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Abstract
Background, aim and scope Phytoremediation does exploit
natural plant physiological processes and can be used to
decontaminate agricultural soils, industrial sites, brown-
fields, sediments and water containing inorganic and
organic pollutants or to improve food chain safety by
phytostabilisation of toxic elements. It is a low-cost and
environment friendly technology targetting removal, degra-
dation or immobilisation of contaminants. The aim of the
present review is to highlight some recent advances in
phytoremediation in the Alpine context.

Main features Case studies are presented where phytor-
emediation has been or can be successfully applied in
Alpine areas to: (1) clean-up industrial wastewater contain-
ing sulphonated aromatic xenobiotics released by dye and
textile industries; (2) remediate agricultural soils polluted
by petroleum hydrocarbons; (3) improve food chain safety
in soils contaminated with toxic trace elements (As, Co, Cr
and Pb); and (4) treat soils impacted by modern agricultural
activities with a special emphasis on phosphate fertilisation.
Conclusions, recommendations and perspectives Worl-
wide, including in Alpine areas, the controlled use of
appropriate plants is destined to play a major role for
remediation and restoration of polluted and degraded
ecosystems, monitoring and assessment of environmental
quality, prevention of landscape degradation and immobi-
lisation of trace elements. Phytotechnologies do already
offer promising approaches towards environmental remedi-
ation, human health, food safety and sustainable develop-
ment for the 21st century in Alpine areas and elsewhere all
over the world.

Keywords Phytoremediation . Alpine regions .

Contaminated soils . Industrial wastewater . Petroleum
hydrocarbons . Sulphonated aromatic compounds . Trace
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1 Background, aim and scope

Phytotechnologies can be defined as the use of plants to
remediate, treat, stabilise or control contaminated sub-
strates, and phytoremediation is one of these, dedicated to
the removal or the destruction of contaminants. Phytor-
emediation does exploit natural plant physiological pro-
cesses and can be used to decontaminate agricultural soils,
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industrial sites, brownfields, sediments and water contain-
ing metals and/or organic compounds. It is a low-cost and
environment friendly technology targetting extraction,
degradation or fixation of the contaminants (Schwitzguébel
et al. 2009). Similar technologies of ecological engineering
or ecoremediation can be used for revegetating degraded
land (like quarries, road sides), as well as for removing
excessive nutrient loads and cleaning-up wastewater (road
runoff, municipal and industrial effluents, surface and
seepage water) with soil–plant filters, buffer strips and
constructed wetlands (Otto et al. 2008; Bulc and Slak 2009;
Vymazal 2009; Borin et al. 2010). Plants represent a more
environmentally compatible and less expensive method to
site restoration compared to physico-chemical and engi-
neering techniques, even though the time scale required to
reach the fixed end-points can become a limiting factor for
such ecoremediation approaches (Denys et al. 2006; Komives
et al. 2009; Mench et al. 2009, 2010; Vangronsveld et al.
2009). Plants are already cleaning our environment constant-
ly, everywhere, even if we do not recognise or know it. On
the other hand, biomass produced on contaminated land can
be used as renewable energy source, not competing with
food supply and contributing to sustainable land use
management (Van Ginneken et al. 2007; Meers et al.
2010). Since plants can also exclude metal or organic
contaminants, and thus reduce their transfer to the food
chain, phytotechnologies are also offering efficient tools to
improve food safety.

The bioavailable fraction of soil contaminants should be
considered as the most important one from an ecological,
toxicological and health standpoint, and it is determined by
the chemical properties of the metal or organic compound,
soil and climatic characteristics, ageing processes and biota
behaviour. Ageing usually decreases bioavailability, but
root exudates, root-induced rhizosphere changes, mycorrhi-
zal fungi and rhizospheric bacteria play a major role in the
dynamics and the ability of contaminants to move from
soils to plants; vertical and horizontal spreading of
contaminants to the surroundings and groundwater will
also be affected. The bioavailability of contaminants and
their uptake by crop plants are essential parameters for
establishing risk-based regulatory guidelines and enhancing
food safety (Mench et al. 2009).

A significant part of agricultural land in Europe—
including many Alpine territories—is contaminated with
heavy metals and organic chemicals, some of which still in
agricultural use. Food produced on those sites can pose
human health risks: several important agro-ecosystem
functions are impaired and such sites can be sources of
food contamination and further pollution via re-spreading to
the surroundings by wind and water erosion or leaching
into groundwater. Due to more severe legislation in many
countries, contaminated agricultural soils still under pro-

duction and many additional areas, which until now have
not been subject to regulation, will be taken out of food
production and become marginalised. There are two
alternatives to deal with such soils: they have to be set
aside or cleaned. Conventional remediation methods like
landfilling or excavation and extraction impose high costs,
destroy soil structure, and diminish soil productivity. Sites
like these need a sustainable plant cover to prevent re-
entrainment of particulates and further contamination of
more agricultural land as well as direct impact on local
populations. Phytotechnologies can offer a cost-effective in
situ alternative for low- or medium-contaminated soils
resulting in increased soil fertility (Baker et al. 1994;
Vangronsveld et al. 2009; Mench et al. 2010).

