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Abstract
In this study, a method was developed to monitor habitat structure in river-floodplain systems using high-resolution satel-
lite images from 2010 to 2012 across a 30-km longitudinal section of the Tagliamento River, Northeast Italy. Three ortho-
corrected RapidEye satellite images at 5-m spatial resolution and cloud cover of < 1%, with four spectral bands, namely, blue, 
green, red, and near-infrared, were used for land cover classification by converting pixel values into digital number (DN) 
distributions. The DN distributions for each band were clustered into separate classes based on correlations among all bands. 
The rate of unchanged habitat was further calculated as the intersection of all habitats divided by the area of the habitat of 
interest. The land cover categories were bare alluvium, river water, and vegetation. Bare alluvium was the dominant type, 
covering 55–75% of land. Vegetation and river water covered a relatively smaller area of the upper part and a larger area of 
the middle part of the Tagliamento River. The accuracy of this method was greater (> 89%) than that of the conventional 
unsupervised ISODATA method (> 83%) as river water and vegetation could be differentiated more accurately using this 
new method. The unchanged area was greater for river water than for vegetation and bare alluvium. These results indicated 
that habitat distribution changed spatially and temporally, especially for fluvial habitats, while the composition of habitat 
types was preserved in the middle reaches of the Tagliamento River. This method can be used to continuously and accurately 
monitor the large-scale spatiotemporal dynamics of habitat structures.

Keywords Habitat turnover · Spatio-temporal dynamics · Land cover classification · Digital number distribution · Pixel 
value · Tagliamento River

Introduction

River-floodplain systems contain complex habitat struc-
tures and are important for river management (Tockner 
et al. 2008). Habitat structures, described by land cover, 
habitat type, water qualities, and so forth, influence aquatic 
faunal communities (García et al. 2011). This is because 
the heterogeneity of habitat structures such as inflow, para-
potamal, plesiopotamal, and palaeopotamal channels affects 
connectivity, which in turn enriches the  diversity of aquatic 
species in a habitat (Tockner et al. 2010). Habitat structure 
also contributes to the overall species diversity, or scar-
city, of aquatic fauna (Cornell and Lawton 1992; Tilman 
1999). For example, the alteration of habitat structure has 
reduced the abundance of the Japanese eel Anguilla japonica 
Temminck and Schlegel, 1847 in rivers and lakes in Japan 
(Itakura et al. 2015). The turnover of habitats caused by 
disturbance, mainly flooding in rivers, is also important for 
aquatic diversity. Even though aquatic floodplain habitats 
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are highly dynamic, small changes in the water level and 
flooding can lead to major habitat changes (van der Nat et al. 
2003). Flooding increases similarity in species diversity 
among aquatic habitats in the river floodplain (Thomaz et al. 
2007). However, flooding has resulted in minimal changes 
in the braiding, sinuosity, and aquatic habitat composition 
along the Fiume Tagliamento River, Italy (Arscott et al. 
2002). Considering the highly dynamic nature of habitat 
diversity across the river-flood plain, proper management 
of habitat structure as well as ecological research are crucial 
for enriching species abundance and diversity (Osugi et al. 
2007). Hinojosa-Huerta et al. (2013) showed that a reduction 
of surface flow led to a reduction in native tree cover but an 
increase in shrub cover in the riparian corridor delta of the 
Colorado River, Mexico without significant changes (< 30%) 
in overall vegetation. In addition, resilience of the dynamic 
nature of the riparian zone helps to restore its native form.

Researchers still largely rely on field surveys to describe 
and understand the spatial and temporal dynamics of habi-
tat structures, despite constraints with respect to physical 
requirements, time, climate conditions, geographical limi-
tations, and costs. Accordingly, there is little information 
on the dynamics of habitat structures at large spatial and 
temporal scales (Arscott et al. 2002; van der Nat et al. 2003) 
and high resolutions. Satellite images and remote-sensing 
techniques are increasingly used to monitor habitat struc-
tures owing to their wide spatiotemporal coverage, effec-
tiveness for data collection, and repeatability (Mertes 2002; 
Henshaw et al. 2013; Moretto et al. 2013). For instance, 
high-resolution (0.5–5 m) satellite images have been used 
to estimate river depth (Legleiter et al. 2004; Kanno et al. 
2011) and medium-resolution (10–15 m) satellite images 
have been used to estimate other water-quality parameters, 
such as the suspended sediment concentration (Jensen 1996; 
Xue et al. 2011).

