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Abstract
As obligate scavengers, vultures are important to ecosystem health but their numbers are declining globally. A major cause 
may be habitat loss due to anthropogenic or natural factors. Four threatened and endangered non-Gyps vultures (Bearded, 
Cinereous, Egyptian, Red-headed) found in many other countries also inhabit diverse floristic landscapes of India. This study 
aimed to determine present habitat expanse and the projected changes in habitat in future, identify vital habitat influencing 
factors, and suggest conservation strategies. Species Distribution Model Maxent, presence locations and bioclimate data 
for the present, and short- and long-term future were used and predictions were made for these four species. To increase the 
accuracy, uncertainties were removed, ensemble models were created using three GCMs and data for two RCPs (RCP4.5, 
RCP8.5) across two future tenures. All the models had strong predictability (AUC: 0.759–0.966, TSS: 0.445–0.866, and 
CBI: 0.986–1.000). With respect to habitat suitability across the landscapes, in the present-day scenario, 5%, 10%, 18% and 
48% of the area were found suitable for Bearded, Cinereous, Red-headed, and Egyptian vultures, respectively, against 3.28 
million  km2. This expanse fluctuated due to the changing climate in future scenarios, considerably large patches undergoing 
either loss or gain in suitability. The three most vital bioclimatic variables for habitat prediction were bio19 (Precipitation 
of coldest quarter), bio01 (Mean annual temperature), and bio07 (Temperature annual range). The data generated could be 
useful in developing conservation strategies. Consistently suitable area could be used for establishing vulture protection area 
and vulnerable areas for habitat improvement.

Keywords Climate impact · Dynamic habitats · Future scenarios · MaxEnt modeling · Model drivers · Non-Gyps 
conservation

Introduction

India is one of the tropical countries where scavenging is 
mostly done by vultures. The vultures that inhabit India and 
found in other countries can be categorized as non-Gyps 
and Gyps vultures on account of their behavior and taxon-
omy. The former is comparatively less social and has the 
advantage of lower risk of poisoning at carcass but a minor 
disadvantage of late information about carcass presence. 
Therefore, the management requirement of these two groups 
differs from each other (Campbell 2015). However, out of 
four monotypic non-Gyps species found in this country, 

three (Gypaetus barbatus Linnaeus 1758, Bearded Vul-
ture = BRV; Neophron percnopterus Linnaeus 1758, Egyp-
tian Vulture = EGV; Sarcogyps calvus Scopoli 1786, Red-
headed Vulture = RHV) are residents while one (Aegypius 
monachus Linnaeus 1766, Cinereous vulture = CNV) is win-
tering (MoEFCC 2020). Two (BRV and CNV) have Nearly 
Threatened status of conservation while, EGV is Endangered 
and RHV is Critically Endangered (IUCN 2021). Cuthbert 
et al. (2006) reported an 80% decline in EGV and 91% in 
RHV during 1991–2003 survey and Acharya et al. (2010) 
recorded 73–80% decrease in BRV during 2002–2008 sur-
vey in India and neighboring countries. Moreover, popula-
tion of all these vultures is decreasing globally and their 
population trend has been marked as declining. The esti-
mated lowest global number of these non-Gyps vultures is 
around 33,000 to 75,000 only (IUCN 2021). Further lower-
ing of such a small number is a serious cause of concern 
resulting in the loss of an important group of obligatory 
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scavengers. This would in turn affect ecosystem services and 
balance through ecological processes which control energy 
flow in ecosystems (Almaraz et al. 2022).