Brownfields—contaminated sites around former and
present mines, abandoned old industrial sites or ash and
slag dumps from coal-fuelled power plants, coal and gas
plants, oil-refineries, ammunition plants, military bases, and
pesticide tombs, are numerous in Europe, and their
restoration for future safe use has become an important
issue. An appropriate rehabilitation and sustainable man-
agement of contaminated brownfields is thus now a priority.
Phytotechnologies are expected to play a major role in the
restoration of former industrial areas, but the activities must
also include site identification and characterisation, parallel
soil treatability tests, as well as field-scale implementation
and evaluation (French et al. 2006; Onwubuya et al. 2009;
Vangronsveld et al. 2009; Mench et al. 2010). Green plants
can also be used to treat freshly dredged polluted sedi-
ments, even if this approach is only at its infancy (Bert et
al. 2009).

The most significant phytotreatments of soils, sites and
brownfields are the following:

& Phytostabilisation, based on the immobilisation of
organic and inorganic contaminants by the addition of
appropriate soil amendments, the adsorption to plant
roots or soil particles, and the precipitation in the root
area, thus preventing their migration and decreasing
erosion, runoff and leaching (Kumpiene et al. 2007). It
also promotes restoration and biodiversity of ecosys-
tems accounting for ecological benefits or the produc-
tion of industrial crops producing essential oil or fibres.
The most effective is the use of indigenous plant
species, accustomed to the local climate and soils and
not creating adaptation or invasion problems.

& Phytoextraction, based on the absorption of contami-
nants into roots, then translocation into shoots, followed
by harvest and destruction of the plants. Depending on
their market value, metals can be recovered from
contaminated biomass or ash (Dickinson et al. 2009).

& Phytodegradation and phytotransformation of xenobiotic
compounds, exploiting the huge potential and biodiversity
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of plant secondary metabolism (Schwitzguébel et al.
2008).

& Phytostimulation: enhanced microbial metabolism of
organic pollutants in plant rhizosphere; plant/microbial
interactions are important for such a process (Gaskin
and Bentham 2010).

& Hydraulic control of pollutants: the use of phreatophyte
trees (poplar, willow and aspen) to transpire large
amounts of water and thus limit the transport of
groundwater pollutants (Liste and White 2008).

In constructed wetlands, plants are used as part of a
managed ecosystem to remove contaminants from aqueous
waste streams (Haberl et al. 2003; Imfeld et al. 2009;
Vymazal 2009; Vymazal and Kröpfelovà 2009). Alterna-
tively, hydroponic cultures or nutrient film techniques can
be used in a process called rhizofiltration or phytofiltration
(Schwitzguébel et al. 2008, 2011). Waters under consider-
ation include industrial and domestic wastewater, ground-
water and surface water as well as landfill leachates,
containing biodegradable or recalcitrant organic com-
pounds, toxic metals and/or radionuclides.

The aim of the present review paper is to highlight some
recent advances and case studies where phytoremediation
has been or can be successfully applied in the Alpine
context to treat: (1) industrial wastewater containing
sulphonated aromatic compounds released from synthetic
dye and pigments production; (2) agricultural soils polluted
by petroleum hydrocarbons; (3) soils contaminated with As,
Co, Cr and Pb; and (4) soils polluted by modern
agricultural activities with a special emphasis on phosphate
fertilisation.

2 Toward the phytotreatment of wastewater
from chemical industries

Due to the proximity and abundance of water and
hydroelectric power plants, many industries have been
established in Alpine regions, especially in the upper Rhone
and Rhine valleys; among others, chemical industries
producing fine chemicals like dyes and pigments. To treat
effluents released by these industries, often containing
recalcitrant compounds, classical wastewater treatment
plants are not always efficient, and reliable alternatives are
thus needed. More precisely, constructed wetlands and
hydroponic systems (rhizofiltration or phytofiltration) are
able to remove and degrade many organic pollutants from
industrial wastewater (Haberl et al. 2003; Bulc and Ojstrsek
2008; Schwitzguébel et al. 2008, 2011). Both are based on
the use of appropriate plant species and offer a low-cost,
low-maintenance approach to treat recalcitrant xenobiotic
compounds. Before, to be applicable at large scale,

however, research and development are needed to choose
the most efficient plant species, characterise the detoxifica-
tion mechanisms, design and size the system and define the
optimal operation conditions.

Such an approach has been applied to develop the
phytotreatment of synthetic sulphonated aromatic com-
pounds, the parent molecules for a large palette of dyes
and an important starting material in their production.
Dyes are intentionally designed to be resistant under
typical usage conditions, making difficult the treatment
of their by-products and of wastewater from production
lines. Because they contain at least one sulphonic group
and often also varying substitutions such as nitro groups,
these chemicals are not uniformly susceptible to bio-
decolourisation and biodegradation. Effluents from dye,
textile and detergent industries, but also leachates from
landfills, are thus often contaminated with sulphonated
aromatics, giving to these chemicals an actual impact on
the environment, especially fresh water (Schwitzguébel et
al. 2002). The removal and/or degradation of sulphonated
xenobiotics from industrial wastewater thus remains a
major challenge, not only because of the colour, but also
of recalcitrance and toxicity. Over the last two decades,
several physical or chemical treatments have been tested;
however, they have major disadvantages, including high
cost, low efficiency and inapplicability to a wide variety
of dyes, as well as the formation of by-products, creating
disposal problems of contaminated wastes. On the other
hand, the microbial degradation of synthetic dyes includ-
ing azo and anthraquinone derivatives often requires
unusual catabolic properties rarely found in a single
bacterial or fungal species, and the accumulation of
dead-end products often occurs (Schwitzguébel et al.
2002). The limited ability of micro-organisms to degrade
sulphonoaromatic compounds, and thus to cope with
various mixtures of these xenobiotics, limits the efficiency
and, therefore, the use of conventional wastewater treat-
ment plants based on activated sludge.