Rosgen (1994) reviewed the classification system for 
natural rivers based on entrenchment, gradient, width/depth 
ratio, and sinuosity in various landforms. Satellite images 
are an important source for land cover classification and 
have been widely used for the characterization of fluvial 
habitat, for example, channel morphology and riparian land 
cover in the River Tay, Scotland (Bryant and Gilvear 1999), 
distribution and composition of aquatic insect communi-
ties effected by forest cover changes in Amazonian forests 
(Nessimian et al. 2008), aquatic and terrestrial ecosystems 
in the tundra wetland of the Lena River Delta, Northern 
Siberia (Schneider et al. 2009), and wetland in the Amazon 
Basin (Melack and Hess 2010). Changes in flow regime do 
affect fluvial and riparian habitats, as shown by alternation 
of habitat features in seasonal streams, and lesser physi-
cal alternation in the Sagura Basin, Spain in stable streams 
where there were no seasonal changes (Belmar et al. 2013). 
However, the major obstacle to remote-sensing techniques is 

the resolution, i.e., mainly the presence of shadows, clarity 
of water, variable substrates and target–sun angle geometry 
(Marcus and Fonstad 2008). There has been continual recent 
advancement in remote-sensing techniques as a tool for the 
classification of riverine habitats (Marcus and Fonstad 2010; 
Dufour et al. 2013; Whited et al. 2013; Romero et al. 2016).

Most of the proposed methods estimate a single habitat 
structure in rivers and thus have not been applied to a variety 
of physical habitats in river-floodplain systems. Henshaw 
et al. (2013) reported the successful development and appli-
cation of multispectral Landsat TM satellite data comprising 
15- to 30-m spatial resolution satellite images to monitor 
vegetation dynamics in a river floodplain, but little is known 
about the dynamics of habitat structures, especially habitat 
type classifications, at a large spatiotemporal scale and fine 
spatial resolution. The development of methods to accu-
rately predict ecological responses, changes in biodiversity, 
and habitat degradation based on high-resolution satellite 
images would contribute to the design of effective mitiga-
tion measures.

Despite numerous studies on the dynamics of habitat 
structures in river floodplains, habitat type dynamics have 
not yet been examined at a large spatiotemporal scale. Habi-
tat types have been monitored by field surveys at the reach 
scale (van der Nat et al. 2003), but more comprehensive 
monitoring of the spatial heterogeneity of habitat structures 
is needed. Furthermore, one issue with conventional meth-
ods for image classification is the need to select training 
data to obtain the pixel-value distribution. This selection 
needs to be done empirically and qualitatively to obtain suf-
ficiently accurate estimates, but is sometimes tricky, as this 
procedure is based on trial and error. Hence, in the present 
study, a new method was developed to avoid issues associ-
ated with training data selection by converting pixel values 
into a digital number (DN) distribution. The main objective 
of this research was to develop a method for monitoring 
habitat structures in a river-floodplain system based on high-
resolution satellite images and to apply this method to the 
floodplain in the middle reaches of the Tagliamento River, 
Italy. As a case study, the proposed method quantifies major 
land cover and aquatic habitat types in a floodplain to under-
stand floodplain dynamics.

Materials and methods

Study area

The target area was the river-floodplain system of the Tag-
liamento River, located in Northeast Italy. The length of its 
main stream is approximately 170 km and it drains an area 
of approximately 2580 km2 from the Southern Alps to the 
Adriatic Sea (Tockner et al. 2003). It forms highly complex 
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and dynamic river-floodplain systems on alluvial fans, and 
thus is considered the last morphologically intact river in 
Europe (Müller 1996; Ward et al. 1999; Tockner et al. 2003; 
Huber and Huggenberger 2015), though anthropogenic alter-
ations have also been described in terms of hydrology and 
water quality in some sections (Tockner et al. 2008; Bertoldi 
et al. 2010). The land cover of the target floodplain consists 
mainly of five types: active riverbed, pasture, grassland, 
wetland, and cultivated field (Spaliviero 2003); however, 
the general land cover based on the map of the nineteenth 
century used in the classification of Spaliviero (2003) needs 
to be upgraded with the robust and latest information from 
high-resolution satellite images. Hence, for this study, land 
cover was categorized into three types and five habitats: river 
water, vegetated island and bare alluvium;  channel, backwa-
ters, ponds, vegetated island and bare alluvium (discussed in 
detail in “Categorization of habitat types”).

