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Abstract
Purpose In this study, we determined normal serum
butyrylcholinesterase (BChE) and carboxylesterase (CbE)
activities in Tupinambis merianae in order to obtain reference
values for organophosphorus pesticide monitoring.
Methods Forty-two T. merianae individuals were grouped
by sex and size to identify potential differences in their
enzyme levels to allow for proper representation of normal
values for females, males, juveniles, and hatchlings. Mean
CbE was determined using two model substrates: alpha-
naphtylacetate (α-NA) and p-nitrophenyl valerate (4-NPV).
BChE and CbE sensitivity to malaoxon (Mx) was also
evaluated as well as the possibility of BChE reactivation
with pyridine-2-aldoxime methochloride (2-PAM).
Results Mean adult females’ BChE was significantly higher
than adult males, juveniles, and hatchlings. No significant
differences were found between groups regarding CbE.

CbE (4-NPV) activity showed slightly negative correlation
with lizard snout–vent length, while BChE and CbE (α-NA)
showed no correlation with body size. Apparent IC50 values
for BChE and CbE (α-NA) suggested different sensitivities
among groups. CbE (4-NPV) could not be inhibited. All
Mx-inhibited groups treated with 2-PAM in a final concen-
tration of 2.8 mM showed clear signs of reactivation.
Conclusions In conclusion, the results demonstrate that (1)
plasma esterase activity did not vary with age and sex,
except for BChE activity, and (2) because biological and
environmental variables could be confounding factors in the
response of plasma cholinesterases, complementary bio-
markers like CbE inhibition and oxime-induced reactivation
of esterases are strongly recommended.
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1 Introduction

Wildlife exposure to anticholinesterase (anti-ChE) agro-
chemicals usually implies the determination of acetylcho-
linesterase (AChE, EC 3.1.1.7) inhibition by nondestructive
sampling methods, particularly when the species of interest
are endangered, rare, or they are under a regulatory status of
protection (Nunes 2011). Nevertheless, this exposure
biomarker, considered a specific indicator of organophos-
phate (OP) and carbamate (CM) exposure, should not be
used alone for assessing wildlife exposure to these classes
of agrochemicals. Determination of blood AChE inhibition
presents a set of limitations such as a high interindividual
variation of its normal hydrolytic activity, a rapid recovery
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of its activity after inhibition by OP insecticides, and
finally, the fact that this esterase is not directly involved in
the acute toxicity by OPs or CMs, making the prediction of
detrimental effects at whole-individual level risky (Sanchez-
Hernandez 2001). The use of reactivating agents such as
pyridine-2-aldoxime methochloride (2-PAM) to provide
additional evidences of OP-inhibited AChE activity is a
common strategy in the field monitoring of wild vertebrate
exposure by these agrochemicals (Parsons et al. 2000; Maul
and Farris 2005). Likewise, other blood esterases such as
butyrylcholinesterases (BChEs, EC 3.1.1.8) and carboxyles-
terases (CbEs, EC 3.1.1.1) have gained a growing concern in
the assessment of pesticide exposure in wildlife vertebrates
(Sogorb et al. 2007; Wheelock et al. 2008). These esterases
are able to modulate the toxicity of OPs and CMs through
the stoichiometrical binding with these agrochemicals. This
detoxification pathway has led to consider these esterases as
efficient bioscavengers of anti-ChE pesticides reducing
therefore their impact on the nervous AChE activity
(Maxwell 1992; Masson and Lockridge 2010).