In such a context, the ability of several plant species
to remove sulphonated anthraquinones from synthetic
wastewater has been tested in hydroponic systems
(Aubert and Schwitzguébel 2004). As shown in Table 1,
the most promising results were obtained with plants
producing natural anthraquinones, like Rheum rabarba-
rum (rhubarb), especially the Valentine cultivar, or Rumex
hydrolapatum and Rumex acetosa (Aubert 2003; Haberl et
al. 2003; Aubert and Schwitzguébel 2004). However, the
removal of a pollutant from a liquid medium does not
mean that it is accumulated and degraded by the plant
itself. The next step was thus to investigate any possible
adsorption, uptake, metabolism and degradation by plants.
As measured by capillary electrophoresis (Aubert and
Schwitzguébel 2002), sulphonated anthraquinones were
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found in leaves of rhubarb (Fig. 1) and R. hydrolapatum
(Fig. 2), indicating their uptake and translocation by these
plants. As compared to leaf extracts from plants cultivated
without sulphonated anthraquinones, new metabolites
were found in plants cultivated with these xenobiotics
(Figs. 1 and 2), suggesting that at least some of them, if
not all, were transformed by both plant species. Further-
more, the profile of metabolites produced depended on the
plant used, highlighting the importance of a careful
screening of plant species, ecotypes or cultivars before
any application of phytoremediation. Enzymatic inves-
tigations have been performed to determine if sulphonated
anthraquinones might be transformed by enzymes of the
classical detoxification pathways in plants. Results
obtained with glutathione S-transferases show that this
class of enzymes is not significantly involved in the
observed metabolism of sulphonated anthraquinones

(Aubert 2003). In contrast, cytochrome P450 monooxy-
genases are involved in the detoxification of sulphonated
anthraquinones (Page and Schwitzguébel 2009a, b) and
glycosyl-transferases could also be involved in the next
steps of the metabolism of synthetic sulphonated anthra-
quinones, with possible crosstalks with the metabolism of
natural anthraquinones, often glycosylated as well.

Rhubarb is a hardy perennial plant and appears as a
promising species in developing new phytotreatments to
decontaminate effluents containing sulphonated aromatic
compounds. However, before any industrial application,
pilot-scale experimentation should be performed to
assess the capacity of this plant and of other species
producing natural anthraquinones to deal with real
effluents at different concentrations and loading rates
and to correctly design and size rhizofiltration treatment
units.

Table 1 Removal of sulphonated anthraquinones by different plant species cultivated under hydroponic conditions

Plant species AQ-1S
(68.8 mg L−1)

AQ-2S
(65.7 mg L−1)

AQ-1,5-SS
(82.5 mg L−1)

AQ-1,8-SS
(82.5 mg L−1)

AQ-2,8-SS
(82.5 mg L−1)

Control (no plant,
dark)

8–13 12–16 13–19 12–18 6–11

Rheum rabarbarum
(Valentine)

78–89 84–94 79–89 79–89 70–82

Rheum rabarbarum
(Sutton)

51–63 62–72 53–68 53–69 31–50

Rumex hydrolapatum 39–58 69–81 39–56 40–56 40–56

Rumex acetosa 44–53 70–75 31–53 39–53 38–47

Apium graveolens 53–70 56–69 32–42 31–42 30–40

The percentage of each sulphonated anthraquinone removed was measured 6 weeks after the simultaneous addition of each sulphonated
anthraquinone in the liquid medium at the concentrations indicated and expressed as the minimal and maximal values of three replicates. Details
of experimentation as previously described (Aubert 2003; Aubert and Schwitzguébel 2004)
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3 Phytoremediation of a soil polluted by petroleum
hydrocarbons: a comprehensive field trial

A phytoremediation trial was conducted on agricultural soil
polluted with petroleum hydrocarbons as a result of a land-
based oil well blow-out in Northern Italy in 1994 (Fig. 3).
Prior to this trial, the contaminated soil was extensively
treated in a biopile to enhance hydrocarbon degradation and
then spread back to its original location. The contaminated
soil (15 hectares) was divided into parcels representing a
modified Latin square design in which phytoremediation
and landfarming were applied as replicates (Fig. 4). Local
crops were used in the phytoremediation treatment.

The main objectives of the whole field trial were to
assess the potential of phytotreatment for the removal of
petroleum hydrocarbons under real conditions; compare

landfarming treatment and natural attenuation versus
phytoremediation in terms of soil remediation; reduce the
pollutant"s concentration to a level acceptable for an
agricultural soil; evaluate the kinetics of the reduction of
concentrations of total petroleum hydrocarbons (TPH) and
polycyclic aromatic hydrocarbons (PAH); select the crops
with the highest ability to reduce crude petroleum hydro-
carbons in contaminated soil; assess the potential of uptake
and/or enhancement of microbial activities of each plant
species in terms of remediation of contaminated soils. A
complementary study was conducted in greenhouse to
compare results obtained in the field and in a more
controlled environment, since temperature, humidity and
light parameters are set under greenhouse conditions
(Zabłudowska et al. 2009). Here, we report on the first
three growing seasons (summer 1998, winter 1998–99, and
summer 1999), when 11 agricultural species were planted.
Plants selected for summer seasons were alfalfa, fescue,
clover, corn, ryegrass, sorghum and soya. Plants selected
for the winter season were fescue, rape, ryegrass, rye, vetch
and triticale. Landfarming treatment consisted of periodic
tilling of parcels. Furthermore, the study included the
assessment of natural attenuation (weedy areas) which
consisted in weeds growing naturally between planted
parcels (weed growth, no crops, no tilling).