India is a huge country which could be subdivided into 
smaller landscapes as floristic regions. These landscapes 
have varied phytogeographical features in altitude, tem-
perature and precipitation ranges, and vegetation structure 
(Sharma 2005). Vegetated landscapes like temperate conif-
erous forests, tropical and subtropical broadleaved forests, 
subtropical scrublands, and agroforests support population 
of many vulture species (Chhangani 2007; Ramesh et al. 
2011; Thakur and Narang 2012; Jha et al. 2022) indicating 
their suitability. Vulture populations have declined in recent 
decades (Prakash et al. 2017) for which several hypotheses 
have been proposed. Apart from poisoning and persecution 
(Ogada et al. 2011; Ilanloo et al. 2020), a major concern in 
India has been shelter destruction along with food shortage 
and poor breeding success (Chhangani and Mohnot 2004). 
Habitat loss and climate change may cause species extinc-
tion along with change in habitat distribution and redistri-
bution of species (Ilanloo et al. 2020; Thapa et al. 2021). 
Bertrand et al. (2011) and Kupika et al. (2018) further elabo-
rated that climate parameters, such as humidity, precipita-
tion, and temperature, have significant effects on quantity 
and quality of the habitat and spatial distribution of animal 
species. Vulture species distribution is also dependent on 
physical features of habitat, such as vegetation cover, cliff, 
and water presence (Herrero et al. 2006; Bosch et al. 2014; 
Jha and Jha 2021). At the same time, climatic factors like 
the rainfall patterns influence the success of vulture breed-
ing (Bridgeford and Bridgeford 2003; Virani et al. 2012) 
and temperature change also governs the reproduction of 
vultures, directly causing stress (Chaudhry 2007 and Schultz 
2007 in Phipps et al. 2017, Bamford et al. 2009, Midgley 
and Bond 2015).

The threat to vulture population and the reasons for their 
further decline warrant conservation management for which 
knowledge of habitat suitability, habitat controlling factors, 
and changes in suitability status in future is a precondition. 
Such information could be collected using species distribu-
tion modeling (Angelieri et al. 2016). Numerous algorithms 
are available for species distribution modeling (Li and Wang 
2013; Jha et al. 2022), but MaxEnt has gained a significant 
advantage because it uses both continuous and categori-
cal, and presence data as input variables (Eastmann 2016; 
Morales et al. 2017). MaxEnt is popular in data and resource 
scarce regions especially in developing countries (Banag 
et al. 2015; Kaky et al. 2020). Some of the other advan-
tages of this algorithm are better performance than many 
other models (Elith et al. 2006; Banag et al. 2015), ease of 
use, and functionality (Morales et al. 2017; Mohammadi 
et al. 2019), requires presence only data and small sample 
size especially for the prediction of distribution for rare and 

threatened species (Wisz et al. 2008; Kumar and Stohlgren 
2009), creates a spatially explicit map for habitat suitability, 
measures importance of each environmental variable (Elith 
et al. 2011; Groff et al. 2014), and can project habitat losses 
and gains in future under climate change (Phillips et al. 
2006; Elith et al. 2011).

Keeping the requirements of vulture conservation in view, 
the present study used MaxEnt and aimed at (1) determining 
habitat suitability types and expanse in the varied floris-
tic landscapes of India, (2) identifying habitat determining 
major environmental factors, (3) assessing the changes in 
suitable habitats in near and distant future, and (4) suggest-
ing some conservation measures.

Materials and methods

Study area and landscapes

This study covers the whole of India spread over a geograph-
ical area of 3.28 million  km2 encompassing hills, plateau, 
and plains interspersed with forests, water bodies, scrubland, 
agriculture, built-up areas, and wasteland. Non-Gyps vul-
tures are known to utilize such areas for nesting and foraging 
(Ramesh et al. 2011; Prakash et al. 2017; Jha et al. 2020). 
The ranges of environmental features of the country are: 
elevation (− 1 to 8583 m), mean annual temperature (− 33.8 
to 30.0 °C), and mean annual precipitation (33–9312 mm) 
(Fick and Hijmans 2017; USGS EROS 2018).

After modeling the habitat, the whole study area was 
divided into nine smaller units based on unique vegetation 
structure known as floristic landscapes (FLs or floristic 
region, sensu Sharma 2005). This has been done for simpli-
fied and vulture biology-based interpretation of results since, 
different types of forests are known to play their role in vul-
ture habitation and foraging, and ease of conservation strat-
egy implementation (Jha et al. 2020). However, these land-
scapes are dispersed in temperate mountains, subtropical 
plains and plateau, and tropical Indian Ocean. All the study 
area-related features and vulture locations are presented in 
Fig. 1, Supplementary Table 1, and Supplementary Fig. 1.