Measurement of multiple biomarkers rationally involved
in the toxic mechanism and detoxification pathways of a
pesticide in particular would be a recommended approach
to assess the observed detrimental effects from the pesticide
at whole individual level (Beliaeff and Burgeot 2002;
Hagger et al. 2006); however, it is necessary to establish
the naturally occurring variation of esterase responses and
the environmental and biological factors contributing to
their normal fluctuation to avoid misinterpretations (Forbes
et al. 2006; Hagger et al. 2006). In the case of BChE and
CbE activities, because of their direct implication in the
modulation of OP and CM toxicity, a marked variation of
their natural activity levels by factors such as light/dark
cycles, sex, and age could be useful to identify the moment
of a higher risk of pesticide toxicity or a group of
individuals more sensitive to pesticide exposure (Thompson
1993; Maul and Farris 2004). As an example, the affinity of
liver CbE activity to chlorpyrifos-oxon exposure in male
and female rats was the same, whereas the higher number
of CbE molecules in male liver accounted for a higher
tolerance to chlorpyrifos-oxon exposure compared to
females (Chanda et al. 1997); moreover, Kramer et al.
(2002) determined that methyl parathion detoxification
period depends substantially with route of exposure.
Furthermore, serum BChE and CbE activities of some bird
species such as buzzards (Buteo buteo), Japanese quail
(Coturnix coturnix japonica), or European starlings (Sturnus
vulgaris) display a large circadian variation (Thompson
1993). Furthermore, Fairbrother and Rattner (1991, in
Thompson 1999) listed species, age, sex and diurnal,
seasonal, and interindividual changes among the biological
factors potentially affecting ChE activity. Also, size-
dependent ChE activity was reported in both passerine

(Mayack and Martin 2003) and nonpasserine (Roy et al.
2005; Strum et al. 2008) birds and crocodiles (Schmidt
2003). In addition, sex-dependent variations have also been
observed in birds (Rattner and Franson 1984) and lizards
(Bain et al. 2004). Taken all together, these examples
illustrate that when blood is the unique biological material
available to measure biomarkers (e.g., esterases) of pesticide
exposure, naturally occurring fluctuations and the main
biological and environmental variables contributing to their
changes should be established.

This laboratory study is a preliminary phase of a broader
project aimed to assess the impact of agrochemicals applied
in Argentinean soy crops (Province of Santa Fe) on reptiles
that frequent this agroecosystem. The objectives of this
initial phase were to determine natural levels of plasma
esterase (BChE and CbE) activities in the lizard Tupinambis
merianae as well as the impact of both age and sex on
esterase activity, and to examine the sensitivity of plasma
esterases to in vitro exposure with a model OP insecticide,
i.e., malaoxon, which is the main active metabolite of
malathion. Finally, chemical reactivation of malaoxon-
inhibited BChE in the presence of 2-PAM was also
examined in an attempt to propose this methodology as a
complementary index of OP exposure in this lizard species.
We selected T. merianae because of several ecological
features, e.g., the Tupinambis genus is widely distributed in
South America (Péres and Colli 2004), and T. merianae
(formerly Tupinambis teguixin) is frequently found in both
natural ecosystems and cultivated areas (Fitzgerald et al.
1991; Péres 2003). Furthermore, this lizard species is a diet
generalist and feeds on a wide range of animals and fruits
(de Castro and Galetti 2004), its conservation status is
considered of “Least Concern” (Embert et al. 2009), and
finally, the implementation of captive breeding programs
(Noriega et al. 1996) facilitates some aspects of its study.
Considering all the above mentioned, we believe that this
lizard species is a good sensor of the impact of pesticide
application in soy crops.

2 Materials and methods

2.1 Reagents

Sodium dodecyl sulfate (SDS) was purchased from
Calbiochem® (Canada). Butyrylthiocholine iodide (BuSCh),
2-PAM, 5, 5-dithiobis-2-nitrobenzoic acid (DTNB), α-
naphthyl acetate (α-NA), 4-nitrophenyl valerate (4-NPV),
and Fast Red ITR salt were obtained from Sigma-Aldrich®
(Germany). The pesticide malaoxon (CAS RN 1634-78-2,
99.2% purity) was acquired from Applied Science® (USA).
All other chemicals used in this study were obtained from
Biopack® (Argentina).

Environ Sci Pollut Res (2012) 19:214–225 215



2.2 Experimental animals and condition

We obtained experimental lizards from the “El Gringo”
captive breeding tegu farm (Sa Pereira, Santa Fe Province).
In this farm, lizards are reproduced and reared under natural
conditions (e.g., sunlight, temperature, rain) and fed with a
diet mostly consisting of meat and eggs.

Blood samples (1–2 ml) were obtained in March, during
the post-hatching period (Manes et al. 2007) between 1000
and 1300 hours by puncturing of the caudal vein with
heparinized sterile syringes and transported on ice to the
laboratory where plasma was separated by centrifugation at
4,500 rpm for 15 min at 4°C, and subsequently, plasma was
frozen at −20°C.