From each parcel including landfarming and weedy
areas, TPH were extracted using supercritical fluid extrac-
tion and analysed by gas chromatography coupled with
flame ionisation detector. Accelerated solvent extraction
was used to extract 35 individual PAH from soil, while for
plants, Soxhlet extraction method was used. PAH in soils
and in plants were analysed using gas chromatography

Fig. 3 The spill of a land-based oil well in Northern Italy (March
1994)
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coupled with mass spectrometry. Different statistical treat-
ments were applied in this study; among them are analysis
of variance (ANOVA), regression, linearity, parallelism,
homogeneity of variance and Student tests. The lack of
homogeneity of the soil in the field was also statistically
established and coincided with the heterogeneity of plants
growth in the same parcel. Details of the experimentation
and of statistics are available elsewhere (Plata-Chebbah
2000).

Results obtained during the first summer season indicat-
ed that the start of the decontamination process was long
and slow. Indeed, soil TPH and PAH concentrations

decreased throughout planted, landfarmed parcels and
natural attenuation areas, but significantly only with maize
and red clover. Average reduction in soil TPH ranged from
721 to 2,849 kg ha−1 (Table 2). Reduction in soil PAH from
the site was between 1.3 and 12 kg ha−1. During this
season, all the agricultural plants underwent stress and
exhibited reduced growth, reduced size and yellow colour
(Plata-Chebbah 2000).

During the winter season, the rate of soil TPH decrease
was significantly greater in cultivated parcels and weedy
areas than in landfarmed parcels (Table 2). Reduction in
soil TPH from the site ranged from 1,644 (landfarming) to

Fig. 4 Scheme and aerial pic-
ture of the contaminated soil
divided according to the Latin
square statistical model
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6,478 kg ha−1 (triticale). Soil PAH concentrations decreased
in planted and landfarmed parcels, as well as in weedy
areas. However, the smallest quantities of soil PAH
removed were observed for rye and triticale, and the
highest for ryegrass and weed. The growth of crop plants
was less affected than during the first season (Plata-
Chebbah 2000).

During the second summer season, the concentration of
soil TPH and PAH only slightly decreased in landfarmed
parcels (Table 2). The average removal of TPH was
statistically significant for almost all other conditions and
ranged from 2,127 (red clover) to 5,692 kg ha−1 (maize) in
planted parcels, whereas it was only 104 kg ha−1 in
landfarmed parcels. The removal of soil PAH ranged from
2.2 (landfarming) to 8.2 kg ha−1 (sorghum). The reduction
in soil TPH concentration coincided with an increased plant
growth, as compared to both previous seasons (Plata-
Chebbah 2000).

In parallel alfalfa, clover and fescue (same seeds stock as
that used on the contaminated site) were grown in
greenhouse environment, in soils from the contaminated
site. The results obtained showed that plants grown in
greenhouse conditions had a more positive effect on the rate

of soil TPH and PAH reduction and plant PAH uptake than
those grown under field conditions (Plata-Chebbah 2000).
Thus, any extrapolation of phytoremediation results
obtained in a greenhouse (reduced scale) to the field (full
scale) must be made cautiously, as all the environmental
conditions that affect the outcome of field studies do not
prevail in greenhouse conditions (Euliss et al. 2008;
Zabłudowska et al. 2009).

During the three growing seasons, the very low plant
PAH concentration (230–860 ng g−1 shoot DW) appeared
to be a function of soil PAH concentrations. Plant PAH
concentrations were thus the highest during the first season
and lowest during the third season being however in the
same order of magnitude as that of the control plants (not
shown). Parallel determinations of PAH concentrations in
the plants and PAH degradation rates in the soil indicated
that the degradation of PAH (mostly 2–4 rings: naphtha-
lene, phenanthrene, dibenzothiophene, pyrene, fluoranthene
and chrysene) was due to rhizospheric bacteria, and that
plants decisively improved their growth and working
conditions, as already shown by other studies (Nedunuri
et al. 2000; Huang et al. 2005; Denys et al. 2006; Liste and
Prutz 2006; Palmroth et al. 2006; Rezek et al. 2008; Gurska

Table 2 Removal of TPH and PAH from contaminated soil (mean values of 3–5 parcels sampling)

Season Initial TPH
(mg kg−1)

Final TPH
(mg kg−1)

Removed TPH
(kg ha−1)

Initial PAH
(μg kg−1)

Final PAH
(μg kg−1)

Removed PAH
(kg ha−1)