Data collection and processing

Occurrence data of non-Gyps vultures were collected 
from field surveys in Uttar Pradesh, Madhya Pradesh, and 
Rajasthan, published literature (Supplementary Table 2), and 
citizen science repositories, namely eBird (http:// www. ebird. 
org Sullivan et al. 2009) and iNaturalist (http:// www. inatu 
ralist. org iNaturalist users & Ueda 2020). Cleaning of occur-
rence data was carried out by removing duplicates. This was 
further subjected to spatial filtering (at 4 km) to improve the 
performance of models by reducing sampling bias (Brown 

http://www.ebird.org
http://www.ebird.org
http://www.inaturalist.org
http://www.inaturalist.org
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et al. 2017). The finally reduced occurrence locations (473 
BRV, 319 CNV, 2261 EGV and 555 RHV from 2585 BRV, 
1991 CNV, 15,580 EGV, and 3598 RHV, respectively) were 
the model input.

The bioclimatic variables for the present (1970–2000) 
and future (2041–2060 represented by the year 2050 and 
2061–2080 represented by the year 2070) were downloaded 
at 30 arc second resolution from https:// www. world clim. org/ 
(Fick and Hijmans 2017). The categorical land-use land-
cover (LULC) was sourced from Copernicus Global Land 
Service at 100 m resolution (Buchhorn et al. 2020). LULC 
available in 23 classes was reclassified into six broad cat-
egories (Forest, Water, Scrubland, Agriculture, Built-up, 

and Wasteland). Elevation SRTM 1 Arc second global 
data were downloaded from https:// earth expol er. usgs. gov/ 
(USGS EROS 2018). Since the data varied in spatial resolu-
tion and projection, they were resampled at 30 arc second 
spatial resolution and WGS 1984 projection. Bioclimatic and 
bioenvironmental variables used in this study are compiled 
in Supplementary Table 3. Collinearity effects among such 
variables were reduced by subjecting them to Pearson’s cor-
relation test with the coefficient set at ± 0.8 (SDM toolbox, 
Brown et al. 2017). To improve the performance of models 
further, a bias file was used (Cao et al. 2016; Baloch et al. 
2020) to minimize overfitting and avoid sampling habitat 
outside of a species’ known occurrence and account for 

Fig. 1  Maps showing location, physiographic and landscapes details of the study area, India. Top row: geographic position of India in the world. 
Bottom row: land use/land cover and floristic landscape delineation (color figure online)

https://www.worldclim.org/
https://earthexpoler.usgs.gov/


22 Landscape and Ecological Engineering (2024) 20:19–31

1 3

collection sampling biases with coordinate data. The bias 
file also ensured selection of non-appearance points (back-
ground points) by limiting it to feasible areas of dispersal 
through “Background Selection: Sample by Buffered MCP” 
tool (Brown et al. 2017, SDM tool box).

Species distribution and climate models

MaxEnt 3.4.1 was used to make the present and future pre-
dictions from processed data. The random test percentage 
was set at 25 for training each model. The algorithm run 
type set at Bootstrap was run using 10 replicates (Dong et al. 
2019; Mori et al. 2020) in 500 iterations, with a convergence 
threshold of 0.00001 and 10,000 maximum background 
points. For the present, eight models (four each species 
with and without LULC) were developed. Forty-eight future 
predictions using GCMs (CCSM4, HadGEM2A, MIROC5 
for RCP4.5, RCP8.5 of four species and two terms) were 
averaged and total 16 predictions were made. Averaging 
was done using Raster Calculator tool of ArcGIS 10.5. To 
assess the strength of the models, three model evaluators 
Area Under receiver operator characteristic Curve (AUC), 
True skill statistics (TSS), and continuous Boyce index 
(CBI) were used in this study. Stacked Species Distribu-
tion Modeling (Schmitt et al. 2017) and modEvA (Barbosa 
et al. 2013) packages in R and were used for TSS and CBI, 
respectively.

