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Abstract
Rapid urbanization has aggravated the urban thermal risk and highlighted the urban heat island (UHI) effect. To improve 
understanding on the effect of urbanization on the UHI effect, it is essential to determine the relationship between the UHI 
effect and the complexities of urban function and landscape structure. For this purpose, 5116 urban function zones (UFZs), 
representing the basic function units of urban planning, were identified in Beijing. Land cover and land surface temperature 
(LST) values were extracted based on remote sensing data. UFZ, land cover, and LST were used to represent the urban 
function, landscape, and UHI characteristics, respectively. Then, the effects of urban function and landscape structure on 
the UHI effect were examined. The results indicated that the urban thermal environment exhibited obvious spatiotemporal 
heterogeneity due to the variation of urban function and landscape complexity: (1) UFZs showed significantly different 
LST characteristics for different functions and seasons, and the mean LST gap among different types of UFZ can reach 
1.72–3.85 °C. (2) During warm seasons, the UHI region is mainly composed of residential, industrial, and commercial zones, 
while recreational zones contribute as an important UHI source region during cold seasons. (3) Urban developed land and 
forest are the most important landscape factors contributing to the UFZ effect in the urban thermal environment. These find-
ings have useful implications for urban landscape zoning to mitigate the UHI effect.

Keywords  Urban heat island · Land surface temperature · Urban function zone · Urban landscape · Urban planning

Introduction

The urban heat island (UHI) phenomenon, which is one 
of the most concerning urban environmental issues, has 
become increasingly important along with the urbanization 
process, which has changed the surface energy balance by 
replacing natural land with impervious urban land (Gago 
et al. 2013; Haashemi et al. 2016). Additionally, increas-
ing anthropogenic activities in urban areas, such as vehicle 
traffic, air conditioning, and emissions from factories, also 

increase the urban thermal burden (Carlson and Traci Arthur 
2000). The growing UHI effect may lead to several adverse 
effects, such as increased thermal discomfort and energy 
consumption (Almusaed 2011), air pollution (Vos et al. 
2013), wastage of water resources (Yang et al. 2012), and 
damage to human health and the balance of the local eco-
system (Gago et al. 2013). These negative effects of the UHI 
phenomenon pose significant threats to sustainable devel-
opment of urban ecosystems, and have thus drawn greater 
attention from urban planners and the research community.

To better understand and solve the problem of the UHI 
effect, it is essential to establish its relationship with urban 
spatial structure (Li et al. 2011; Peng et al. 2016). As 
stated by Zhou et al. (2014), the UHI effect includes both 
air temperature and land surface temperature (LST) com-
ponents. Urban air temperature was initially adopted as an 
effective indicator of urban surface energy characteristics 
to quantify the UHI phenomenon in urban thermal stud-
ies (Arnfield 2003; Taha 1997). However, air temperature 
measurements in UHIs are restricted to a limited number 
of climate stations, which may prevent the establishment 
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of a relationship between the air temperature and urban 
spatial characteristics (Arnfield 2003). In addition, the air 
temperature in urban areas generally shows greater spati-
otemporal variation compared with the LST (Chen et al. 
2014, 2016). LST values derived from remote-sensing 
data, by contrast, have higher, continuous spatial cover-
age and can be closely related to landscape modifications 
due to urbanization (Amanollahi et al. 2016; Chen et al. 
2016). In addition, LST values show strong correlation 
with near-surface air temperatures (Sun et al. 2013; Weng 
2009). Therefore, remotely sensed LST values have often 
been used to indicate the urban thermal environment.