Summer 98

Alfalfa 3,308 2,405 2,168 6,329 4,960 3.3

Maize 3,235 2,227 2,419 6,680 4,017 12.0

Red clover 3,414 2,227 2,849 8,687 4,373 10.4

Ryegrass 3,751 3,451 721 8,351 6,655 4.1

Land farming 3,322 2,681 1,538 6,846 6,298 1.3

Winter 98–99

Fescue 3,134 1,144 4,777 6,855 3,960 6.9

Rape 2,403 908 3,588 4,183 1,953 5.4

Rye 3,055 1,208 4,432 5,784 5,037 1.8

Ryegrass 2,687 1,081 3,854 6,258 2,785 8.3

Triticale 4,202 1,930 6,478 6,317 5,794 1.6

Vetch 2,152 765 3,330 5,224 2,916 5.9

Weed 2,440 701 4,173 5,213 1,692 8.5

Land farming 1,716 1,031 1,644 4,428 2,156 5.5

Summer 99

Alfalfa 1,786 861 2,221 3,673 2,273 3.4

Fescue 2,055 826 2,950 3,861 2,408 3.5

Maize 2,932 561 5,692 4,100 1,927 5.2

Red clover 1,564 677 2,127 4,442 2,720 3.7

Sorghum 2,749 486 5,431 5,230 1,829 8.2

Soya 2,952 1,155 4,313 3,432 1,201 7.0

Weed 2,507 472 4,885 3,467 1,703 6.1

Landfarming 1,009 735 104 2,558 1,634 2.2
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et al. 2009; Gaskin and Bentham 2010). In contrast, the
capacity of plant roots to take up PAH from soil appears to
be limited (Gao and Ling 2006; Lin et al. 2007; Gao and
Collins 2009; Xu et al. 2009).

When crop plants were cultivated on contaminated soils,
TPH were degraded more rapidly than under landfarming
conditions, which could be attributed to the positive effects
of plants on rhizospheric micro-organisms and to the
ploughing up of dirtier soils from lower soil layers (Huang
et al. 2004, 2005; Keller et al. 2008). Phytoremediation
treatment, especially in the case of maize and sorghum, was
much more efficient than landfarming and better than
natural attenuation as a facilitator of soil hydrocarbon
degradation. The crop rotation maize/ryegrass was found to
be the most efficient for the removal of petroleum
hydrocarbon from soil (Plata-Chebbah 2000).

The phytoremediation trial began in 1998 and ended in
2004. Afterwards, the soil was clean enough to be
reallocated to agriculture. It thus appears that crop plant
cultivation and rotation combined with appropriate moni-
toring for less than a decade is a successful approach to the
remediation of hydrocarbon-polluted agricultural soils,
even under Alpine conditions.

4 Soil contamination by As, Co, Cr and Pb in an Alpine
territory used for crop cultivation

Heavy metal contamination of soils is a worldwide concern,
since forage plants and/or food crops are often still
cultivated there (Nehnevajova et al. 2005; Quartacci et al.
2006; Kidd et al. 2007; Nehnevajova et al. 2007, 2009;
Comino et al. 2009). When present in soil and water, metals
can accumulate in living organisms, enter in food chain and
affect human health, due to their toxicity. Phytomanage-
ment of metal-contaminated agricultural land is nowadays
an interesting approach to either extract or immobilise
metals (Fitz and Wenzel 2002; Garcia et al. 2005; Remon et
al. 2005; Grispen et al. 2006; Hartley and Lepp 2008;
Hernandez-Allica et al. 2008; Verkleij 2008; Butcher 2009;
Dickinson et al. 2009; Kidd et al. 2009; Marques et al.
2009a; Memon and Schröder 2009; Pedron et al. 2009;
Robinson et al. 2009; Fässler et al. 2010).

A study was initiated because many soils utilised for
agriculture, landfarming, grazing and green areas in Alpine
areas are often contaminated by metal(loid)s, for example,
in Northern Italy (Fig. 5). Many of them can be
accumulated and eventually concentrated in the edible parts
of crops, depending on their speciation, solubility and
bioavailability and by the ability of a crop to take up the
essential and non-essential elements and translocate them to
the target organs (Burgos et al. 2008; Clemente et al. 2008;
Dessureault-Rompre et al. 2008; Almendras et al. 2009;

Quartacci et al. 2009). Metals can be absorbed by plants,
wildlife and people through the food they eat. They can also
be absorbed by drinking contaminated water. Some heavy
metals can also be concentrated (biomagnification) when
predator animals eat prey animals as part of the food chain.

The aim of the experimentation was to study the
accumulation and translocation of arsenic (As), chromium
(Cr), cobalt (Co) and lead (Pb) in plants used as grazing
crops or as cover plants to create public open space and
parkland. The target of this research was double: first to
measure the amount of these elements accumulated in
plants (food/feed safety), then to evaluate the capacity of
plants to remove metals from soil (phytoextraction). From
the results obtained, the risk of food chain contamination
and the potential for soil phytoremediation could be
assessed. Experimentation was done in laboratory by
creating the conditions of a natural site.

The soil was collected at Monteu Roero, a suburban
area, south west of Torino, Piedmont Region, Italy (point A
in Fig. 5). Composite soil sample was collected from the
surface to a depth of 20 cm, air dried, homogenised and
analysed for granulometry. The textural analysis showed
the following composition, 80.8% fine sand and 19.2% grit.
The high level of fine sand indicated that this soil could be
classified as sandy soil. The soil was analysed for basic
chemical–physical properties and for the As, Cr, Co and Pb
concentrations (Table 3).

The soil was spiked with four different concentrations of
metal(oid)s (Table 4), whereas one soil sample did not
receive any metal (control). Concentrations were 1×, 10×,
20× and 50× the Italian standard limit for discharging in
superficial water bodies [Italian Environmental Code Dlgs
152/1999] because in this area, most of the water discharge
is on soil surface.