Habitat classification and vital variable 
identification

Whole Indian landscape (3,287,263  km2) was categorized 
into different suitability classes and analyzed floristic 
region-wise. For this, the heatmaps obtained from MaxEnt 
modeling indexed between 0 and 1 were reclassified in to 
three suitability classes as per ranges 0–0.3 as Unsuitable, 
0.3–0.6 as Moderate, and 0.6–1.0 as High for this study. This 
was guided by Zhang et al. (2019a)’s classification for vul-
ture and other raptors with modifications since the current 
study area was too large and a coarse classification was con-
sidered good enough. For studying future habitat dynamics, 
the heatmaps reclassification was done as unsuitable (0–0.3) 
and suitable (0.3–1.0) only. This was used to calculate stable 
and unstable areas (areas undergoing habitat loss and gain) 
in future scenarios. In order to assess loss and gain in suit-
able area, future climatic predictions were compared with 
present climatic projection using Raster Calculator. This 
revealed area category change (suitable to unsuitable and 
vice versa) and indicated area dynamics. To further under-
stand the habitats of vultures in different landscapes, floristic 
landscape and species-wise area calculation was done.

Some of the non-collinear variables which contributed the 
most (generally between three to five dominant ones; Zhang 

et al. 2019b; Anoop et al. 2020; Gao et al. 2021) in habitat 
determination were considered vital variables (sensu Zhang 
et al. 2020). These vital variables and their percentage con-
tribution were obtained from MaxEnt generated ‘variable 
contribution table’.

Results

Models and performance

Altogether 56 predictions based on 10 non-collinear vari-
ables (bio01, bio02, bio03, bio07, bio12, bio14, bio15, 
bio18, bio19, and LULC) were developed for identification 
of dominant variables and habitat prediction. Species-wise 
four models each with and without LULC were generated for 
the present scenario. Apart from this, two short- and long-
term future predictions of medium (RCP4.5) and extreme 
(RCP 8.5) emission pathways were also built. All these 
future models were without LULC. Values of AUC of the 
models for the present ranged between 0.763 and 0.964. Val-
ues for other model evaluators TSS and CBI ranged between 
0.445 and 0.866, and 0.986 and 1.000, respectively (Sup-
plementary Tables 4 and 5).

Vital habitat variables

The covariates contributed in varied proportions in model 
predictions in different species. However, the cumulative 
average contribution of the top three covariates was 66% 
(range 52–89%) and for the top five covariates was 84% 
(range 73–93%) in the case of present projection with LULC. 
Without LULC, it differed marginally, 69% and 83%, respec-
tively in the sets of three and five covariates. Considering 
all the species together, the top five rankers or dominant 
variables (based on modified Likert ranking method; Bhat-
tacherjee 2012) in decreasing order in models without LULC 
were bio19, bio01, bio07, bio15, and bio14, while in models 
with LULC, they were bio19, LULC, bio15, bio1, and bio07. 
Species-wise, most important covariates for BRV and EGV 
were bio01 and for CNV and RHV was bio19 in the case of 
models without LULC. In models with LULC, this changed 
to bio01 (BRV), bio19 (CNV), and bio15 (EGV and RHV). 
The jackknife charts of training gain (Supplementary Fig. 2) 
were broadly similar in the ranking (importance) of variables 
in relation to variable contribution table. Within the LULC, 
built-up and water were very important but agriculture the 
least important components (Supplementary Fig. 3). Sup-
plementary Figs. 4 and 5 depict the relationship between 
vital climatic factors of habitats of non-Gyps species and 
probability of vulture occurrence (i.e., a particular range of 
temperature and precipitation affecting habitat suitability 
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positively or negatively). Bearded Vulture showed different 
trends than other three vultures.

Floristic landscape suitability

Suitable non-Gyps habitat was found in all the FLs in present 
projection (except Andaman and Nicobar and other Islands 
which was ignored due to non-reporting of vultures from this 
landscape). The habitat of resident non-Gyps vultures (BRV, 
EGV, and RHV) was spread broadly all over the country 
from the northernmost Western Himalaya landscape to the 
southernmost Malabar landscape, but the wintering vulture 
(CNV) habitat was mainly confined to Western Himalaya 
landscape, West Indian Plain landscape, Central India land-
scape, Malabar landscape and Eastern Himalaya landscape. 
However, BRV habitat was restricted to Western Himalaya 
landscape only while EGV habitat was spread everywhere 
except Eastern Himalaya landscape and Assam landscape. 
RHV habitat was scattered in all the landscapes (Fig. 2 and 
Supplementary Figs. 6–10). The future scenarios of suitable 
habitat presence of these vultures in different landscapes 
were similar to the present, but the expanse got changed.