Snout–vent length (SVL) was recorded in each individual
with a retractable flexible rule (±0.1 mm precision). In
accordance to these data, the randomly captured lizards were
grouped by size and sex according to Noriega et al. (2002)
and Manes et al. (2007) thus creating an “adult” group
subdivided in males (>35 cm SVL) and females (>32 cm
SVL), a “juveniles” group (22–31.9/34.9 cm SVL) and a
“hatchlings” group (12–21.9 cm SVL) in order to determine
age- and sex-related differences in esterase activity. Juveniles
and hatchlings were not subdivided by sex since no
differences were found in preliminary studies (Basso,
personal observation).

2.3 Esterase assays

Plasma BChE activity was determined by the Ellman et al.
(1961) colorimetric method. The reaction mix was com-
posed by 1,870 μl 25 mM Tris–HCl containing 1 mM
CaCl2 (pH=7.6), 100 μl DTNB (3×10−4 M, final concen-
tration [FC]), 20 μl BuSCh (2×10−3 M, FC), and 10 μl of
plasma. The variation in the optical density was measured
in triplicate at 410 nm for 1 min at 25°C using a Jenway
6405 UV–VIS spectrophotometer. The activity of plasma
BChE was expressed in micromoles of hydrolyzed sub-
strate per minute per milliliter of plasma using a molar
coefficient extinction of 13.6×103 M−1 cm−1. Plasma AChE
activity was not measured due to the fact that total ChE
activity in the plasma of reptiles is primarily due to BChE
activity (75–80% of total ChE activity; Sanchez-Hernandez
and Moreno Sanchez 2002; Bain et al. 2004).

Plasma carboxylesterase was determined using two
substrates: α-NA and 4-NPV. The hydrolysis of α-NA by
CbE was measured as described by Gomori (1953) adapted
by Bunyan and Jennings (1968). The enzymatic assay was
made with 1,940 μl 25 mM Tris–HCl, 1 mM CaCl2 (pH=
7.6), and 10 μl of diluted (1:50) plasma. The reaction was
initiated by addition of 50 μl α-NA (1.04 mg ml−1 in
acetone) and stopped after 10 min of incubation at 25°C
with the addition of 500 μl 2.5% SDS and, subsequently,

500 μl 0.1% of Fast Red ITR in 2.5% Triton X-100.
Samples were left in the dark for 30 min to enable the
development of the color, and the absorbance was read at
530 nm. Hydrolysis of α-NA was expressed in micromoles
of hydrolyzed substrate per minute per milliliter of plasma
using a molar extinction coefficient of 33.225×103 M−1 cm−1.
Determination of CbE activity towards 4-NPV followed the
methods of Carr and Chambers (1991). A 20-μl aliquot of
diluted (1:50) plasma was added to 1,940 μl 50 Mm Tris–
HCl (pH=7.5) and incubated for 5 min at 25°C. The reaction
was initiated by the addition of 20 μl 4-NPV (5×10−4 M,
FC) and stopped 10 min later by the addition of a solution of
0.5 ml 2% (w/v) SDS and 0.5 ml of 2% (w/v) Tris base. The
formation of 4-nitrophenolate was monitored at 405 nm and
quantified using a standard curve made with 4-
nitrophenolate.

2.4 In vitro inhibition of B-esterase activity

Sensitivity of plasma BChE and CbE (α-NA and 4-NPV)
activities to OPs was tested using the oxon metabolite of
malathion. Insecticide solutions were initially prepared in
dimethylsulfoxide, and serial dilutions of the OP solutions
kept the solvent concentration below 1% in the reaction
medium. Pools including equal amounts of plasma from five
random lizards belonging to the same group were preincu-
bated for 15 min at 25°C with multiple malaoxon concen-
trations to generate a range of esterase inhibition between 10%
and 90%. The percentage of enzyme inhibition was calculated
by comparison with controls, which received an equal volume
of deionized water. Samples of 10 μl (BChE), 10 μl 1:50
(α-NA) and 20 μl 1:50 (4-NPV) were used to measure the
esterase activities. All the incubations were run in triplicate.
The molar concentration of malaoxon causing 50% inhibition
of the observed maximum enzyme activity (apparent IC50)
was estimated by plotting the percentage of remaining
esterase activity against the molar inhibitor concentration.
The inhibition curves were fit to the four-parameter logistic
model y ¼ minþ max�minð Þ=1þ x=IC50ð Þ�HillSlope, where
y is the percentage of residual CbE activity compared to
controls after a 30-min incubation with malaoxon, min and
max are the y responses to the highest and lowest concen-
trations of the pesticide, x is the logarithmic of inhibitor molar
concentration, and Hillslope describes the steepness of the
dose–response relationship (Motulsky and Christopoulos
2003). A level of probability less than 0.05 was taken as
statistically significant.