A considerable amount of studies have been conducted 
to assess the relationship between LST and urban land 
surface characteristics (Li et al. 2011; Peng et al. 2016; 
Zhou et al. 2011), enabling the classification of urban 
landscapes (i.e., land use/cover) as heating and cooling 
surfaces according to their thermal features. Generally, 
heating surfaces, which would aggravate the UHI effect, 
are considered to include artificial surfaces such as build-
ing roofs and paved roads, while cooling surfaces (which 
will alleviate the UHI effect) are associated with some 
types of open urban spaces and water bodies (Cao et al. 
2010; Gago et al. 2013; Kardinal Jusuf et al. 2007). Thus, 
the proportions of these urban landscape types have an 
essential impact on the spatiotemporal variations of the 
LST (Dos Santos et al. 2017). Urban landscape planning 
can be implemented to benefit urban thermal comfort, 
requiring the rearrangement of not only the urban spa-
tial landscape (Kardinal Jusuf et al. 2007) but also urban 
functions, which are directly related to urban socioeco-
nomic and anthropogenic activities (Sun et al. 2013). How-
ever, few studies have tried to investigate the interactions 
between the UHI effect and urban functions (Li et al. 2011; 
Peng et al. 2016; Zhou et al. 2011). According to Tian 
et al. (2010) and Sun et al. (2013), urban function zones 
(UFZs) can be used to define regions with specific socio-
economic functions, having similar spatial characteristics, 
anthropogenic activity, and energy consumption. In addi-
tion, the spatial boundary of UFZs is usually formed by 
urban streets, which act as thermal barriers. These factors 
mean that each type of UFZ has a unique outdoor ther-
mal characteristic. Using UFZs as the unit to study the 
UHI effect thus enables better conclusions to be drawn 
regarding urban planning to improve the urban thermal 
environment.

In this study, the core region of Beijing was selected as 
a case study area to investigate the variations of the UHI 
effect from the perspective of UFZs and the landscape 
structure. The specific aims of this study are: (1) to explore 
the spatiotemporal heterogeneity of the LST for different 
types of UFZ and seasons and (2) to quantify the effects 
of the landscape composition on the UHI effect, followed 

by a discussion on the potential implications for urban 
management.

Methodology

Study area

As the capital city of China, the Metropolitan Region of 
Beijing (39°26′–41°03′N, 115°25′–117°30′E.) covers an area 
of approximately 16,800 km2, comprising 16 districts, with 
a population of nearly 20 million in 2011 (Beijing Statistical 
Bureau 2012). The city, having a typical continental mon-
soon climate, has an average temperature of 12 °C and dis-
tinct seasons. Since the late 1980s, Beijing has undergone a 
remarkable urbanization process. Owing to this rapid urban 
expansion, UHI effects in Beijing have become increasingly 
significant (Sun and Chen 2012), being further aggravated 
by urban environmental conditions, such as the local climate 
and air quality (Kardinal Jusuf et al. 2007; Ma et al. 2010). 
The area examined in this study is a highly urbanized region 
within the fifth ring road of Beijing, covering an area of 
nearly 667 km2 (Fig. 1).

Data preparation

The data was mainly obtained from remote sensing, includ-
ing IKONOS and Landsat 8 images. The IKONOS image 
contained four bands (three visible and one near infrared) 
with spatial resolution of 4 m, and one panchromatic band 
with spatial resolution of 1 m. The Landsat 8 images con-
sisted of eight bands (visible, near infrared, and shortwave 
infrared) with spatial resolution of 30 m, one panchromatic 
band with spatial resolution of 15 m, and two thermal infra-
red bands with spatial resolution of 100 m. All the satellite 
images were rectified and georeferenced to a common uni-
versal transverse Mercator (UTM) map base using a first-
order polynomial transformation.

Land cover and UFZ identifications

The IKONOS image was first applied to extract the land 
cover types in the study area (https​://www.satim​aging​
corp.com/satel​lite-senso​rs/ikono​s/). The image was cap-
tured in summer (29 July 2012) to provide detailed infor-
mation on vegetation. Prior to classification, the spectral 
bands were pan-sharpened to the panchromatic image for 
higher spatial resolution (1 m). Six types of land cover 
(i.e., developed land, water body, farmland, tree canopy, 
lawn, and bare land) were extracted from the IKONOS 
image by adopting an object-based classification approach 
(Yao et al. 2015; Zhou and Cadenasso 2012). The remote-
sensing image was first segmented into several “objects” 

https://www.satimagingcorp.com/satellite-sensors/ikonos/
https://www.satimagingcorp.com/satellite-sensors/ikonos/
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by grouping neighboring pixels with similar feature val-
ues (i.e., spatial, textural, spectral, color, and band ratio). 
Then, multiple rule sets were established to classify these 
“objects” as belonging to different land cover categories. 
Finally, we merged the geo-body shadows into actual cover 
types manually. Thereafter, ground-truthing analysis was 
conducted by verifying nearly 400 random points after 
classification. The overall accuracy of the classification 

was 85.8% with kappa coefficient of 0.75. The classifica-
tion result is shown in Fig. 2.