Suitable habitats

It was a general trend that in all the species, unsuitable area 
was much larger than suitable area in both the predictions 
of the present (with and without LULC). Within the suit-
able habitats, moderately suitable area was much larger than 
highly suitable area in all the cases (Table 1). However, suit-
able habitat area under present prediction (without LULC) in 
decreasing order was 47.92%, 18.04%, 10.35%, and 5.10% 
out of 3.28 million  km2 for EGV, RHV, CNV, and BRV, 
respectively. The corresponding figures for the prediction 
with LULC were 42.86%, 13.60%, 8.63%, and 5.01, respec-
tively, showing a decrease in area.

Suitable habitats of the near and far future predicted on 
the basis of variables without LULC using the two RCPs 
(4.5 and 8.5), compared with present (without LULC) pre-
diction indicated change in area of suitable habitats. BRV 
and CNV showed mixed trends in the change in area expanse 
over the two terms. RHV showed increasing trend (excep-
tion 2050-RCP8.5), but EGV showed area decrease in all 
scenarios.

Bearded Vulture showed the most specific preference for 
suitable habitats present mainly in Western Himalaya land-
scape. It has minor potential in Eastern Himalaya and Mala-
bar (14–35  km2) but completely absent in other landscapes. 
RHV and EGV recorded the presence of suitable habitat 
in all the landscapes, but in general, the former had lesser 
suitable area than the latter. CNV, the migratory species, 
also appeared in all the FLs with much lesser occupancy as 
compared to RHV and EGV (Supplementary Table 6 and 7).

Habitat dynamics

The habitat of all non-Gyps species (BRV, CNV, EGV, and 
RHV) showed change in area and locality in future sce-
narios as compared to the present without LULC (Table 2 
and Fig. 3, Supplementary Figs. 11–14). In all the four spe-
cies, parts of the present habitat were predicted to undergo 
change in terms of gain or loss in area. Suitable habitats 
are projected to lose area and become unsuitable while also 
gaining some areas from the unsuitable landscape. There-
fore, net loss or net gain is the first indicator of the impact of 
changing climate. There was a clear-cut trend of net loss in 
the case of EGV and BRV, but the latter had an exception in 
scenario 2070-RCP4.5. The case of RHV was reverse, where 
there was a clear trend of gain similar to CNV, the latter 
having an exception in scenario 2070-RCP4.5. However, in 
rounded numerical terms, EGV showed net loss between 1 
and 3% (between 11,469 and 40,327  km2) and RHV showed 
net gain between 2 and 6% (between 10,690 and 32,327  km2) 
across the scenarios. BRV showed net loss between 1 and 5% 
(between 1375 and 7928  km2) except net gain of 1% (1884 
 km2) in 2070-RCP4.5 scenario and CNV showed net gain 
between 5 and 11% (between 16,143 and 34,675  km2) except 
net loss of 11% (32,973  km2) in 2070-RCP4.5 scenario.

Discussion

Model robustness

AUC is widely used for assessing the accuracy of models 
but some researchers pointed out its inadequacy (Lobo 
et al. 2008) and suggested use of TSS and CBI (Allouche 
et al. 2006; Hirzel et al. 2006). Model evaluator values, 
respectively, for these indicators, above 0.7 (Swets 1988), 
0.4 (Allouche et  al. 2006), and 0.7 (Hirzel et  al. 2006) 
are acceptable. Therefore, our predictions with AUC 
(0.763–0.964), TSS (0.445–0.866), and CBI (0.986–1.000) 
values are acceptable and good for conservation planning 
(Hosmer and Lemeshow 2004; Zeng et al. 2015).