2.5 Chemical reactivation of BChE

Pralidoxime-induced reactivation of plasma BChE activity
previously inhibited with malaoxon was examined in order
to suggest the inclusion of this methodology in the ecotoxico-
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logical assessment of OP exposure. Plasma samples were
incubated with 4.7×10−5 M malaoxon for 30 min at 25°C
(Laguerre et al. 2009). After incubation, 2-PAM (0.28 mM or
2.8 mM, FC) was added to the samples. BChE activity was
measured every 15 min over a 75-min period. Two aliquots of
each plasma samples were used as controls: the first received
an equal volume of distilled water and the second 2-PAM in
order to test an already existing inhibition. The results are
expressed in percentage of remaining BChE activity which
was calculated considering the control activities (without
malaoxon) using the equation by Laguerre et al. (2009):

% reactivation ¼ control� reactivatedð Þ= control� inhibitedð Þ � 100

where “reactivated” is the BChE activity after 75 min of 2-
PAM treatment; “inhibited” is the BChE activity after 30 min
of incubation in the presence of malaoxon; and “control” is
the BChE activity of the sample without the OP after 75 min.

The chemical reactivation rate, the observed reactivation
rate (kr), and the time (minutes) to 50% of BChE activity
with respect to the corresponding controls (t1/2) were
estimated from the equation

y ¼ y0 þ a 1� e�bx
� �

where the coefficient a is the maximal activity of BChE
activity after 2-PAM treatment (expressed as percentage of
BChE activity), and the b coefficient is the observed
reactivation constant (kr), expressed in minutes. These
parameters enabled the comparison of the ability of 2-
PAM to reverse the phosphorylated BChE activity among
the four groups of lizards.

2.6 Data analysis

The data were statistically analyzed using a nonparametric
Kruskal–Wallis KS test; Dunn’s test was used for post hoc
paired comparisons between the four groups of T. merianae
(adult males, adult females, juveniles, and hatchlings). The
Spearman correlation test was also made to determine the
association between SVL and enzyme activities. Data were
tested for variance homogeneity and normality (Kolmogorov–
Smirnov test and Levene test). A level of probability below
0.05 was considered significant. The analyses were made with
InfoStat® 1.1 software (Grupo InfoStat Professional, FCA,
Universidad Nacional de Córdoba, Argentina).

3 Results

3.1 Esterase activity levels

The mean plasma esterase activities measured in the four
tegu groups are summarized in Table 1. Butyrylcholinesterase

activity of adult female lizards was more than twofold higher
than those of adult males, juveniles, or hatchlings. However,
CbE (using either α-NA or 4-PNV as substrates) activity
showed no statistical differences between groups. Moreover,
no substrate-specific differences were found in plasma CbE
activity. The mean length (SVL) for each group was: 39.44±
4.51 cm for the adult males group (n=10), 39.72±2.33 cm
for the adult females group (n=9), 28.66±2.22 cm for the
juveniles group (N=10), and 15.42±1.75 cm for the
hatchlings group (n=13). Lizard length had a significant
effect on 4-NPV-CbE activity solely (r=− 0.33, p<0.05),
whereas no significant correlation was observed with α-NA-
CbE (r=0.14, p>0.05) or BChE (r=0.20, p>0.05).

3.2 Malaoxon inhibition and chemical reactivation

We tested for age and sex-related differences in BChE and
CbE sensitivity to malaoxon as model OP pesticides. Plasma
BChE and α-NA-CbE activities followed a sigmoidal model
when in vitro exposed to malaoxon (Fig. 1). Carboxylesterase
activity was much more sensitive to the OP (apparent IC50s
in the nanomolar level) than BChE activity was (Table 2).
Interestingly, malaoxon had no effect on CbE activity
towards 4-NPV at concentration as high as 6.02×10−5 M
(Fig. 1b).