The IKONOS image was then used to retrieve detailed 
information on the UFZs. Sun et al. (2013) suggested that 
urban road networks serve as barriers that may possibly cut 
off thermal advection at a local scale. Thus, the geographic 
boundaries of each UFZ were mainly defined using linear 
landscape elements in urban regions, such as urban roads 

Fig. 1   Spatial location of the 
study area

Fig. 2   Land cover and urban function zone of the study area



382	 Landscape and Ecological Engineering (2019) 15:379–390

1 3

and canal networks. Following the detailed procedure pro-
vided by Sun et al. (2013) and Yao et al. (2015), we manually 
delineated the entire study area into a total of 5116 UFZs 
according to the IKONOS image. Then, ten types of UFZ 
were categorized (Table 1; Fig. 2), including high-density 
residential zone (HRZ), low-density residential zone (LRZ), 
government zone (GOZ), industry zone (INZ), commercial 
zone (COZ), recreational zone (REZ), preservation zone 
(PRZ), agricultural zone (AGZ), public service zone (PSZ), 
and development zone (DEZ). The detailed urban functional 
information for each type of UFZ was verified based on 
internet query (e.g., Google Maps) and field investigation.

Land surface temperature extraction

The thermal infrared bands (band 10, 10.6–11.2 μm) of the 
Landsat 8 images were used to retrieve the LST data in the 
study area. To explore the LST variations for different UFZs 
at the annual scale, Landsat images were acquired between 
the years of 2014 and 2015, covering each season, on 15 
May 2014 (average air temperature 21.8 °C), 19 August 
2014 (25.8 °C), 6 October 2014 (14.2 °C), 25 December 
2014 (−0.7 °C), and 15 March 2015 (9.8 °C). Each image 
was cloud free with highly clear atmospheric condition. The 
thermal infrared bands were resampled at spatial resolution 
of 30 m to facilitate the subsequent LST calculation. LST 
values were extracted by following the detailed algorithm 
provided by Chen et al. (2016) and Zhou et al. (2014). First, 
the pixel digital number (DN) values of the Landsat images 
were calibrated to top-of-atmospheric (TOA) radiance (Lλ) 
based on the conversion algorithm provided by United States 
Geological Survey (USGS). Then, the land surface emissiv-
ity (ε) was estimated based on the land cover maps; The Lλ 
was then converted into surface-leaving radiance, corrected 

using the emissivity value of each land cover type. Finally, 
LST values (in units of °C) were derived using the Land-
sat specific estimate of the Planck curve (Chen et al. 2016; 
Zhou et al. 2014). The generated image layers of the LST 
are shown in Fig. 3.

Data analysis

The details of the landscape structure and LST were both 
summarized in each UFZ patch by overlapping the geo-
graphical information system (GIS) layer of the UFZs and 
the raster images of the land cover and LST (Fig. 4). The 
mean LST values were then used as the key variable in later 
analysis, to indicate the thermal characteristics of the UFZs 
in different seasons (Sun et al. 2013; Zhou et al. 2011).

A spatial clustering tool (Anselin Local Moran’s I) was 
adopted to analyze all five periods of LST data, in order to 
explore the land surface thermal variations in the study area. 
This is one of the most standard tools to characterize the 
local spatial autocorrelation condition of a set of weighted 
features (with various values and spatial locations), show-
ing the similarity of a location to its neighbors, and tests the 
significance of its similarity (Anselin 1995; Mitchell 1999). 
This method can be used to identify significant clusters of 
high or low values (i.e., hot and cold spots) (Meng 2016). 
Details of the theory of Anselin Local Moran’s I and its 
algorithm can be found in Mitchell (1999). The output of 
this tool can be mapped to distinguish between statistically 
significant (p < 0.05) clusters of high values (HH) and low 
values (LL), as well as outliers with high value (HL) and 
low value (LH). The HH and LL clusters are considered to 
represent hot and cold spots, respectively.