Vital model predictors

The current habitat characterization of non-Gyps vultures 
in our study was governed by precipitation (bio19 and 
bio15), LULC, and temperature (bio1 and bio07), the top 
five vital contributors. This is in general agreement with 
earlier studies on raptors and scavengers (Phipps et al. 
2017; Zhang et al. 2019a) that the bioclimatic variables 
influence habitat determination. As also noted in other 
studies that precipitation (Virani et al. 2012), vegetation 
and landscape (Hernandez-Baz et al. 2016; Cable et al. 
2021), and temperature (Chaudhry 2007, Corovic et al. 
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2018) regulate the species distribution. However, species-
wise variation in the most influential covariates of models 
without and with LULC in the present study indicated that 
habitat suitability was not a function of any single varia-
ble, rather it was a product of interaction among numerous 
covariates in different quantities (Jha and Jha 2021). This 
can further be substantiated from responses of bioclimatic 
factors to vulture’s occurrence probability (Supplementary 
Figs. 4 and 5). For example, precipitation of the coldest 

quarter (bio19), > 100 mm had a positive effect on BRV, 
almost no effect on CNV but a negative effect on EGV 
and RHV. Similarly, annual mean temperature (bio1) ini-
tially had the positive effect from 18 to 25 °C, depending 
on the species. Overall, similarity in responses between 
EGV and RHV could be explained by their habit of being 
resident species of warmer plains. Marginal differences of 
CNV from these two may be due to its residency in colder 
climates but spending warmer winters in the foothills and 

Fig. 2  Current habitat distribution of non-Gyps vultures projected without LULC i.e., with only climatic variables (color figure online)
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plains. BRV showing an entirely different response may 
be assigned to its residency in colder climates of higher 
altitude.

The LULC components also varied with the non-Gyps 
species studied, but order of preference was contrasted with 
Jha and Jha (2020) where forest and waterbody were the top 
contributors instead of built-up area. Only similarity in these 
two studies was the least importance of agriculture fields. 
However, study of Jha and Jha (2021) supported the present 

findings—built-up the most influential landcover covariate 
of the habitat.

Habitat suitability and landscapes

Present models predicted varied habitat expanse between 
with LULC and without LULC (Fig. 2 and Supplementary 
Fig. 6; and Table 1). The former had a lower amount of suit-
able area than the latter which could be attributed to the fact 

Table 1  Habitat suitability area  (km2) of different non-Gyps vultures for varied projections across the study area

Future models are all without LULC

Species Suitability class Present 2050 2070

With LULC Without LULC RCP4.5 RCP8.5 RCP4.5 RCP8.5

Bearded vulture Unsuitable 3,122,716 3,119,698 3,127,626 3,121,073 3,117,814 3,125,473
Moderate 142,547 141,883 131,824 143,491 142,450 134,442
High 21,999 25,683 27,813 22,699 26,999 27,349

Cinereous vulture Unsuitable 3,003,606 2,946,959 2,912,283 2,930,816 2,979,932 2,947,613
Moderate 199,937 250,003 283,817 270,409 219,093 255,112
High 83,720 90,301 91,163 86,038 88,239 84,537

Egyptian vulture Unsuitable 1,878,391 1,711,956 1,734,506 1,746,280 1,752,283 1,723,425
Moderate 1,260,662 1,356,378 1,327,254 1,316,491 1,317,637 1,336,473
High 148,209 218,929 225,503 224,492 217,344 227,365

Red-headed vulture Unsuitable 2,840,356 2,694,255 2,674,532 2,721,032 2,683,566 2,664,436
Moderate 346,597 492,479 513,926 471,469 504,409 520,850
High 100,310 100,529 98,805 94,762 99,289 101,976

Study area Total 3,287,263 3,287,263 3,287,263 3,287,263 3,287,263 3,287,263

Table 2  Area change  (km2) in 
future in different non-Gyps 
species and scenarios

The unsuitable and suitable areas in future scenarios are the stable areas which remain unchanged

Vulture species Area category Present 
(without 
LULC)

2050 2070

RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5

Bearded Vulture Unsuitable 3,119,698 3,116,403 3,114,511 3,113,234 3,115,216
Gain 0 3294 5187 6464 4482
Loss 0 11,222 6562 4579 10,257
Suitable 167,565 156,343 161,003 162,986 157,309