Stability of the enzyme-inhibitor complex was examined
by incubation of the phosphorylated BChE activity in the
presence of 0.28 mM and 2.8 mM 2-PAM following
malaoxon inhibition (60–80% inhibition compared to
controls). Plasma BChE activity of all lizard groups showed
clear signs of 2.8 mM 2-PAM reactivation (47–52% of
reactivated enzyme) even though full recovery was not
achieved (Fig. 2); in this case, plasma BChE activity of
hatchlings reactivated more slowly (kr=0.07 min−1 and t1/2=
23 min) than the other groups (Table 2). The lowest
concentration of 2-PAM (0.28 mM FC) resulted to be the
least effective for reactivating plasma BChE in this lizard
species (Fig. 2).

4 Discussion

4.1 Impact of confounding variables on esterase activity

Blood is the suitable biological material for assessing
pesticide exposure in terrestrial wild vertebrates because
of obvious regulatory, ethical, and conservation reasons.
However, when biomarkers are included within the set of
biological variables to be integrated in a weight-of-evidence
framework for the environmental assessment of pesticide
exposure, it is necessary to know the impact of biological
(i.e., life stage or sexual development) and environmental
factors (i.e., temperature or light/dark cycles) on biomarker
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responses (Peakall 1992; Sanchez-Hernandez 2001) (Forbes
et al. 2006; Hagger et al. 2006). In the case of blood
esterases, the understanding of normal fluctuation of their
activities would enable to know the moment of critical
vulnerability of the organism to pesticide intoxication as well
as to identify the stressors responsible for esterase responses.

Few lizard esterases have been previously characterized
(Table 3). In the present study, we found that sex had a
significant impact on the plasma BChE activity of T.
merianae; adult females had higher BChE activity than
males. This observation does not corroborate other related

studies with reptiles. For example, the mean (±SD) plasma
ChE activity of the Australian agamid Pogona vitticeps was
0.66±0.06 mmol/min/ml for males and 0.45±0.06 mmol/
min/ml for females (Bain et al. 2004). Likewise, Sanchez-
Hernandez et al. (2004) reported no significant differences
of serum BChE activity between males (4.42±0.94 mmol/
min/ml, mean±SD) and females (3.93±0.75 mmol/min/ml)
of the lizard Gallotia galloti. Bain et al. (2004) suggested
that sex-related differences of ChE activity found in P.
vitticeps were due likely to the fact that their lizards came
from different natural populations. However, lizards
(Gallotia galloti palmae) collected from two different
localities of the Palma Island (Canary Islands, Spain) did
not show significant differences in plasma BChE activity
even when animals were sampled in summer (3.07±
1.22 mmol/min/ml for males and 3.00±1.09 for females,
mean±SD) and in autumn (3.61±2.57 for males and 4.06±
1.30 for females) (Sanchez-Hernandez et al. 2004).

Taken all together, these studies suggest a previous
analysis of interindividual normal variations of blood
esterases as well as the potential stressor other than
pesticides contributing to their basal responses. However,
most of the studies with vertebrate esterases have been
addressed on the following issues: (1) enzymatic character-
ization of blood ChE activity for enzyme assay purposes (e.g.,
Küster 2005; Attademo et al. 2007; Lajmanovich et al.
2010), (2) chemical reactivation of the phosphorylated ChE
activity using oximes (e.g., Lajmanovich et al. 2008), (3)
relationship between ChE inhibition and physiological or
behavioral changes (e.g., Fildes et al. 2009; Junges et al.
2010), and (4) field monitoring of OP/CM pesticide exposure
by comparing blood ChE activity between pesticide-exposed
and nonexposed populations (e.g., Attademo et al. 2011). But
most of the studies examining the sources of natural variation
of blood esterases in wild vertebrates are particularly limited
to birds. For example, seasonal variations of serum BChE
activity have been observed in northern bobwhites (Colinus
virginianus), whereas a wide variation of CbE activity has
been recorded in the plasma of European starlings (S. vulgaris)
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Fig. 1 In vitro inhibition of plasma butyrylcholinesterase (BChE) (a)
and carboxylesterases (CbE) (b) by malaoxon. Each point corresponds
to the mean of three independent assays (±SD)