The Tagliamento River is characterized by an alpine to 
Mediterranean climate (Gurnell et al. 2001). November is 
the wettest and February the driest month (Gurnell et al. 
2001). The mean annual precipitation is 1500–1800 mm 
in the northern catchment area and 1900–2900 mm in the 
alpine foreland area (Gunawardhana and Kazama 2012). 
Winter begins with snowfall, which starts in late November 
or early December, and the snow melts around late March. 
The river discharge is higher from April to June, and gradu-
ally decreases in the summer, probably with the minimum 
discharge in September. September is also the month with 
the highest amount of sunshine, with mean monthly sun-
shine of more than 200 h.

The unconstrained floodplain segments are character-
ized by a dynamic mosaic of aquatic/terrestrial habitats 

(Tockner et al. 1999; Arscott et al. 2002), a large number 
of vegetated islands (Edwards et al. 1999; Gurnell et al. 
2001), and a high biodiversity of aquatic communities 
(Arscott et al. 2005). The floodplains show substantial 
morphological changes in the network configuration due 
to flood pulses and unconstrained river banks (Bertoldi 
et al. 2009). Interestingly, each flooding event along the 
Tagliamento River spatially reconfigures the habitat com-
position, but these events do not have substantial effects 
on the aerial proportion (i.e., composition) of each type 
of aquatic habitat in each floodplain, leaving a certain 
combination of major floodplain habitat types available 
for recolonization (Arscott et al. 2002; van der Nat et al. 
2003).

To understand the continuous dynamics of habitat 
structures at a large spatial scale, the alluvial fan segment 
about 30 km from Venzone through Cornino and Villuza to 
Dignano was selected and was divided into five sections, 
A–E, from north to south (Fig. 1). In addition, three target 
reaches were selected within this segment: Cornino reach, 
Flagogna reach, and the reach downstream of Villuzza, 
referred to as reaches I, II, and III, respectively (Fig. 1). 
Reach I was about 1 km long and was located in section 
C, and II and III were about 1.5 km long and were located 
in sections D and E, respectively. Under base-flow condi-
tions, reach I was dominated by exposed alluvium, with 
multiple channels (van der Nat et al. 2002). Reach II had 
a predominant wandering morphology with main chan-
nels and dead sub-channels. In the main channel, there 
were many longitudinal and lateral bars and islands, simi-
lar to reach I (Moretto et al. 2013). In reach III, surface 
water infiltrates the highly permeable alluvial aquifer, and 

Fig. 1  The target floodplain: the 
middle reaches of the Taglia-
mento River in Northeast Italy
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a portion of this segment lacks surface flow (maximum 
dry length: 23 km) in low-flow conditions (Doering et al. 
2007; Henshaw et al. 2013).

Satellite images

Cloud cover is an important parameter when selecting satel-
lite images for better quality data. On manual sorting of vari-
ous satellite images, lower cloud cover (< 1%) was found for 
the September. In addition, our target was to select images of 
the same month for different years having at least a 10-day 
antecedent dry weather period to minimize the impact of 
precipitation on changes in habitat structure. Hence, three 
orthocorrected RapidEye satellite images with a 5-m spatial 
resolution were obtained on 12 September 2010, 30 Septem-
ber 2011, and 15 September 2012. All images were obtained 
between 10:59 and 11:03 a.m., when the cloud cover was 
less than 1%. A dry weather period around 10 days prior 
to each date was confirmed, enabling us to assume that the 
dynamic equilibrium of the river network was not affected 
by a probable flood due to precipitation. All 16-bit RapidEye 
satellite images consisted of four spectral bands, namely, 
blue, green, red, and near-infrared (NIR), with wave-
lengths of 440–510, 520–590, 690–730, and 760–920 nm, 
respectively.