Cinereous Vulture Unsuitable 2,946,959 2,895,819 2,908,179 2,932,292 2,895,872
Gain 0 51,140 38,780 14,667 51,087
Loss 0 16,465 22,637 47,640 22,828
Suitable 340,304 323,840 317,667 292,664 317,476

Egyptian Vulture Unsuitable 1,711,956 1,675,528 1,682,216 1,679,228 1,677,887
Gain 0 36,427 29,739 32,728 34,069
Loss 0 58,978 42,043 73,054 45,537
Suitable 1,575,307 1,516,330 1,533,264 1,502,253 1,529,770

Red-headed Vulture Unsuitable 2,694,255 2,638,293 2,635,862 2,642,433 2,640,582
Gain 0 55,963 58,394 51,822 53,673
Loss 0 36,239 26,067 41,133 23,854
Suitable 593,008 556,768 566,941 551,875 569,153

Study area Total 3,287,263 3,287,263 3,287,263 3,287,263 3,287,263
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that the climatic umbrella is mostly larger than the environ-
mental one due to the specific requirement of a niche e.g., 
trees/cliffs, water, ungulate/cattle concentration, etc. (Jha 
and Jha 2021). This implied that the actual suitable habitat 
area was an overestimation in the case of without LULC or 
climate-only models. It was assumed that such overestima-
tion would also be in the cases of all the future models which 
are climate-only in nature. Nevertheless, this limitation finds 

corroboration in Preston et al. (2008)’s argument that ‘this 
was the general case with most distribution models predict-
ing species responses to climate change which included cli-
mate variables and rarely the biotic interactions’. It must be 
noted that LULC has important role in habitat determina-
tion. Therefore, it should not be ignored. It can neither be 
assumed as a constant in future models since LULC (tree 
cover) is changing every year in floristic landscapes (ISFR 

Fig. 3  Habitat suitability dynamics of non-Gyps vultures. Note the gain (green polygon) in suitable area from unsuitable habitat and the loss (red 
polygon) of suitable area from suitable habitat. Unsuitable (yellow) and suitable (blue) area are unchanged area (color figure online)
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2021). Further, it is predicted to undergo changes itself due 
to climate crisis (Ravindranath et al. 2006).

Out of the four non-Gyps species, EGV had maximum 
suitable area followed by RHV, CNV and BRV in decreas-
ing order. Similarly, their spread in different landscapes also 
indicated toward higher to lower number of landscapes cov-
erage (Table 1 and Supplementary Table 6, and Fig. 2 and 
Supplementary Fig. 6). This indicated their habitat prefer-
ence and area availability in the country. For example, BRV 
is a high-altitude bird (Subedi et al. 2018); therefore, they 
were largely confined in a limited area in Western Himalaya 
landscape. In contrast, RHV, a low-altitude species, requir-
ing tall trees for nesting (Sinha et al. 2017) was spread in all 
the landscapes. The EGV, primarily a low-altitude and cliff-
nesting species with high plasticity in adaptation, are known 
to invade urban area for food (Bahadur et al. 2019) along 
with nesting on tall structures like overhead water tank, tall 
buildings (Kumar et al. 2020). These features gave them the 
opportunity to spread in all most all the landscapes (excep-
tion Assam) with much larger area as compared to RHV. The 
CNV, being a migratory species only spent winters in north-
ern and western India and required only roosting areas. A 
common assumption for all the four species is that there was 
sufficient availability of food in the vulture inhabiting area.

Habitat dynamics and climate impact

Ilanloo et al. (2020) identified climate change as a major 
factor for changes in habitat distribution within the short 
span of a few decades. Similar to this, in our findings, in 
comparison to current climatic scenario, all the four cases 
of future (2050-RCP4.5, 2050-RCP8.5, 2070-RCP4.5, 
and 2070-RCP8.5) predictions showed some loss of suit-
able habitat within three to five decades. Such shrinkage in 
habitat is reported earlier in birds (Banda and Tassie 2018), 
vultures (Saenz-Jiminez et al. 2020) and other organisms 
(Kazmi et al. 2022). However, this loss had been offset due 
to addition of suitable area (net gain; RHV, CNV with one 
exception) in one outcome and remained unaffected (net 
loss; EGV, BRV with one exception) in another outcome. 
The contrasting change in suitable habitat i.e., expansion of 
area due to climate change is also reported in birds (Gaud-
reau et al 2018). A review by Santini et al. (2021) presented 
wider coverage of literature indicating contraction and 
expansion of habitat area due to climate change. However, 
from our study, it can be hypothesized, sensu lato, that the 
damaging impact of changing climate on species distribu-
tion could be selective. While EGV and BRV are projected 
to face some difficulty, RHV and CNV could be benefited by 
climate change. Comparison from a recent study, (Jha and 
Jha 2023) showed that these resident non-Gyps (EGV and 
BRV except RHV) have similar habitat constraints as the 
Gyps residents (Indian Vulture, Slender-billed Vulture, and 