All the generated GIS layers of the LST were imported 
into ArcGIS software (version 10.3). The key parameters 

Table 1   Details of urban function zones (UFZs) in the study area

UFZ Description

High-density residential zone (HRZ) Services for citizens; typical residential communities in Beijing, including low- and high-rise buildings 
with dense population

Low-density residential zone (LRZ) Services for citizens; lower impervious fraction; mainly low-rise buildings with sparse population
Government zone (GOZ) Services for civil servants and students; government buildings, public organizations, research institutes, 

and campuses
Industry zone (INZ) Services for production workers and laborers; city infrastructure and industrial factories, energy, and 

supply of resources
Commercial zone (COZ) Services for business and commercial workers; city malls, retail businesses, and public amenities such as 

restaurants, hotels, etc.
Recreational zone (REZ) Services for tourists and residents; urban parks, golf courses, and scenic areas with relatively high green 

coverage
Preservation zone (PRZ) Services for tourists and residents; open space with natural and artificial green space such as forest parks
Agricultural zone (AGZ) Services for agricultural workers; cultivated land, greenhouses, and orchards
Public service zone (PSZ) Services for citizens, such as hospitals, libraries, museums, stadiums, and city squares
Development zone (DEZ) Services mainly for construction workers; undeveloped open space and demolition areas
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for this tool, including the input feature, conceptualiza-
tion of spatial relationships, and distance method, were 
set as the mean LST values of the UFZs, the inverse dis-
tance (assuming that nearby neighboring features have a 
greater influence on the computations for a target feature 
than features that are far away), and Euclidean distance, 

respectively, while the other parameters were set as 
default.

Based on the spatial clustering results, Pearson correla-
tion analysis was applied to examine the potential relation-
ship between the LST characteristics and land cover struc-
tures of UFZs in HH and LL clusters, respectively (Zhou 

Fig. 3   Land surface temperature 
(LST, unit in ℃) of the study 
area

Fig. 4   Mean values of land 
surface temperature (LST, unit 
in ℃) of urban function zones. 
*Jenks Natural Breaks for the 
class ranges
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et al. 2011). Then, the main land cover factors responsible 
for the LST variations in different seasons were selected and 
discussed for future urban landscape planning.

ENVI software (version 5.1) was adopted for land cover 
identification and LST extraction, ArcGIS (version 10.3) 
was used for UFZ delineation and spatial analysis, and statis-
tical analysis was accomplished by using SPSS (version 22).

Results

Spatial details of UFZs

The spatial analysis revealed that HRZ occupied the larg-
est part of the study area (21254.39 ha), followed by COZ 
(10189.22 ha), REZ (9981.98 ha), INZ (9542.37 ha), GOZ 
(6200.49 ha), DEZ (4333.06 ha), PSZ (3766.75 ha), AGZ 
(756.31 ha), and LRZ (462.59 ha), while PRZ accounted 
for the lowest area (244.64 ha). As shown in Fig. 5, UFZs 
such as COZ, HRZ, INZ, GOZ, and PSZ showed the high-
est impervious ratios (area of developed land to total area 
of UFZ) at > 60%, while AGZ, PRZ, and REZ showed the 
lowest impervious ratios (< 30%) but highest green ratios 
(> 60%).

In particular, most of the bare land in the study area was 
in DEZ, with a total area of 999.28 ha. Referring to the 
UFZ descriptions in Table 1, these bare lands in DEZ mainly 
comprised open spaces and demolition areas for urban con-
struction, which would be developed into other types of 
urban land. Considering the acquisition timespan between 
the IKONOS (2012) and Landsat 8 images (2014–2015), 
the potential urban land cover transformation may induce 
a certain deviation in the analysis between DEZ and LST. 
Therefore, we decided to excluded the DEZ UFZs from sub-
sequent analysis.