Land cover classification

The maximum-likelihood classification (MLC; hereafter 
referred to as MLC-1), one of the most widely used methods 
for land cover classification, was applied to the supervised 
image classification (Wernick and Morris 1988); the ISO-
DATA method (ISO) was applied to the unsupervised clas-
sification (Ball and Hall 1965; Smith et al. 2008). Several 
input images are required for land cover classification for 
both the ISO and MLC. In ISO, the pixel-value distribution 
of each land cover type is estimated by automatic cluster-
ing, while MLC requires training data, which are used to 
obtain the pixel-value distribution for each class. Generally, 
the accuracy is lower for ISO than for MLC using the same 
input images, but MLC requires reliable training data for 
acceptable accuracy (Smith et al. 2008).

To avoid the difficulty associated with the selection of 
training data in supervised classifications, in this study, a 
new method for quantitative image classification based on 
ISO was developed. In this method, when multi-spectral 
band images are used as input data, DN distributions for 
several bands can be clustered into classes because each 
land cover type is characterized by a different DN distribu-
tion (Bruzzone and Prieto 2001). In the conventional ISO 
method, hereafter referred to as ISO-1, overlapping plots and 
linear relationships among bands often make it difficult to 
accurately identify land cover classes. The proposed method 

for image classification, hereafter referred as ISO-2, was 
designed to avoid such problems in clustering by pixel-value 
transformation (Kojima 2011). The major improvement of 
this method is that the DN distribution for each class is sepa-
rated owing to the increased accuracy of the ISO estimates, 
which minimizes overlap in the DN distribution of each class 
between bands in the transformed domain.

Suppose that n classes of land cover are classified based 
on a satellite image with M bands. The DN distribution of M 
bands for class i is expressed using the function fi as follows:

where DNM is the DN of class i in band M and ∅′

i,i
 is the error 

term equal to the deviance. According to this relation, the 
DN distribution of class i in band J is expressed as follows:

When Eq. (2) is applied to all pixels in an image (i.e., 
other land cover classes), the error term differs for each class 
and can be expressed as a matrix as follows:

where ∅′
i
 is the deviance distribution consisting of the errors 

of each class ∅′
i,n

 obtained by applying Eq. (2) to class n.
If the image is reproduced with the deviance ∅′

i
 to the 

pixel value, instead of DN, the deviance attributed to class i, 
i.e., only ∅′

i,i
 , will be closer to zero than that of other classes, 

since ∅′
i
 is the error from the estimation equation of the DN 

distribution of class i. Finally, for all classes from 1 to n, the 
error number and DN are calculated to acquire the pixel-
value distribution for each class between two images for 
image classification.

Application of the new classification method

To validate the DN distribution in four bands for each class, 
the true-color images were reproduced by combining red, 
green, and blue band images, and DN was selected from 30 
pixels for each land cover type from this true-color image. 
Referring to the RapidEye sample data obtained in 2012, 
the DN distribution for each class was plotted and fitted to 
a linear spectral unmixing model for green and other bands, 
except the NIR band on river water (Fig. 2). Similar trends 
were found for each class and the other RapidEye images 
could be represented as follows:

(1)fi
(
DN1,DN2,…DNJ ,… , DNM

)
+ �

�

i,i
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where DNgrn(i) , DNblue(i) , DNred(i) , and DNNIR(i) are the 
observed DN distributions of class i in green, blue, red, and 
NIR bands, respectively, and a, b, c, and d are constants. The 
error was estimated by applying Eq. (4) to the sample data 
for river water, vegetation, and bare alluvium and was used 
in the following ISO image classification.

In this study, image classification was conducted using 
GRASSGIS (version 6.4.2) for all three classification meth-
ods, namely, the conventional MLC (MLC-1), the conven-
tional ISO (ISO-1), and the new ISO method developed in 
this study (ISO-2).