Table 1 Plasma butyrylcholinesterase (BChE) and carboxylesterase (CbE) activities (micromoles per minute per milliliter of plasma) in T.
merianae

Group BChE CbE (α-NA) CbE (4-NPV)

n Mean+SD n Mean+SD n Mean+SD

Males 10 1.76±1.13* 9 2.81±0.98* 9 2.06±1.14*

Females 9 4.06±2.08** 7 3.30±1.27* 9 1.92±0.76*

Juveniles 10 1.40±1.12* 10 3.03±1.02* 10 2.81±1.49*

Hatchlings 13 1.87±1.18* 12 2.68±1.20* 12 3.58±1.88*

Carboxylesterase activity was measured using two substrates, i.e., alpha-naphthyl acetate (α-NA) and 4-nitropheyl valerate (4-NPV)

*p=not significant; **p<0.05
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which increased up to 150% during the day (Thompson
1993). Circadian variations of blood esterase activities have
been also documented in other bird species such as buzzards

(B. buteo), Japanese quails (C. coturnix japonica) or clay-
colored robins (Turdus grayi) (Thompson 1993; Cobos et al.
2009). Sex, age, and diet are also confounding variables when
depressing of bird esterase activity is linked to ChE-inhibiting
agrochemicals (Westlake et al. 1983; Sanchez-Hernandez
2001; Roy et al. 2005; Sogorb et al. 2007).

The explanation on why blood ChE and CbE activities
vary with light/dark cycles, season, or sex is not totally
understood. Nevertheless, some authors postulate that
feeding activity, hormone-related mechanism, or the pres-
ence of lipid-rich materials in diet are among the potential
factors contributing to blood esterases interindividual
variations (Rattner and Fairbrother 1991; Thompson
1993). Past studies show that CbE activity plays a notable
role in the metabolism of lipids in invertebrates (Geering
and Freyvogel 1974; Mommsen 1978). Similar findings
have been documented in rats (Wassmer et al. 1988) and
mice (Van Lith et al. 1991, 1992) fed with lipid-rich diets.
More recently, a CbE showing triacylglycerol hydrolase
activity was involved in the metabolism of neutral lipids in
several tissues of mammals (Dolinsky et al. 2004).
Nevertheless, our lizards were obtained from a specialized
farm where they were fed with a standardized diet, and
apparently, this confounding variable did not have a
significant effect on plasma CbE activity in the T. merianae
used in this study. Interestingly, our data suggest that food
intake by T. merianae could be a determinant factor in the
marked variation of plasma BChE activity between adult
males and females. It is known that gravid females of T.
merianae lose a significant percentage of the total body
mass during reproduction season (Andrade et al. 2004).
However, this loss of body weight is recovered before to
initiate the dormancy, accumulating fat in their abdominal
cavity up to a 5% of the total body weight (Andrade et al.
2004). If it is the same scenario for our animals, then the
increase in food intake necessary to survive during
hibernation might partially explain the higher plasma BChE
activity in the female individuals.
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Fig. 2 Reactivation of Mx-inhibited plasma BChE activity in the
presence of 2-PAM. Start point represents the plasma BChE activity
incubated with 4.7×10−5 M of Mx for 30 min at 25°C. Zero represents
the activity at the moment right after the treatment with two different
concentrations of 2-PAM a 2.8 mM FC and b 0.28 mM FC. Enzyme
activity was determined periodically (15-min intervals) after addition
of 2-PAM. Reactivation is expressed as percentage of remaining BChE
activity with respect to the corresponding controls. Each point
represents the mean of three determinations

Table 2 In vitro inhibition of plasma carboxylesterase (CbE) and butyrylcholinesterase (BChE) activities by malaoxon and chemical reactivation
of the malaoxon-inhibited BChE activity with 2.8 mM pralidoxime (2-PAM)

Groups Inhibition (IC50) 2-PAM reactivation of BChE activity

CbE (α-NA)a BChEb kr (min−1) % reactivation t1/2 (min)