LST details of UFZs

At pixel (Landsat 8, 30-m) scale (Fig. 3; Table 2), the LST 
varied significantly among different seasons, following an 
obvious decreasing trend from the warm to cold season. 
The highest LST in the study area was found on 19 August 
2014, ranging from 21.67 to 46.28 °C, with a mean value 
of 35.30 °C. The lowest mean LST, however, was captured 
on 25 December 2014, at 3.75 °C. The LST variations also 
showed a similar trend, ranging from a largest standard 
deviation (SD) of 2.26 °C on 5 May 2014 to a smallest s.d. 
of 1.20 °C on 25 December 2014.

Significant differences in LST were revealed among 
different types of UFZ (Table 3). The “developed” UFZs, 
including INZ, COZ, GOZ, PSZ, and HRZ, had relative 
higher LST (> 20 °C) compared with the other UFZs dur-
ing the warm seasons (May–October in 2014). Notably, 
the “ecological” UFZs (i.e., AGZ, PSZ, and REZ) showed 
higher LSTs than the “developed” UFZs in the cold sea-
sons (December in 2014 to March in 2015) and more stable 
LST fluctuations (< 30 °C) across the whole year. The larg-
est mean LST gap among these types of UFZs was 3.85 °C 
(2014/5/15), 3.59 °C (2014/8/19), 3.26 °C (2014/10/6), 
1.72 °C (2014/12/25), and 2.55 °C (2015/3/15) in the study 
area.

Fig. 5   Land cover compositions 
of urban function zone (UFZ)

Table 2   Summary of land surface temperature (LST, °C) in the study 
area

Date acquisition time Max. LST Min. LST Mean LST S.D.

2014/05/15 41.16 16.69 29.46 2.26
2014/08/19 46.28 21.67 35.30 2.22
2014/10/06 35.45 3.98 22.47 2.01
2014/12/25 10.91 −8.96 3.75 1.20
2015/03/15 27.37 3.03 18.56 1.79
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The spatial clustering results showed that the LST of 
UFZs were significantly spatially autocorrelated, revealing 
obvious urban thermal agglomeration in the city. The Local 
Moran’s I analysis illustrating the spatial variations of LST 
hot/cold spots in different seasons is shown in Fig. 6. The 
hot spots, namely the HH clusters in Fig. 6, could be con-
sidered as regions with a significant UHI effect, whereas 
the cold spots (i.e., the LL clusters) as urban cold islands. 
The percentage areal coverage of HH clusters (versus the 
whole study area) was 17.62% (14 May 2014), 14.02% 
(19 August 2014), 15.02% (6 October 2014), 22.65% (25 
December 2014), and 24.46% (15 March 2015), while that 
of LL clusters was 18.40%, 15.22%, 15.67%, 13.21%, and 
15.00%, respectively. Spatially, the HH clusters showed a 
similar spatial distribution pattern, being mainly aggregated 
in the southern area. LL clusters tended to aggregate close to 
the north region of the study area, while some clusters of low 
values were also distributed in the central region. Especially 
on 15 March 2015, most of the clusters of low LST values 
tended to aggregate around the central region, as shown in 
Fig. 6. For all five LST images, the spatial outliers of LST 
high (low) values occupied a relatively small area and were 
scattered in the study area.

Figures 7 and 8 illustrate the UFZ compositions of HH 
and LL clusters in different seasons. During the warm season 
(from May to October in 2014), the HRZ, INZ, and COZ 
UFZs made the major contributions to the HH clusters. In 
the cold season (25 December 2014 and 15 March 2015), 
the REZ component increased significantly in the HH clus-
ters. The UFZ compositions of the LL clusters were different 
from those of the HH clusters: REZ and HRZ were the main 
components of LL clusters, while the contribution of COZ 
increased significantly as the season changed from warm 
to cold.

Appendix Table 6 shows that more INZ, PSZ, and COZ 
UFZs tended to be in HH rather than LL clusters during the 
warm season, while more AGZ, REZ, PRZ, and LRZ UFZs 
tended to contribute to LL clusters. In the cold season, how-
ever, the ratios of the “ecological” UFZs such as AGZ, REZ, 
and PRZ increased in the HH clusters, while in contrast, 
“developed” UFZs such as HRZ, COZ, and GOZ tended to 
aggregate in LL clusters.