To check the accuracy, the omission rate, commission rate, 
and κ-coefficients were calculated by cross-validation using 
reach II. For this validation, around 50% of all pixels for each 
land cover were taken from true-color images. Each coefficient 
was estimated as follows:

(4)
DNgrn(i) =

(
a ∗ DNblue(i) + b ∗ DNred(i) + c ∗ DNNIR(i) + d

)
+ �

�

i
,

(5)Omission rate =
1

ni
Qij(i ≠ j),

(6)Commission rate =
1

ni
Qji(i ≠ j),

where ni is the number of pixels in class i for the validation 
data, Qij is the number of pixels belonging to class I but 
wrongly assigned to class j in the validation data, Qii is those 
pixels that are correctly classified, Qi+ is the total pixels of 
class i in the validation data, Q+i is the total of class i in the 
classification result, N is the number of pixels in the whole 
target image, and m is the number of classes. If κ is greater 
than 0.80, the accuracy of the estimate is deemed sufficient 
(Cohen 1960; Kojima 2011).

Categorization of habitat types

The habitats in the Tagliamento River have been catego-
rized into seven types: channel, alluvial channel, backwater, 
pond, bare alluvium, riparian forest, and vegetated island 
(van der Nat et al. 2003). As it was not possible to clearly 
distinguish between alluvial channels, gravel bed and bare 
alluvium from the RapidEye satellite images at 5-m spatial 
resolution, all these three habitat types were categorized as 

(7)Kappa coefficient =
N
∑m

i=1
Qii −

∑m

i=1

�
Qi+ × Q+i

�

N2
∑m

i=1

�
Qi+ × Q+i

� ,
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Fig. 2  The relationships of digital number distributions between 
green and blue, red, and near-infrared (NIR) for each land cover class 
of 2012 RapidEye satellite images: a river water, b vegetation, and 
c bare alluvium. The samples were taken from 50–100 randomly 

selected points of each land cover type indicated in the floodplain 
map (d). The figure parts indicate that the relationships among bands 
can significantly differ according to land cover type
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bare alluvium. Hence, habitats in the river floodplain sur-
rounded by riparian forest were classified into five types, 
namely, channels, backwaters, ponds, vegetation islands, and 
bare alluvium (Fig. 3).

For the fluvial habitats, ponds were defined as pools of 
water within the river floodplain that were not connected to 
any streams. Backwaters were connected to streams at only 
the downstream or upstream end, and the remaining river 
water land cover could be classified as channel. Based on 
the land cover estimation using satellite images, the river 
network was obtained; thereby, the fluvial habitat was clas-
sified morphologically into channels, backwaters, and ponds.

Estimation of the temporal shift in habitat structure

Referring to the habitat type categorization based on satellite 
images, the area of each habitat can be calculated as follows:

where At1(i) is the area of habitat I in period t1 (squared 
meters),Rs is the resolution of satellite images (5 m in this 
study), and Nt1(i) is the number of pixels in the habitat of 
interest at time t1 on the satellite images.

To examine the temporal habitat changes after several 
flooding events, the conversion rate to the next time step t2 
was represented as follows:

where, Ct1,t2(i, j) is the conversion rate of habitat type i to 
j between the period from t1 to t2, At2(i, j) is the area of 
habitat type j converted from type i, and At1(i) is the area 
of habitat type i at time t1. In this study, the conversion rate 

(8)At1(i) = R2
s
∗ Nt1(i),

(9)Ct1,t2(i, j) = At2(i, j)∕At1(i),

was calculated for each habitat change from 2010 to 2011 
and from 2011 to 2012 in three reaches.

To understand the habitat changes (or lack thereof) over 
several years, the rate of unchanged habitat for each type was 
also calculated by overlaying the habitat type classification 
images for each year using the following function:

where Utn(i) represents unchanged habitat type i over the 
period from t1 to tn.