Since it is always more appropriate to use local species
for phytoremediation than exotic plants (Yoon et al. 2006;
Antosiewicz et al. 2008; Barrutia et al. 2009; Marques et al.
2009b), seeds of plants characteristic of this area were
chosen: Medicago sativa (alfalfa), Trifolium incarnatum
(red clover) and a mix of seeds for forage. Alfalfa has the
capacity to accumulate metal(oid)s above the tolerance
levels of other plants and has the characteristics required by
a plant for the extraction from contaminated water and soil
(Peralta-Videa et al. 2001). Red clover was selected because
of its use as a cover plant to create space/parkland and for
its importance as a grazing crop. The mix for forage is
made up of eight types of seeds: Lolium perenne Livree
26%; Lolium multiflorum L. 15%; Trifolium pratensis 13%;
Glomerata amba 11%; Festuca arundinacea Demeter 11%;
Dactylis phleum Pratense climax 10%; Lotus corniculatus
7%; and Trifolium repens Huia 7%. It was decided to
analyse the capacity to absorb the metals from this
composition because it is an ideal grazing/cover plants
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mix. On the other hand, co-planting has been reported to be
at least as efficient as mono-cropping to remove Cd and Zn
from contaminated soils (Jiang et al. 2010).

Details of the methodology used have been described
elsewhere (Comino et al. 2009). To evaluate the phytoex-
traction potential of plants as well as the risk of food chain

contamination, metal concentration in roots and shoots
were measured; and the bioconcentration factor (BCF, the
ratio of metal concentration in plant roots and in soil) as
well as the translocation factor (TF, the ratio of metal
concentration in plant shoots and in roots) were calculated
(Table 5).

Fig. 5 Polluted area where carried out the idea of the project and where the soil has been collected for the experimental test (Monteu Roero)
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At the end of the study period (6 months), the effect of
metals on plants was visible. In fact, change in colour and a
reduced development of the plant were the first indicators
of the presence of As, Co, Cr and Pb, in agreement with
previous studies concerning the effect of heavy metals on
plants (Cheng 2003). The growth of T. incarnatum was
reduced and the plant developed thick white spots on
leaves; this phenomenon was also observed in M. sativa
and in the mix.

In most cases, the concentrations of As, Cr, Co and Pb
were low in the shoots and higher in the roots. In M. sativa,
a low accumulation of As was observed, but only when
500 μg As L−1 were added, and TF values reached a value
of 1 (Table 5). The concentration of Co in shoots ranged
from 0.06 to 1.68 μg kg−1 DW, depending on the
concentration of spiked Co, with an increased TF value as
a function of added concentration. Chromium concentra-
tions ranged from 0.7 to 1.5 μg kg−1 DW in shoots, and
from 4.6 to 16 μg kg−1 DW in roots, with low TF values
(Table 5). Low TF values were also observed for Pb.

Chromium was the metal that was the most accumulated
by T. incarnatum, reaching values from 1.2 to 7 μg kg−1

DW in shoots and from 3.6 to 10.4 μg kg−1 DW in roots,

with TF values above 1 for CII and CIII (Table 5). In T.
incarnatum, As was more accumulated in shoots
(0.67 μg kg−1 DW) than in roots (0.58 μg kg−1 DW),
when added concentrations were CI or CII, showing TF
values >1 in any case. The accumulation of Pb varied from
0.8 to 2.6 μg mg−1 DW for both shoots and roots, with TF
values from 0.63 to 1.01. Cobalt accumulation varied from
0.27 to 4.16 μg kg−1 DW in shoots and from 1.05 to
3.8 μg kg−1 DW in roots, with TF usually higher than 1
(Table 5).

Plant species present in the mix for forage accumulated
Cr in roots with concentrations up to 106.3 μg kg−1 DW,
but seemed unable to accumulate significantly As, Co and
Pb. In most cases, the translocation to shoots remained low
(Table 5).

Arsenic, Co, Cr and Pb were accumulated mostly in
roots, but the BCF remained very low for alfalfa and red
clover for most concentrations tested, indicating that these
elements did not exceed the respective soil level (Table 5).
For the forage mix, the BCF remained low, except for Co,
but the translocation of this element to shoots was low.

Even if soil concentrations of added As, Co, Cr and Pb
were rather high (CIII, CIV), alfalfa, red clover and the mix for
forage did not accumulate significantly these toxic elements.
However, results need to be confirmed in the field, but all
tested plants should be suitable for forage. This feature is
important when considering the entire food chain from the soil
where these forage crops are grown to animals and humans. In
contrast, these plants did not appear to be suitable for
phytoextraction of these elements, since concentrations in
shoots remained low. This case study highlights that small
scale tests are needed to check if and where pollutants are
accumulated in plants before selecting the most appropriate
species for food chain safety or phytoremediation.

5 Soil pollution by modern agricultural activities
and the role of microbes association to improve soil
quality

Over the last decades, the use of chemical fertilisers including
phosphorus has significantly increased to enhance crops yield.
This fertilisation has also led to the accumulation of inorganic
elements in soils, often causing environmental concerns like
eutrophication of surface water.