Adult males 3.7±0.2 7.2±1.0 0.04±0.03 47.7 14.6

Adult females 0.8±0.1 9.2±1.9 0.05±0.04 50.8 12.1

Juveniles 2.9±0.4 9.2±0.6 0.03±0.02 52.9 10.0

Hatchings 0.2±4.5 6.2±0.3 0.07±0.02 47.8 23.5

a Apparent IC50 is expressed in nanomolar except for hatchlings (micromolar)
b Apparent IC50 is expressed in micromolar

α-NA = α-naphthyl acetate, kr = observed reactivation constant rate
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4.2 Multiple plasma esterases of T. merianae
for environmental biomonitoring

Inhibition of blood ChE activity is the traditional biomarker
of pesticide exposure in wild vertebrates. However, con-
vincing evidence accumulated over the last three decades
has demonstrated that this biomarker shows a high
interindividual variation that often makes the identification
of pesticide-exposed individuals by comparing ChE activity
levels difficult. A recommended strategy is the use of
multiple biomarkers related to the mechanism of toxicity
and detoxification pathways (Hagger et al. 2006) or the use
of complementary methodologies of pesticide exposure
such as the chemical reactivation of phosphorylated or
carbamylated ChE activity employing oximes or water
dilution, respectively (Sanchez-Hernandez et al. 2004).
Measurement of BChE or CbE inhibition in the plasma of
wild vertebrates is of growing concern because of the
higher sensitivity to inhibition by OP or CM pesticides
compared to AChE activity (Wheelock et al. 2008), and
further, the role of these esterases in the detoxification of
anticholinesterase and synthetic pyrethroid agrochemicals
(Sogorb and Vilanova 2002).

In the present study, we have established the normal
levels of plasma BChE and CbE activities in T. merianae in
an attempt of using them as reference values in ongoing
investigations on the impact of pesticides in these reptiles.
Furthermore, we examined the sensitivity of these esterases
to in vitro malaoxon exposure. This OP strongly inhibited
both esterase activities, although apparent IC50s were lower
for CbE activity using α-NA as substrate than those
obtained for BChE activity. We found that inhibition of
plasma CbE activity by malaoxon was substrate-specific,
irrespective of the lizards’ age or sex. This is a clear
evidence of the occurrence of multiple CbE isozymes in the
plasma of T. merianae showing different sensitivities to

OPs. It has been widely demonstrated that CbEs are
expressed as multiple isozymes in many tissue and organs
of many organisms (Satoh and Hosokawa 2006; Wheelock
et al. 2008; Sanchez-Hernandez and Wheelock 2009). More
interestingly, sensitivity of α-NA-CbE activity of females
was higher to malaoxon in vitro inhibition compared to
males, juvenile, or hatchings (Table 2). Merely speculating,
it could be considered that if plasma CbE activity is a
significant detoxification pathway because this esterase
binds stoichiometrically OPs, then the comparatively higher
levels of plasma CbE activity in the females as well as their
high sensitivity to OPs would mean that T. merianae
females are more resistant to the impact of OP exposure
than males or subadult individuals at least during this time
of the year.

Chemical reactivation of the phosphorylated ChE activity
has shown to be a workable methodology of OP intoxication
in wild vertebrates, providing further solid evidence of OP
exposure (Table 4). The data reported in the present study
show that malaoxon-inhibited BChE activity from all lizard
groups exhibited approximately 50% of reactivation by 2-
PAM treatment. This lack of full recovery of BChE activity
could be due to many factors jointly interacting to reduce the
potency of the oxime to reverse the phosphorylated esterase
activity. For example, the concentration of the oxime in the
reaction medium is critical to achieve a maximum reactiva-
tion of the phosphorylated ChE activity. As an example,
while a 2-PAM concentration of 10−4 M caused inhibition in
both fish and crab AChE activity (Monserrat and Bianchini
2000), the same range of 2-PAM concentration is optimum
for reactivation of OP-inhibited blood BChE in birds and
lizards (Table 4). Previous studies with the lizard G. galloti
have recommended a 2-PAM concentration of ∼10−4 M to
maximum recovery of phosphorylated ChE activity (Sanchez-
Hernandez et al. 2004); however, we obtained a significant
increase of the malaoxon-inhibited BChE activity in the

Table 3 Plasma acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and carboxylesterase (CbE) activities in several reptile species

Species Diet Esterase activity (μmol min−1 ml−1)–mean±SD References

n AChE n BChE n CbE
(α-NA)

n CbE
(4-NPV)