Effects of the land cover composition on LST

Table  4 presents the Pearson correlation coefficients 
between the largest LST variation (between 2014/8/19 and 
2014/12/25) and the land cover composition of the study 
area. All land cover types were significantly related to the 

Table 3   Summary of land surface temperature (LST, °C) of urban 
function zones

HRZ high-density residential zone, LRZ low-density residential zone, 
GOZ government zone, INZ industry zone, COZ commercial zone, 
REZ recreational zone, PRZ preservation zone, AGZ agricultural 
zone, PSZ public service zone
Different letters indicate statistical difference at 0.05 level

2014/5/15 2014/8/19 2014/10/6 2014/12/25 2015/3/15

LRZ 28.57CDE 34.39CD 21.54DE 3.62C 18.29CD

HRZ 29.53BCD 35.62B 22.43BCD 3.42C 17.96D

GOZ 29.55BC 35.83AB 22.63BCD 3.47C 18.23CD

INZ 31.44A 36.83A 24.20A 4.41B 19.73AB

COZ 29.79B 36.00AB 22.85B 3.45C 18.03D

REZ 28.33CDE 33.96D 21.63CDE 3.96BC 18.59CD

PRZ 27.59E 33.24D 20.94E 4.02BC 19.14BC

AGZ 29.23BCD 33.54D 21.66CDE 5.14A 20.51A

PSZ 29.53BCD 35.93AB 22.77BC 3.59C 18.42CD

Fig. 6   Spatial clusters of land surface temperatures (LSTs) of urban 
function zones using local Moran’s I. HH indicates that LSTs with 
high values aggregate, and LL indicates that LSTs with low values 
aggregate; a spatial outlier of LST high value is displayed in HL; a 
spatial outlier of low value is mapped in LH
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LST variation. Among these, developed land showed the 
most significant and positive correlation with the LST vari-
ation, while forest showed the strongest negative correlation. 
These results indicate that the urban LST variation is mainly 
affected by developed land and green space.

The Pearson correlation coefficients between LSTs and 
land cover compositions in HH/LL clusters are reported in 
Table 5. Overall, urban developed land as well as forest were 

found to show the strongest general relationship with LST. 
During the warm season, for both HH and LL clusters, a 
positive relationship between developed land and LST was 
found, while green land showed a negative relationship with 
LST. However, completely opposite correlation results were 
found between HH and LL clusters during the cold season. 
Specifically, as the temperature dropped, the correlation 
between developed/forest land and LST weakened (and even 

Fig. 7   The urban function zone compositions in HH clusters

Fig. 8   The urban function zone compositions in LL clusters
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lost significance) in the HH clusters, while the opposite cor-
relation was found for both developed (opposite) and forest 
land (negative) in comparison with the warm season.

Discussion

Major factors affecting LST in different UFZs

This study explored the spatial patterns of LST assigned to 
different UFZs. Two different types of UFZ clusters were 
classified as “developed” and “ecological” UFZs. The 
“developed” UFZs (e.g., INZ, COZ, GOZ, PSZ, and HRZ) 
showed a similar, high LST variation among different sea-
sons (with relatively higher LST in the hot season and 
lower LST in the cold season compared with “ecological” 
UFZs), while the “ecological” UFZs (i.e., AGZ, PSZ, and 
REZ) showed a similar, relatively stable LST variation. 
This indicates that these green urban zones functioned 
as effective air-conditioning areas, providing a warming 
effect in winter and a cooling effect in summer, thereby 
improving human comfort and the habitability of the city. 
This similarity among these two types of UFZ cluster can 
mainly be attributed to their similar landscape structure 

(Sun and Chen 2017; Sun et al. 2013). The results pre-
sented in Table 4 show that developed land had the most 
significant effects on LST variations compared with other 
types of land cover. As shown in Fig. 5, the “developed” 
UFZs mainly consisted of impervious surfaces (e.g., con-
crete/metallic roofs, asphalt pavements, or brick squares) 
with a lower proportion of green space. These surfaces 
(termed urban grey surfaces; Tiwary and Kumar 2014) are 
characterized by lower albedo, latent heat flux, and ther-
mal capacity (Morabito et al. 2016; Peng et al. 2016; Taha 
1997), which will lead to more sensitive LST fluctuations 
compared with green spaces.