Parameter Sampled soil

pH (in water) 7.52

TDS [mg l−1] 171.89

Na [g kg−1] 0.004

K [g kg−1] 0.064

NH4
+ [g kg−1] 0.007

Ca [g kg−1] 0.146

Mg [g kg−1] 0.024

F [g kg−1] 0.001

Cl [g kg−1] 0.391

NO2
− [g kg−1] 0.003

NO3
− [g kg−1] 0.011

PO4
3− [g g−1] 0.002

SO4
2− [g kg−1] 0.013

HCO3
−[g kg−1] 0.575

As [μg kg−1] 0.006

Pb [μg kg−1] 0.026

Co [μg kg−1] 0.013

Cr [μg kg−1] 0.083

Table 3 Main characteristics
of soil (Monteu Roero (CN),
Italy)

Metals CI [μg L−1] CII [μg L−1] CIII [μg L−1] CIV [μg L−1]

As 10 100 200 500

Pb 10 100 200 500

Co 50 500 1,000 2,500

Cr 50 500 1,000 2,500

Table 4 Metal concentrations
added in Rorison"s solution to
irrigate soil (CI=Italian standard
limit for discharging in superfi-
cial water bodies [Dlgs 152/
1999]
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Due to the low phosphate (P) uptake by crops, farmers
have repeatedly applied P to realise high crop yields
regardless of the large amounts already present in soils. In
some Western European countries, accumulation exceeds
4 kg Pha−1 y−1, but this value swells up to 16 kg Pha−1 y−1,
when P applied as animal manure is also considered. Global
supply of economically exploitable P present in rock,
required for the manufacturing of fertilisers is limited and
a non-renewable resource, future agricultural strategies
should focus on maximising P use efficiency with mini-
mum adverse environmental impact (Frossard et al. 2000).
Values of extractable (by ammonium lactate) P accumula-
tion as high as 400 to 700 mg kg−1 soil have been reported
(Singh et al. 2005), while fertile soils usually contain about
100 mg Pkg−1. Many farmers have built up P reserves in
their soils and if mobilised, it would be sufficient for
growing crops for decades without applying more P.
Therefore, continued application of P fertiliser to soils
already enriched with P is unsustainable and an economic
waste. Evidently, there is a need to improve management of
nutrients, particularly to enhance accessibility of the
accumulated P by crops, leading to reduction of inputs,
which will subsequently mitigate pollution of the environ-
ment. While P application is declining, concern is focused
on P remaining in cultivated soils. Phosphorus not utilised
by crops is either leached into groundwater or transported
to surface water bodies by surface runoff. Mobilisation and
transportation of nutrients from terrestrial systems to
groundwater, rivers, lakes and marine environments causes
deteriorating water quality and eutrophication. In all
countries of Northern Europe, including Alpine areas,

agriculture is estimated to be responsible for the greatest
contribution of P to waters. Rahm and Danielsson (2007)
have suggested that the only significant potential way to
reduce the P load rests on reduction of diffuse (nonpoint
source) emissions from agricultural land. Since P in soil is
involved in both biological and chemical processes, losses
from soils vary considerably over time and between fields.
Furthermore, the complexity of these processes and their
interactions make P even more difficult to control than N.
Not only are efficient countermeasures and adequate
strategies to drastically reduce P loss from agricultural soils
still lacking, but the knowledge basis needed to implement
appropriate measures is also rather limited.

Over the last 20 years, the use of plant growth-
promoting rhizosphere micro-organisms for sustainable
agriculture has tremendously increased in various parts of
the world and especially in the EU (Khalid et al. 2004).
Soil-born micro-organisms such as bacteria and mycorrhi-
zae fungi, mostly those associated with plants rhizosphere,
are able to exert a beneficial effect upon plant growth.
Therefore, their use as control agent for agriculture and
environment improvement has been a focus of research for
some years (Glick 1995; Khalvati et al. 2005; Cozzolino et
al. 2010). Higher concentrations of P-solubilising micro-
organisms have been found in the rhizosphere in compar-
ison with bulk soil, which can be of interest for biogeo-
chemistry and the maintenance of soil health and quality
(Jeffries et al. 2003). Phosphate uptake by plants and
subsequent growth promotion in plant–soil systems inocu-
lated with P-solubilising micro-organisms are more pro-
nounced when co-inoculated with arbuscular mycorrhizal

BCF TF

Alfalfa As Co Cr Pb Alfalfa As Co Cr Pb

Control 0.04 0.06 0.08 0.04 Control 1.00 0.07 0.08 0.15

CI 0.04 0.13 0.08 0.04 CI 1.00 0.06 0.14 0.36

CII 0.04 0.13 0.07 0.02 CII 1.00 0.24 0.15 0.43

CIII 0.03 0.17 0.08 0.03 CIII 1.00 0.49 0.29 0.36

CIV 0.14 0.30 0.31 0.12 CIV 0.35 0.80 0.04 0.17

Red clover As Co Cr Pb Red clover As Co Cr Pb

Control 0.03 0.01 0.02 0.01 Control 1.38 1.63 0.83 7.50

CI 0.04 0.10 0.07 0.04 CI 1.00 0.26 0.35 1.01

CII 0.03 0.12 0.07 0.06 CII 1.26 2.07 1.11 0.78

CIII 0.05 0.14 0.10 0.05 CIII 1.51 1.37 1.11 0.63

CIV 0.07 0.19 0.14 0.06 CIV 1.12 1.11 0.12 1.01

Forage mix As Co Cr Pb Forage mix As Co Cr Pb

Control 0.04 0.22 0.36 0.01 Control 1.00 0.39 0.11 3.30

CI 0.06 1.70 0.30 0.07 CI 0.44 0.14 0.13 0.20

CII 0.16 0.52 0.58 0.16 CII 0.25 0.30 0.31 0.65

CIII 0.21 4.44 0.83 0.16 CIII 0.47 0.66 0.25 0.94

CIV 0.31 2.38 1.45 0.29 CIV 0.43 0.41 0.23 1.07

Table 5 Bioconcentration fac-
tor (BCF) and translocation fac-
tor (TF) calculated for As, Co,
Cr, Pb, [BCF=metal concentra-
tion ratio of plant roots to soil],
[TF=metal concentration ratio
of plant shoots to roots]