G. galloti Omnivorous 6 1.60±0.38 6 6.68±1.02 37 11.0±2.8 – – Sanchez-Hernandez and
Moreno Sanchez 2002;
Sanchez et al. 1997

G. galloti
palmae

Omnivorous – – 77 3.07±1.22 56 10.1±2.5 56 0.11±0.04 Sanchez-Hernandez
et al. 2004; Sanchez-
Hernandez 2006

P. vitticeps Omnivorous 32 0.16±0.02 32 0.42±0.03 – – – – Bain et al. 2004

T. merianaea Omnivorous – – 19 2.85±1.99 16 3.03±1.1 18 1.99±0.94 This study

– not indicated
a Only adults (males and females)
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presence of 2.8 mM compared to 0.28 mM. This
unexpected observation could be explained by the
chemical nature of the enzyme inhibitor which likely
forms a stable complex. Some studies with human AChE
activity and earthworm ChE activity have shown that the
structure of the phosphoryl moiety at the active site of
the esterase, which depends on the OP type, affects the
reactivation potency of the oxime (Worek et al. 2004;
Rodriguez and Sanchez-Hernandez 2007). Excess of free
inhibitor in the reactivation procedure could be another
significant factor to limit the reactivation potency of 2-
PAM. To avoid this interference factor, many authors have
developed multiple separating techniques to remove
excess of the OP such as dialysis (Worek et al. 2004),
gel permeation chromatography (Hovanec and Lieske
1972), solid-phase extraction (Hunt and Hooper 1993),
or centrifuge filtration (Wheelock et al. 2006). These
removing procedures are justified when an excess of the
inhibitor is added to the incubation medium to guarantee
the full inhibition of ChE activity, although these techniques
have the risk for ChE aging or spontaneous reactivation
during OP removal. We have used a concentration of
malaoxon in the incubation medium that caused an inhibition
of BChE activity between 20% and 40% compared to
controls. We assumed, therefore, that free malaoxon would
be minimal when 2-PAM was added to this medium to
test for chemical reactivation of phosphorylated BChE
activity. A similar strategy was used by Rodríguez and
Sanchez-Hernandez (2007) to inhibit muscle ChE activity
of earthworms.

Lastly, the marked variation in basal plasma BChE
activity and its sensitivity to OPs between T. merianae
males and females provide a unique animal model to
examine the role that this plasma esterase plays as
modulator of pesticide intoxication and, in turn, to link to
whole individual adverse effects. Female behavior has a
crucial influence on nest conditions during the whole
incubation process (Chani et al. 1993; Noriega et al.
1996) keeping vital factors like temperature and moisture
in optimum levels for embryo development (Manes et al.
2003). On the other hand, the exposure to some anticho-
linesterasic agents like OPs is known to temporarily, but
significantly, reduce body temperature in mammals and
birds (Rattner and Franson 1984; Gordon 1994). In
mammals, this physiological response is usually followed
by the search of cooler environments in order to reduce
metabolic activity and adverse effects to the xenobiotics. In
ectotherms, the response tends to be the opposite, inducing
a searching for a warmer microenvironment so as to boost
the metabolic response against intoxication (Grue et al.
2002). If these behavioral changes are verified in T.
merianae females, they could also affect optimal nest
conditions for the species, disfavoring their OP-exposed

populations. Nest abandonment and extended time off nests
have been already reported in adult free-living birds
exposed to OPs (Bennet et al. 1991).

5 Conclusion

Two main conclusions could be drawn from the current
results, which should be taken into account when this lizard
species is used in the field monitoring of sublethal effects
from pesticides. First, plasma esterase activity did not vary
with age and sex, except for BChE activity. Because of the
significant contribution of both BChE and CbE activities in
the natural tolerance of organisms to anticholinesterase
pesticides—they are considered efficient endogenous scav-
engers of pesticides—female lizards could display a higher
tolerance to pesticide exposure compared to males due to the
higher level of normal BChE activity in females. Second,
because environmental and biological variables could be
confounding factors in the response of plasma ChE activity to
pesticides, complementary biomarkers such as inhibition of
CbE activity or exposure index such as oxime-induced
reactivation of esterases are strongly recommended.
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