples were homogenized in sodium
dodecyl sulfate (SDS) lysis buffer (2% SDS and 25% glyc-
erol in 125 mM Tris/HCl (pH 6.8)) and subjected to elec-
trophoresis in 10% polyacrylamide gels. Gels were blotted
onto PVDF membranes (PerkinElmer Life Sciences).
Western blotting was conducted using goat polyclonal antibody
for anti-müllerian hormone (AMH) (1:100, Santa Cruz, USA),
rabbit polyclonal antibodies for steroidogenic acute regulatory
protein (StAR, 1:500, Santa Cruz), CYP11a1 (1:1000, Chem-
icon USA), and CYP19a1 (1:300, Abcam, UK), followed by an
incubation with horseradish peroxidase-conjugated anti-goat
(Santa Cruz) or anti-rabbit antibody (Bio-Rad). Specific bands
were visualized with chemiluminescent reagents (Western-
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lightening Plus, PerkinElmer Life Sciences). Blots were then
washed in PBS–0.5% Tween20 and re-probed with rabbit poly-
clonal antibodies for β-actin (Sigma, USA).

2.8 Statistical analysis

Statistical evaluations were conducted by use of SPSS16. All
data were tested to be normally distributed and independent by
using the Normal Plots in SPSS, and Shapiro–Wilk significance
were over 0.05, which means the assumptions were valid.
Differences between treatment groups and corresponding con-
trol groups were tested for statistical significance by analysis of
variance, followed by Duncan’s multiple range test (significance
at p<0.05) SPSS16. Data are presented as the mean±SEM.
Groups were considered significantly different if P<0.05.

3 Results

3.1 Assessment of body mass, litter size, sex ratio, testicular
weights, and epididymal sperm counts

There were no statistical significant differences in the body
masses of the maternal mice (during the gestational period),
litter sizes per dam (Fig. 1a), and perinatal mortality rate per
dam of F1 pups (data not shown). We observed a dose-
dependent decrease in the male-to-female ratio per dam with
an increasing dosage of BPA+DEHP treatment (Fig. 1b).

The sex ratio decreased from 1.19±0.21 in the control
group to 0.64±0.16 at the highest dose (10 mg/kg/day)
of the treatment group. The pups were of similar body
weight among the control and the exposed groups and
showed no noticeable change in the anogenital distance
(Electronic supplementary material Fig S1). The weights
of the testes of the pups at PND 15 (Fig. 2a) and PND
42 (Fig. 2b) were decreased in 10, 1, and/or 0.1 mg/kg/day of
the BPA+DEHP treatment groups as compared with the
controls.

The average sperm count per epididymis was found to be
34.0±5.72million/ml at PND 42 in the control pups. As shown
in Fig. 2c, significant decreases of sperm counts were observed
in the male pups of 1 and 10mgBPA+DEHP/kg/day treatment
groups. The average sperm count was found to be 31.0±4.16,
21.3±6.76, and 21.7±2.76 million/ml respectively in the pups
of the treatment groups of 0.1, 1, and 10 mg/kg/day.
The percentage decrease of epididymal sperm counts in
BPA+DEHP treatments were 8.82%, 37.3%, and 35.9%, re-
spectively, as compared with the control group.

3.2 Steroid hormones or reproductive hormones

Serum FSH and steroid hormones (P4 and T) of the male
pups on PND 15 were below the detection limits of the
ELISA kits. On PND 42, the serum levels of FSH were
significantly reduced in the male pups of all BPA+DEHP-
treated groups (Fig. 3a). Although there was no noticeable

Table 1 The DNA sequences of primers used in the present study

Forward Reverse

Kisspeptin (Kiss-1) GAATGATCTCAATGGCTTCTTGG TTTCCCAGGCATTAACGAGTT

Kisspeptin receptor (Gpr54) GCTCACT GCATGTCCTACAG GCCTGTCTGAAGTGTGAACC

Gonadotrophin-releasing hormone (Gnrh) GGGAAAGAGAAACACTGAACAC GGACAGTACAT TCGAAGTGCT