Results and discussion

Land cover classification

All parameters of Eq. (4) were obtained from the DN dis-
tribution estimates for four bands as shown in Table 1 and 
Fig. 2. The correlations between each estimate and observa-
tion exceeded 0.90. High-resolution satellite images showed 
higher correlation coefficients and the highest value was 
obtained for bare alluvium, with a maximum of 0.99 (Fig. 2). 
The DN distribution of 50–100 randomly selected pixels of 
Fig. 2d is reflected in Fig. 2a–c, which was obtained after 
merging the frequency distribution of river water, vegetation 
and bare alluvium in the blue, red, green and NIR bands 
(Supplementary Fig. S1), and the frequency distribution of 
the blue, red, green and NIR bands for river water, vegeta-
tion and bare alluvium for the 2012 image (Supplementary 
Fig. S2).

According to the pixel-value distributions for the Rapi-
dEye satellite image obtained in 2012, the distributions of 
each class partially overlapped using both ISO-1 and ISO-2 
(Fig. 4). However, for ISO-1, the DN distributions of river 
water, vegetation, and bare alluvium totally overlapped, as 
DNs were plotted on the same line for the blue, green, and 
red bands, whereas ISO-2 did not show such an overlap. In 
addition, the pixel-value distributions for ISO-2 were closer 
to zero than those of ISO-1 when the estimation class was 
objective and the distributions were the same (Fig. 4). The 
plots of each land cover type for ISO-1 were similar, espe-
cially among neighboring bands, except for red and NIR. 

(10)Utn(i) = At1(i) ∩At2(i) ∩⋯∩Atn(i)∕At1(i),

Channels

Backwaters

Ponds

Bare 
alluvium

Vegetated 
island

- Vegetated island
- Bare alluvium

- Ponds
- Backwaters
- Channels

Vegetation

River water

Land cover

Alluvial 
habitats

Fluvial 
habitats

L Habitat types                           t

Bare alluvium

Fig. 3  Categorization of land cover and habitat types of the Taglia-
mento River

Table 1  Parameter estimates for 
the digital number correlation 
equation

Please refer to Eq. 4. The values of a, b, c and d correspond with those of the test sites as shown in the fig-
ure parts of Fig. 2

2010 2011 2012

a b c d a b c d a b c d

River water 0.71 0.36 − 0.20 − 0.19 0.38 0.68 0.08 0.00 0.94 0.20 − 0.09 − 933
Vegetation 0.12 0.93 0.08 − 566 0.19 0.64 0.08 784 − 0.06 1.07 0.08 1009
Bare alluvium 0.34 0.43 0.35 0.00 0.38 0.53 0.18 0.00 0.46 0.28 0.43 − 455
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This means that the classes cannot be effectively separated 
and thus linear plots make clustering difficult.

The differences in image classification based on the 
pixel-value distribution among input images, overlapping 
for ISO-1 and less overlapping (or no overlapping) for ISO-
2, were also supported by the higher κ-coefficient for ISO-2 
(Table 2). The κ-coefficient was greater than 0.89, exceeding 

a reference threshold of 0.80, indicating better efficiency 
for ISO-2 for all images obtained in 2010, 2011, and 2012. 
Hence, in this study, the distribution of pixels based on the 
newly developed method showed a better ability to isolate 
river water, vegetation, and bare alluvium land covers.

In the land cover classification results, the κ-coefficient 
exceeded 0.83, a sufficient threshold value, for ISO-1, ISO-2, 

Fig. 4  Pixel-value distribution in input images for 2012 using a the conventional ISODATA (ISO-1) and b the proposed ISODATA method 
(ISO-2) (the same numbers of pixel values were selected for comparison between a and b)

Table 2  Commission rate, omission rate, and κ-coefficient of land cover classification for each year

MLC-1 Conventional maximum-likelihood classification, ISO-1 conventional ISODATA method, ISO-2 proposed ISODATA method

2010 MLC-1 ISO-1 ISO-2

κ 87.6 83.1 89.9

Commission Omission Commission Omission Commission Omission

River water 0.6 4.5 33.7 6.1 1.4 3.0
Vegetation 2.0 14.4 2.9 19.9 1.2 11.9
Bare alluvium 17.9 0.0 1.5 0.1 15.0 0.0

2011 MLC-1 ISO-1 ISO-2

κ 97.0 95.6 98.7

Commission Omission Commission Omission Commission Omission

River water 0.0 2.0 11.1 1.7 0.2 2.3
Vegetation 0.3 3.1 0.7 5.0 0.6 0.7
Bare alluvium 4.5 0.0 0.1 0.2 1.4 0.0