852 Environ Sci Pollut Res (2011) 18:842–856



fungi (AMF). AMF are capable of sparingly mobilising
soluble inorganic phosphate by the excretion of H+ after the
utilisation of ammonium ion by the hyphae (Yeo et al.
2001). Mycorrhizal roots can use sources of P in soil that
are not available to non-mycorrhizal roots. The main
contribution of AMF to the host plant is to reach and
deliver P through their extracortical and extraradical hyphae
(Fig. 6), penetrating as much as 5 to 9 cm into the soil
(Khalvati 2005). This involves increased rates of solubili-
sation of inorganic P or hydrolysis of organic P and
depends on localised alteration of pH, production of
organic anions and of surface or soluble phosphatases.
Consequently, it has been possible to calculate that the
fungi contribute to about 70–80% of the P absorbed by
mycorrhizal roots (Li et al. 1991; Tisserant et al. 1993).

In addition to AMF-mediated acquisition, P can also be
very efficiently released by bacteria belonging to the genera
Rhizobium, Pseudomonas and spore-forming Bacillus
(Rodriguez and Fraga 1999). Such P-solubilising effects
have been observed with Sinorhizobium and Rhizobium
spp. for the benefit of leguminous plants (Khattak et al.
1991; Halder and Chakrabarty 1993) and for inoculation of
soybean with Pseudomonas (Brockwell and Bottomley
1995; Gaind and Gaur 2002). However, there is some
circumstantial evidence that development of activity is
linked to the presence of arbuscules and transfer of P to the
plant. Among the beneficial microbes the multiple inter-
actions between bacteria and fungi may cause a further
synergistic effect on the plant growth and fitness, as it has

been demonstrated with combined Azospirillum, Rhizobium
and mycorrhizal co-inoculation by Biro et al. (2000).

Mycorrhizae can also reduce the contact of plants with
heavy metals and at the same time stimulate their growth.
However, most experiments do not consider rhizosphere
processes, e.g., the role of mycorrhizae. For example,
glomalin-related soil protein (GRSP), a glycoprotein pro-
duced by AMF, contributes to the sequestering of Cu and Zn
in the soil, and the microsite variation of other soil traits (pH,
water-stable aggregates, soil organic carbon) affects the heavy
metal sequestration byGRSP in polluted soils. The GRSP–Cu
complex can be a substantial pool in the soil and can represent
one of the main forms of immobilised Cu, contributing to the
chemical stabilisation of contaminated soils through the
deposition of enriched Cu particles. The accumulation of high
quantities of GRSP may also contribute to the formation of
soil aggregates, even under extreme conditions of acidity and
heavy metals availability (Cornejo et al. 2008).

Mycorrhizal fungi do also influence the accumulation of
heavy metals by plants (Vivas et al. 2006; Azcón et al. 2009;
Pongrac et al. 2009). Plant-associated rhizospheric micro-
organisms thus play a major role in different biogeochemical
processes and in the control of elements solubilisation,
bioavailability and phytoextraction (Perriguey et al. 2008;
Turnau et al. 2008; Becerra-Castro et al. 2009; Luster et al.
2009; Martinez-Alcala et al. 2009; Wenzel 2009).

At the present time, however, their study and utilisation
under real field conditions in Alpine areas are scarce and
should be developed, especially in regions impacted by
human activities. In the future, such an approach would help
improving the quality of Alpine soils containing too much
phosphate or toxic metals and cultivating healthy plants for
both phytoremediation and food chain safety purposes.

6 Conclusions, recommendations and perspectives

Worlwide, including Alpine areas, the controlled use of
appropriate plants is destined to play a major role for
remediation and restoration of polluted and degraded
ecosystems, monitoring and assessment of environmental
quality, prevention of landscape degradation and improve-
ment of food quality. The different case studies and
approaches mentioned above are promising enough to offer
efficient and environment friendly tools to clean up
contaminated soils, brownfields and wastewater in the very
specific environment and climate of the Alps.

However, each of these goals requires a sound under-
standing of how plants specifically accumulate or exclude
essential elements, toxic metals, phosphate and organic
pollutants. Basic knowledge is thus required on the
concentration and toxicity of trace elements and xenobiotics
in the environment, their bioavailability in the rhizosphere,

Fig. 6 Roots of barley (Hordeum vulgaris L. cv. Scarlett) inoculated
(a) or not (b) with arbuscular mycorrhizal fungi (Glomus intra-
radices), as viewed under microscope (×100 magnification). For
details of experimentation, see (Khalvati et al. 2005)
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their uptake by roots and translocation to shoot, their
detoxification, metabolism and storage. For such a purpose,
significant efforts have been carried out over the last decade
in different mountainous countries.

One of the most important challenges is now to use basic
scientific knowledge to improve the efficiency of phytotech-
nologies in the field. The dissemination of results, risk
assessment, public awareness and acceptance of this green
technology, as well as the promotion of networking between
scientists, environmental engineers, industrials, stakeholders,
end-users, non-governmental organisations and local author-
ities are major issues that must be tackled to ensure that
phytoremediation programmes are correctly and successfully
implemented, more precisely under Alpine conditions. It is
clear that phytotechnologies do offer promising and sustain-
able approaches towards environmental remediation, human
health and a sustainable development for the 21st century, in
Alpine areas and elsewhere all over the world.
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