Gonadotrophin-releasing hormone receptor (Gnrhr) CTCTATGTATGCCCCAGCTTTCA GCAAAGACAATGCTGAGAATCCA

Luteinizing hormone (Lh) CCTAGCATGGTCCGAGTACT GCTACAGGAAAGGAGACTATGG

Follicle-stimulating hormone (Fsh) GCTGCTCAACTCCTCTGAAG GGCAATACCTTGGGAAATTCTG

Growth hormone (Gh) AGCAGAGAACCGACATGGAA GTTGGTGAAAATCCTGCTGAG

Thyroid-stimulating hormone (Tsh) TCGGGTTGTTCAAAGCATGA GGCACACTCTCTCCTATCCA

Prolactin (Prl) CTGCTGTTCTGCCAAAATGTT CAGGGTATGGATGTAGTGAGAAA

Steroidogenic acute regulatory protein (StAR) GGAACCCAAATGTCAAGGAGATCA GCACGCTCACGAAGTCTCGA

Cytochrome P450scc (Cyp11a1) AGCTGGGCAACATGGAGTCA CCTCTGGTAATACTGGTGATAGGC

Cytochrome P450 17 (Cyp17a1) GATCTAAGAAGCTCAGGCA GGGCACTGCATCACGATAAA

Cytochrome P450 19a (Cyp19a) CTGTCGTGGACTTGGTCATG GGGGCCCAAAGCCAAATGGC

Anti-mullerian hormone (Amh) GGATGACTCCCACCCTGGTG GGGAAAGGCATGGTGTCCAG

Androgen receptor (Ar) AGCAGAGGCAGGAGACTAGC GATGTGGGCTTGAGGAGAACC

Androgen binding protein (Abp) GCCTCCTCACCAGCATAGATG TTTTCCCTGTGAATTGCAAAGCT

Sperm1 CTGGAAGTTGACACCCCAACA ATAAGGTGAGGAGCCCAGAGG

Cyclin1 A1 TTCGAGAAGCTGAAGTAAGACACA AGGGTCTCTGTGCGAAGTTTATAT

Glyceraldehyde 3-phosphate dehydrogenase (Gapdh) ACCACAGTCCATGCCATCAC TCCACCACCCTGTTG CTGTA
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change in the serum P4 levels (Fig. 3b), serum T levels were
significantly reduced in the treatment groups (Fig. 3c).

3.3 Gene expression levels along the hypothalamic–
pituitary–gonadal axis of the male pups at PND15

The gene expression levels of the reproduction-related hor-
mones, reproduction-receptors, reproduction-binding pro-
teins, and steroidogenic enzymes were measured along the
hypothalamic–pituitary–gonadal (HPG) axis. On PND 15,
mRNA expression levels of Gnrh in the male pups exposed
to 1 and 10 mg/kg/day of BPA+DEHP were significantly
reduced (Fig. 4a).

(B) Sex Ratio at Birth (F1) per litter (Male to Female)

0.0

5.0

10.0

15.0

20.0

n=14
n=12 n=15

n=18

(A) Litter size per dam
Li

tte
r 

si
ze

 p
er

 d
am

Se
x 

ra
tio

 (
M

/F
)

0.0

.5

1.0

1.5

2.0

n=14

n=12

n=15 n=18

# p<0.05

##

Fig. 1 Effects of perinatal exposure to 0.1, 1, or 10 mg BPA+DEHP/
kg/day on a litter size per dam and b sex ratio of offspring. The n
number indicates the number of dam in the control or the exposed
groups. A significant decrease of male to female sex ratio in the
offspring was observed

(A) Paired testicular weight per pups on PND 15 

*

* p<0.01

* *

T
es

tic
ul

ar
 W

ei
gh

t (
g)