2012 MLC-1 ISO-1 ISO-2

κ 95.1 93.1 95.6

Commission Omission Commission Omission Commission Omission

River water 0.1 3.2 16.0 2.5 0.1 4.2
Vegetation 1.3 5.0 1.1 7.4 0.9 4.0
Bare alluvium 7.4 0.1 0.0 0.8 7.0 0.0
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and MLC-1 (Table 2). The κ-values for ISO-2 were 0.89, 
0.98, and 0.95 for 2010, 2011, and 2012, respectively. Simi-
larly, the κ-values for MLC-1 were 0.87, 0.97, and 0.95 for 
2010, 2011, and 2012, respectively. The values of κ from the 
ISO-1 classification were 0.83, 0.95, and 0.93 for the same 
years, respectively.

The outputs obtained by image classification for ISO-1 
indicated that the river water data were overestimated and 
the boundaries between each land cover type were ambigu-
ous (Fig. 4). The boundaries among each land cover were 
clear in ISO-2 and MLC-1 (Fig. 4). The results for vegeta-
tion differed between ISO-2 and MLC-1. ISO-2 was appar-
ently able to estimate vegetation at a finer scale than MLC-1, 
especially in 2010 and 2011 (Fig. 4). Similar trends to those 
in reach II were found in reach I and III.

Therefore, the developed method (ISO-2) enables more 
accurate estimates of the land cover class without a repetitive 
data-selection training process than the conventional unsu-
pervised method (ISO-1), as the pixel values were clearly 
differentiable among river water, vegetation, and bare allu-
vium in the Tagliamento River. In addition, the accuracy of 

the newly developed method was high, i.e., greater than 89%. 
However, it is necessary to validate the efficiency of this new 
method for other land cover classes (e.g., urban areas), and 
the efficiency for the classification of types of soil, vegeta-
tion, and plants should be evaluated in further studies.

Spatiotemporal land cover changes

Referring to the land cover classification results, the land 
cover ratio and the unchanged area in the floodplain sur-
rounded by riparian forests were obtained from 2010 to 2012 
in the middle reaches of the Tagliamento River (Fig. 5). The 
presence of vegetation was relatively low in areas A and B in 
the upper part of the Tagliamento River and higher in area 
D, the middle part, which includes reach II. The presence of 
river water was higher in the middle region (namely, areas C, 
D, and E, which include reach I and II) than in other regions 
(Fig. 5a). The rate of unchanged river water in each area was 
also calculated (Fig. 5b) and was higher in area D for all 
periods from 2010 to 2011, 2011 to 2012, and 2010 to 2012, 
probably due to the presence of dead subchannels in reach II 

Fig. 5  Outputs obtained by the image classification of ISO-1, ISO-2, and conventional maximum-likelihood classification (MLC-1) from 2010 to 
2012 in reach II, and true-color RapidImage in 2012 (top right)
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(Moretto et al. 2013). In all areas, the unchanged area was 
greater for 2011 to 2012 than 2010 to 2011, and in the lower 
part (areas D, E, and F), the unchanged area decreased in the 
downstream direction for all periods.

Based on the composition of habitat types obtained 
from the land cover classification, the dominant habitat 
type was bare alluvium, covering 55–75% of each reach 
(Fig. 6). The unchanged area was highest for vegetated 
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Fig. 6a, b  Temporal shift of each habitat. a Composition of each land cover type in the middle of the Tagliamento River, and b unchanged river 
water in the middle of the Tagliamento River

Table 3  Annual habitat turnover from 2010 to 2011 and from 2011 to 2012

CH Channels, BW backwaters, PD ponds, VI vegetative islands, BA bare alluvium

Reach I September 2010 September 2011

September 2011 CH BW PD VI BA September 
2012

CH BW PD VI BA

CH 31.7 11.8 0.0 4.6 9.7 CH 55.7 38.9 31.6 3.2 14.1
BW 2.2 1.1 23.5 0.5 1.1 BW 4.2 12.8 21.1 0.2 1.2
PD 0.1 0.2 0.0 0.0 0.1 PD 0.0 0.0 0.0 0.1 0.1
VI 0.6 0.0 0.2 71.1 3.2 VI 0.2 0.4 0.0 90.3 3.1
BA 65.3 86.9 76.3 23.8 85.8 BA 39.9 47.9 47.4 6.2 81.6