The correlation analysis revealed that the magnitudes of the 
LST were significantly correlated with the land cover com-
position of the UFZs, consistent with findings from previous 
studies (Kikegawa et al. 2006; Morabito et al. 2016; Zhou 
et al. 2011). Furthermore, the results of this study emphasize 
the changes in the relationship between the LST variations 
and the percentage of different types of land cover in differ-
ent seasons. The results show that this correlation changed 
significantly for different types of clusters and seasons:

First, during the warm season, for both HH and LL clus-
ters, the coverage of developed land of UFZs was the most 
important factor promoting LST, while the percentage cover 
of forest/grass land was the key factor mitigating LST. These 
effects can be explained by land surface characteristics such as 
albedo and evapotranspiration due to the percentage of devel-
oped and green land covers in the different UFZs (Amanollahi 
et al. 2016; Taha 1997). In addition, developed land is the main 
landscape type in INZ, COZ, GOZ, PSZ, and HRZ UFZs, 
which can be described by a concentration of anthropogenic 
activities within the urban area, leading to intensive energy use 
(e.g., for air conditioning and refrigeration systems, or waste 
heat produced by fossil fuels), all of which would promote UHI 
effects (Kikegawa et al. 2006; Zhou et al. 2011).

Table 4   Correlation coefficients between the variation (between 
2014/8/19 and 2014/12/25) of land surface temperature (LST) and 
land cover composition (%) of urban function zones

**Correlation significant at 0.01 level (two-tailed)

Land 
cover 
compo-
sition

Bare land Farmland Forest Grassland Devel-
oped land

−0.123** −0.178** −0.536** −0.437** 0.739**

Table 5   Correlation coefficients 
between land surface 
temperature and land cover 
composition (%) of HH/LL 
clusters

*Correlation significant at 0.05 level (two-tailed)
**Correlation significant at 0.01 level (two-tailed)

Bare land Farmland Forest Grassland Developed land

HH
 2014/5/15 −0.071* 0.022 −0.524** −0.237** 0.490**
 2014/8/19 −0.142** −0.099** −0.516** −0.444** 0.656**
 2014/10/6 −0.122** −0.049 −0.522** −0.367** 0.588**
 2014/12/25 0.040 0.056 −0.060 0.121** −0.070*
 2015/3/15 −0.029 0.134** −0.057 0.015 0.017

LL
 2014/5/15 −0.007 −0.126** −0.402** −0.194** 0.518**
 2014/8/19 −0.002 −0.169** −0.436** −0.227** 0.567**
 2014/10/6 −0.049 −0.065 −0.249** −0.194** 0.346**
 2014/12/25 −0.014 0.099** 0.217** 0.070* −0.214**
 2015/3/15 −0.024 – 0.189** −0.006 −0.114**
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Second, in comparison with the warm season, the role of 
each land cover in affecting the LST altered during the cold 
season. The relation between most types of land cover and 
the LST lost its significance in the HH clusters, whereas 
for the LL clusters, the role of developed land and forest 
in affecting the LST was interchanged in comparison with 
the warm season. This result is consistent with findings by 
Haashemi et al. (2016), which may be largely due to the dif-
ference in the UFZ composition between HH and LL clus-
ters. These results show that more “developed” UFZs were 
attributed to LL clusters while more “ecological” UFZs were 
attributed to HH clusters, along with the temperature drops 
(Appendix Table 6). The main forest types in LL clusters 
were recorded as deciduous vegetation, such as Populus 
tomentosa, Salix babylonica, and Sophora japonica (Meng 
et al. 2004). The low leaf area of deciduous trees as well as 
the cold climate would greatly lessen canopy evapotranspira-
tion due to latent heat exchange. In addition, compared with 
developed land, the water content of plants retains more heat 
against cold and freezing. The capacity of forest to mitigate 
LST would thus be reduced (Haashemi et al. 2016; Zhou 
et al. 2014).