0

0.01

0.02

0.03

0.04

0.05

(B) Paired testicular weight per pups on PND 42

*
*

* p<0.01
T

es
tic

ul
ar

 W
ei

gh
t (

g)

0

0.10

0.15

0.05

0.20

0.25

(C) Epididymal sperm count in mature F1 pups on PND 42

#
#

# p<0.05

0

10

20

30

40

50

Sp
er

m
 C

ou
nt

 (
m

ill
io

n/
m

l)

0.1 1 10Ctrl

mg/kg/day

0.1 1 10Ctrl

mg/kg/day

Fig. 2 Effects of perinatal exposure to 0.1, 1, or 10mgBPA+DEHP/kg/day
on testicular weights and epididymal sperm count of the male pups (n≥6 per
group). Significant reductions in testicular weights were observed in the pups
of the treatment groups at a PND15 and b PND 42. Epididymal sperm count
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At the pituitary levels, the transcript levels of Fsh and Prl
were notably reduced in the male pups of BPA+DEHP
treatment groups (Fig. 4b). The expression levels of other
pituitary hormones (Lh, Tsh, Gh) and Gnrh receptor (Gnrhr)
were comparable with the control.

In the testes of the pups, the expression levels of andro-
gen receptor (Ar), anti-mullerian hormone (Amh), and cyclin
A1 were significantly reduced in the 1 and 10 mg BPA+
DEHP/kg/day-treated groups (Fig. 4c, left panel). The tran-
script levels of the steroidogenic enzymes StAR was de-
creased while Cyp19a was increased. Western blot data
demonstrated significant reductions of AMH, StAR, but an
increase of CYP19a (Fig. 4c, right panel) in the treatment
groups.

3.4 Gene expression levels along the HPG axis of the male
pups at PND42

On PND 42, no significant changes in the expression levels
of the hypothalamic hormones and receptor were observed
in the male pups (Fig. 5a). However, the transcript levels of
Fsh and Tsh were significantly reduced in the BPA+DEHP-
exposed pups (Fig. 5b).

In the testes of BPA+DEHP-exposed male pups, the
transcript levels of Ar and androgen binding protein (Abp)
were significantly reduced in 10 and/or 1 mg/kg/day of
BPA+DEHP treatment groups (Fig. 5c, left panel). The
testicular expression levels of StAR were downregulated
while CYP19a expressions were upregulated in 1 and
10 mg BPA+DEHP/kg/day treatments. Western blot data
illustrated significant reductions of StAR but an increase of
CYP19a (Fig. 5c, right panel).

4 Discussion

Considerable numbers of studies have reported the negative
effects of BPA or DEHP on the reproductive health of
wildlife, experimental animals, and humans (Halden 2010;
Main et al. 2010; Smith et al. 2011). However, the combined
effects of the exposure to both BPA and DEHP are not
known. Animals are typically exposed to mixtures of chem-
icals over long periods of time, leading to declining repro-
ductive health. There is a pressing need for studying the
effects of chemicals in mixture, which is more realistic in
nature to illustrate if the observed phenotype/phenomenon is
comparable to humans. Therefore, in this study, the effects of
the chemical mixtures BPA and DEHP on the reproductive
health of developing fetus were investigated. Using pregnant
mouse model, the effects of perinatal BPA+DEHP (0.1, 1, and
10 mg/kg/day) exposure on gonadal development of male
offspring were reported. Our data indicated that the exposure
caused a significant reduction in male-to-female sex ratio of
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the offspring. Significant reductions in testicular weights and/
or epididymal sperm counts were identified in the immature
(PND 15) and sexually mature (PND 42) pups. Mechanistic
information on themolecular basis for the observed phenotypes

was deciphered. Marked reductions in the expression levels of
reproductive hormones, androgen receptor-signaling, and ste-
roidogenic enzymes at the hypothalamic–pituitary-gonadal
axis were revealed.