White-rumped Vulture). The migratory non-Gyps (CNV) 
and Gyps (Eurasian Griffon and Himalayan Griffon) showed 
mixed trend. This could be due to specific niche and habitat 
requirement of different or a group of species and transfor-
mation of landscapes (Hassan and Ismail 2017; Byrne et al. 
2019; Hill et al. 2021).

Management implication

Effective management of wildlife populations requires 
sound knowledge of species distributions (or habitat suit-
ability) and associated threats (Passadore et  al. 2018). 
Though suitable areas (moderate and highly suitable) of 
non-Gyps species are overlapping, total suitable area in dif-
ferent FLs was in the following decreasing order: Central 
India > West Indian Plains > Western Himalaya > Gangetic 
Plains > Deccan > Malabar > Eastern Himalaya > Assam. 
However, highly suitable area was present only in Central 
India, Western Indian Plains, Western Himalaya, Gangetic 
Plains, and Deccan. These two different types of area (highly 
suitable and suitable) could be used for implementing differ-
ent conservation strategies like, in situ conservation, rein-
troduction, and habitat rehabilitation (Khosravi et al. 2016; 
Anoop et al. 2020). Overlapping suitable areas of differ-
ent vultures should receive high order of protection, and be 
treated as inviolate, as suggested by Zhang et al. (2019a). 
The areas identified as unstable (lost and gained) could be 
used for habitat improvement by ensuring nesting and for-
aging resources for further use by vultures in expanding 
their territory for increasing population. In general, devel-
opment of reserves, protection of large trees, adoption of 
agroforestry, etc. could be useful in model predicted areas to 
attempt a reversal of the endangered status, to some extent, 
of indigenous vultures in different FLs. This may also help 
the wintering vultures spending their time in secured envi-
ronment. Further, these management implications may be 
fine-tuned based on the results after further tweaking of the 
present study modeling in light of the fact that the climate 
change has maximum impact on natural resources like water, 
agriculture, and forests (Patasaraiya et al. 2021) which will 
significantly affect the habitat structure leading to loss of 
shelter and alimentary resources.

Conclusion

This study provided the first assessment of vital environmen-
tal factors and prediction of habitat suitability and dynam-
ics due to climate change in non-Gyps vultures using SDM 
in India landscape-wise. Our models with high predictive 
power are dependable for use in conservation management. 
For further improvement, inclusion of future LULC in pre-
dictions would be needed since climate-only models do not 



28 Landscape and Ecological Engineering (2024) 20:19–31

1 3

represent the complete biotic and ecological niche of the 
species. Despite this limitation in future models, even cli-
matic-only models are pragmatic enough to rely upon since 
they provide baseline data.

All the four cases of future predictions showed some loss 
of suitable habitat within three to five decades but was off-
set by addition of suitable area. In general, RHV and CNV 
had net gain while EGV and BRV had net loss. This led to 
a hypothesis that the damaging impact of changing climate 
on species distribution could be selective: EGV and BRV 
facing difficulty while RHV and CNV getting benefited 
by climate change. Apart from this result, the information 
about stable area (suitable as well as unsuitable), unstable 
area, or dynamic part of the stable area (loss and gain) may 
guide the managers or policy-makers for instant and pre-
emptive actions in order to strategize the conservation activi-
ties. Habitat management activities may be taken up in the 
unstable area to control the degradation or ameliorate the 
would-be degraded area. Such areas could be used for in situ 
conservation and reintroduction of vulture species.
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