Urban management implications

Some implications of these results may be useful for cur-
rent and future urban planning. First, the local indicator of 
spatial association (LISA) maps present the fine-scale spatial 
distribution of LST clusters, revealing various urban ther-
mal concentrations in different seasons (Fig. 6). The LST 
hot spots (HH clusters) were mainly distributed in the areas 
surrounding the city rather than the central location, in clear 
distinction to the LST cold spots (LL clusters). This may 
provide reference targets for decision-makers in developing 
specific strategies to moderate urban thermal environments. 
Second, the urban thermal characteristics were found to be 
closely related to the UFZ type. UFZs such as INZ, COZ, 
GOZ, PSZ, and HRZ showed relatively high thermal sensi-
tivity and were more likely to be potential hot spots of the 
UHI effect compared with UFZs such as AGZ, PSZ, and 
REZ. According to Sun et al. (2013), reasonable landscape 
planning is needed to rearrange the spatial configuration of 
different types of UFZs within a city. Increasing the land-
scape connectivity between these UFZs and vegetation/water 
corridors/patches is helpful for improving heat exchange and 
thus the urban thermal environment (Gago et al. 2013; Sun 
and Chen 2012). Finally, the spatial differences in LST were 
mainly caused by the various landscape compositions in the 
different types of UFZ. The results of this study reveal that 
the composition of impervious (i.e., developed) and preser-
vation (i.e., forest) areas are two key landscape indicators 

regarding the UHI effect. In addition, these two kinds of 
land cover show different thermal inertia characteristics in 
different seasons. This may help urban regulators to modu-
late landscape compositions rationally to mitigate the UHI 
phenomenon in different types of UFZ.

Limitations of this study

This study has its limitations. First, this study used UFZs 
as the basic spatial units for the urban LST analysis. 
The use of UFZs is based on the assumption that urban 
streets/rivers act as physical barriers to thermal exchange 
between different urban blocks (Sun et al. 2013; Yao et al. 
2015). Besides UFZs, spatial units such as image pixels 
(Haashemi et al. 2016), a regular grid (Chen et al. 2014), 
concentric circles (Majumdar and Biswas 2016), or other 
landscape units, e.g., HERCULES by Zhou et al. (2011), 
have also been applied for UHI analysis. This may lead 
to uncertainty in data analysis, because there is still no 
definitive spatial unit for UHI research. Second, this study 
quantified the significant relationship between land cover 
compositions and LST in UFZs. Beyond that, it has been 
reported that the configuration of land cover is also signifi-
cantly correlated with LST (Chen et al. 2014; Peng et al. 
2016; Zhou et al. 2011), making it desirable to quantify the 
effect of urban landscape characteristics on the UHI effect 
more accurately in future work. Finally, the land surface 
temperature was used to represent the thermal heterogene-
ity of the study area, which is different from the air tem-
perature (Sun et al. 2013). Greater effort is needed to refine 
urban thermal research by using more different types of 
climate data.

Conclusions

This study attempted to expand understanding of the UHI 
effect from the perspective of UFZs and landscape structure. 
The main results can be summarized as followed:

1.	 The LST presented obvious spatiotemporal heterogene-
ity across different UFZs and seasons. Urban residential, 
industrial, and commercial zones contributed most of 
the UHI regions during the warm season. Besides, part 
of the urban recreation zone functioned as a UHI region 
during the cold season.

2.	 The urban thermal heterogeneity was strongly affected 
by both urban developed and green land. However, their 
thermal contributions varied in different seasons, with 
urban green spaces presenting an effective air-condition-
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ing function and benefiting the urban thermal environ-
ment.

Generally, the urban thermal environment showed signifi-
cant complexity due to the diversity of the urban functions 
and landscape structure in the studied region. This study 
expands understanding on the relationship between urban 
functions, landscape, and urban thermal environment, and 
thus could have scientific implications for future urban land-
scape planning to mitigate the UHI phenomenon.
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