Ctrl

AMH

actin

CYP19a

StAR

BPA+DEHP (mg/kg/day)

0.1 1 10

Kiss1 GnRH GPR54

#

* *

* p<0.01
# p<0.05

Hypothalamus(A)

PND 15
m

R
N

A
 le

ve
ls

0

0.5

1.0

1.5

2.0

2.5

GnRHr LH FSH TSH GH PRL

# #

*
* *

*

* p<0.01
# p<0.05

Pituitary(B)

PND 15

0

0.5

1.0

1.5

2.0

2.5

m
R

N
A

 le
ve

ls

* *

#

##

*

**

*

#*

* p<0.01
# p<0.05

AR ABP AMH Sperm1 cyclinA1 StAR CYP11a1 CYP17a1 CYP19a

Testis(C)

PND 15

0

1

2

3

4

5

m
R

N
A

 le
ve

ls

Ctrl 
B+P 0.1 mg/kg/day 
B+P 1 mg/kg/day 
B+P 10 mg/kg/day 

Fig. 4 Effects of perinatal exposure to 0.1, 1, or 10 mg BPA+DEHP/
kg/day on the levels of gene expressions at the hypothalamic–pitui-
tary–gonadal axis of the male pups at PND15 (n≥5 per group). a At the
hypothalamic level, significant reductions in the transcript levels of
Gnrh were observed in the BPA+DEHP-exposed groups. b At the
pituitary level, marked reductions of the mRNA levels of Fsh and

Prl were observed. c At the testicular levels, considerable decreases
in the expression levels of androgen receptor (Ar), anti-mullerian
hormone (Amh), cyclinA1, StAR, but an increase in the levels of
Cyp19a were detected (left panel). On the right panel, Western blot
data shows similar changes in AMH, StAR, and CYP19a at the protein
expression levels

Environ Sci Pollut Res (2012) 19:2515–2527 2521



In mammals, sex development in embryonic stage depends
on a delicate balance between male and female sex determin-
ing pathways (Piprek 2010; Schlessinger et al. 2010; Veitia
2010). It is generally believed that the development of the
ovary from genital ridges is a default mechanism while the

development of testis depends on the activity of Y chromo-
some testis-determining gene (Sry) and its downstream/asso-
ciated factors (i.e., SRY-box containing gene 9 (Sox9),Dmrt1,
prostaglandin D synthase, Amh, and testosterone) (Cool and
Capel 2009; Ferguson-Smith 2007; Piprek 2009; Sim et al.
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Fig. 5 Effects of perinatal exposure to 0.1, 1, or 10 mg BPA+DEHP/
kg/day on the levels of gene expressions at the hypothalamic–pitui-
tary–gonadal axis of the male pups at PND42 (n≥5 per group). a At the
hypothalamic level, no significant changes in the transcript levels of
Kiss-1, Gnrh, and Gpr45 were noted. b At the pituitary level, marked
reductions in the mRNA levels of Fsh and Tsh were detected. c At the

testicular levels, considerable decreases in the expression levels of
androgen receptor (Ar), androgen binding protein (Abp), StAR, but an
increase in the levels of Cyp19a were detected (left panel). On the right
panel, Western blot data shows similar changes in STAR and CYP19a
at the protein expression levels
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2008). The spatiotemporal action of SRY to switch the sup-
porting cells of genital ridges from the female tomale pathway
is essential and should be undertaken within a critical
programming time window (Hiramatsu et al. 2009). Disrup-
tion of early steps in male pathway would lead to maldevel-
opment of testes or an engagement of ovary development. In
human epidemiological study, a significant reduction in the
ratio of “male birth to total number of birth” was recorded in
the Aamjiwnaang First Nation community (areas close to
industrial areas) in Canada (Mackenzie et al. 2005). The
incidences of low male-to-female sex ratio at birth were also
reported in Seveso, Italy, (Mocarelli et al. 2000), the Austrian
chloracne cohort (Moshammer and Neuberger 2000), and the
victims in the Yucheng oil disaster, Taiwan (del Rio Gomez et
al. 2002). Possible explanation for the change in sex ratio at
birth has not been elucidated. The highly female-biased sex
ratio at birth was probably due to the exposure of EDCs at
early age of pregnancy (Koopman 2010; Mocarelli et al.
1996). Moreover, the etiology of this phenomenon is poorly
understood (Sharpe 2006). In the present study, a lowmale-to-
female sex ratio of the pups was observed with increasing
dosages of the exposure during gestational and lactation peri-
ods. Both visual inspections of the reproductive system and
chromosomal sex determination verified the sex identity of the
individual pups, indicating the effects of the exposure, did not
engage ovary development in the male pups. Since the
paternal mice were not exposed to BPA+DEHP while the
maternal mice were exposed only after copulation, the
effects of the chemical pollutants on the relative abun-
dance and activity of X- and Y-chromosome sperms
should be at bare minimum. Accordingly, this observation
leads to a presumption that the chemical exposure might
favor implantation of embryo with XX chromosomes and/
or hinder the further development of embryo with XY chro-
mosomes. The presumption might not be unreasonable as
male and female pre-implantation mammalian embryos have
sexually dimorphism gene expression (Bermejo-Alvarez et al.
2011). These molecular differences may lead to sex-selective
embryo loss and sex-specific epigenetic responses to environ-
mental hazards (Bermejo-Alvarez et al. 2011; Gutierrez-Adan
et al. 1999; Gutierrez-Adan et al. 2001).

Maternal–fetal transfer of BPA or DEHP has been
reported, suggesting the direct effects of the compounds
and/or their metabolites on the developing fetus (Mose et
al. 2007; Tanaka et al. 2010). During gestational and wean-
ing periods, the presence of BPA and DEHP in maternal/
fetal blood and milk may impose estrogenic and anti-
androgenic effects on the pups. In this study, the testes of
the exposed male pups were significantly smaller, accom-
panied with significant lesser expression levels of testicular
Amh, Ar, Abp, and cyclin A; those are critical for proper
development and function of testes (Chang et al. 2004). This
might associate with the change in the expression levels of

the steroidogenic enzymes StAR and Cyp19a1 and the sig-
nificant reduction in the size of testes. The effects of the
exposure were consistently demonstrated at the hypothalam-
ic–pituitary level, whereas significant reductions in the
mRNA expression levels of Gnrh and Fsh were observed.
These changes are in agreement with reports describing
changes in the reproductive functions when either BPA or
DEHP were administrated to the animals. Prenatal and post-
natal BPA exposures were reported to interfere with hor-
mone synthesis (i.e., kisspeptin, GnRH, and gonadotrophin)
in hypothalamic–pituitary axis (Nakamura et al. 2010; Wei
et al. 2011). Other possible BPA-mediated effect included its
anti-androgenic property to inhibit androgen-induced AR
transcriptional activity (Bonefeld-Jorgensen et al. 2007;
Kruger et al. 2008; Lee et al. 2003). In other studies,
prenatal phthalate exposure was found to associate with
cryptorchidism, disordered anatomical features in sex
differentiation (Fisher et al. 2003; Foster 2006; Mahood
et al. 2007; Welsh et al. 2008), reduced Sertoli cell
proliferation, and steroidogenesis in fetal/neonatal rats
(Culty et al. 2008; Dostal et al. 1988; Li et al. 2000). More-
over, the novelty of the present study illustrated that perinatal
co-exposure to BPA and phthalates alters sex differentiation
and reduce the masculinization process for testicular develop-
ment in the male pups.

In utero exposure to BPA or some phthalates was
reported to impose long-lasting suppressive effects on male
fertility in rodents and primates (Culty et al. 2008; Kobaya-
shi et al. 2010; Meeker et al. 2009; Salian et al. 2009). It is
probably due to the irreversible disruption at the hypotha-
lamic–pituitary–gonadal axis in mouse offspring upon BPA
(Wei et al. 2011) or DEHP exposure (Pocar et al. 2012). This
prompted us to investigate the effects of perinatal BPA+
DEHP on the fertility of the sexually mature pups on
PND42. The negative effects of perinatal BPA+DEHP ex-
posure on the development and function of the male repro-
ductive system were found to be persistent. Significant lesser
testicular weight, epididymal sperm counts, and serum T
levels were observed in the sexually mature pups. Tanaka
and coworkers reported the effect of BPA exposure on the
reduction of serum T production (Tanaka et al. 2006). BPA-
mediated modulatory effects on T production were found to
be related to the downregulation of some steroidogenic
enzymes (i.e., 3β-HSD, CYP17a1, and 17β-HSD) and the
disruption of estradiol metabolism (Zhang et al. 2011). Occu-
pational exposure to phthalate was also reported to cause
significant reduction in serum testosterone levels (Pan et al.
2006). In the present study, the mRNA expression levels of
CYP17a1 were comparable among the control and the BPA+
DEHP-exposed groups. However, the significant reductions
in the expression levels of the rate-limiting steroidogenic
enzyme StAR were consistently measured in the male pups
at PND 15 and 42. In addition, the upregulations of the
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transcript levels of CYP19a were observed in the testes of the
exposed male pups. These changes probably caused the re-
duction of T production in the testes. It is a fact that the
production of gonadal steroid hormones is regulated by the
feedback mechanism along the hypothalamic–pituitary axis,
while the release of GnRH and gonadotropin (Gn) regulates
the development and function of testes (Amory and Bremner
2003). An investigation of the effects of BPA+DEHP expo-
sure on hypothalamic–pituitary axis of the sexually mature
male pups was necessary. Our data indicated that there were
significant reductions in the mRNA levels of Fsh and thyroid-
stimulating hormone (Tsh) in the pituitary as well as serum
FSH levels in the sexually mature male pups. The low serum
levels of FSH and T in the exposed male pups caused the
reduction of sperm production (Ruwanpura et al. 2010). A
marked reduction of TSH expression in pituitary, which may
lead to lower testicular weight and reduction in serum T levels
(Kumar et al. 2007; Lagu et al. 2005). Collectively, our
observation supports the notion that perinatal chemical expo-
sure may affect the formation of the neuronal circuitry at the
hypothalamic–pituitary axis and so with the related functions
(Yeung et al. 2011), leading to reproductive impairment at
adult stage.

5 Conclusion

In the present study, the no-observed adverse effect level
(NOAEL) is found to be lesser, or at the low (0.1 mg/kg/
day) dosage of the exposure. For the dose translation from
mice to human, the NOAEL is divided by the uncertainty
factor 100 and the calculated value is 1 μg/kg/day (Speijers
1999). According to the information from US Environmen-
tal Protection Agency, the human allowable daily intake
levels for BPA and DEPH are 50 and 20 μg/kg/day, respec-
tively (US Environmental Protection Agency (USEPA)
1993). Therefore, the daily oral intake doses used in the
present study are environmentally relevant. The present
study does not compare the effects by using single (BPA
or DEHP) and combined exposure (BPA+DEHP). The ma-
jor reason is on the lack of the mechanistic data of these
individual agents in the literatures. The current understand-
ing of the endocrine-disrupting mechanisms of BPA or
DEHP is incomplete. Without these fundamental data, it is
difficult to assume their cohort action would be additive,
synergistic, or even counteractive. More importantly, this
study aimed to identify the physiological consequences, in a
realistic situation on the perinatal co-exposure to both BPA
and DEHP. Our data reveal that the maternal transfer of BPA
and DEHP may impose an issue on the development and
functions of the reproductive system in male pups. The
findings of this study certainly warrant further investigation
on the molecular and cellular targets of BPA and/or DEHP.
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