Reach II September 2010 September 2011

September 2011 CH BW PD VI BA September 
2012

CH BW PD VI BA

CH 44.6 18.1 0.0 5.7 10.5 CH 64.5 48.5 0.0 2.5 12.6
BW 0.0 3.6 0.0 0.1 0.9 BW 1.3 0.0 0.0 0.0 0.1
PD 0.0 5.7 9.9 0.2 0.3 PD 0.1 0.0 17.8 0.1 0.8
VI 1.0 0.4 2.9 87.5 13.2 VI 1.5 0.0 7.9 91.4 5.3
BA 54.4 72.2 87.2 6.5 75.1 BA 32.7 51.5 74.3 6.0 81.2

Reach III September 2010 September 2011

September 2011 CH BW PD VI BA September 
2012

CH BW PD VI BA

CH 27.1 64 0.0 4.2 12.4 CH 56.8 39.6 0.0 3.9 16.9
BW 0.8 0.0 0.0 0.2 1.2 BW 1.5 14.1 0.0 0.0 0.8
PD 2.2 0.0 0.0 0.0 0.1 PD 0.0 0.0 20.3 0.0 0.3
VI 0.5 0.0 1.3 69.9 3.7 VI 0.2 0.0 0.0 78.5 0.7
BA 69.4 36 98.7 25.7 82.6 BA 41.5 46.2 46.2 17.6 81.3
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islands (19.4–26.5%) in reach II, and lowest (7.5–8.7%) in 
reach III. Table 3 shows the annual habitat turnover from 
2010 to 2011 and 2011 to 2012 in reaches I, II, and III, 
respectively. The unchanged area of fluvial habitats, such 
as channels, backwaters, and ponds, exhibited random pat-
terns in the three reaches. For instance, the unchanged area 
of channels was highest in reach I (31.7 and 55.7%), II 
(44.6 and 64.5%), and III (64 and 56.8%) for 2010 to 2011 
and 2011 to 2012 (Table 3).

The observed turnover was explained by two main fac-
tors, i.e., flooding, which usually occurs around ten times 
per year in the Tagliamento River, and gradual changes 
associated with the seasonal changes in discharge. These 
are both important processes determining habitat proper-
ties and faunal species richness (Benke et al. 2000; Tock-
ner et al. 2000). Since the RapidEye images used in this 
study were obtained within a half-month period each year, 
the extrapolation of the present results to other seasons 
should be done with care, as seasonal variation in vegeta-
tion has been reported in an earlier study in the Taglia-
mento River (Doering et al. 2007).

The unchanged area was highest for bare alluvium in 
reaches I and III and for vegetated islands in reach II (Fig. 6). 
For fluvial habitats, especially in channels, the unchanged 
area was highest in reach II. This is explained by the high 
proportion of unchanged area in the subchannel in reach II, 
i.e., 75% from 2010 to 2011 and 66% over 2 years, com-
pared with the averages of 33 and 20%  for all reaches, 
respectively. These surviving patches may serve as refuges 
for benthic macroinvertebrates during floods or increasing 
discharge. Such refuges play important roles in the recolo-
nization of newly formed habitats after a flood (Sedell et al. 
1990; Robertson et al. 1995; Winterbottom et al. 1997; Rem-
pel et al. 1999).

Variability in habitat abundance and channel com-
plexity is associated with changes in water and sediment 
supply, flooding, and vegetation-driven stabilization pro-
cesses (Kiss et al. 2008). According to the results of this 
study, the habitat distribution exhibits spatial and temporal 
changes, especially for fluvial habitats, while the compo-
sition of habitat types is roughly constant in the middle 
reaches of the Tagliamento. These findings are consistent 
with those of previous studies (Arscott et al. 2002; van 
der Nat et al. 2003). The high-resolution satellite image 
classification system developed in this study enables the 
continuous monitoring of the spatiotemporal dynamics of 
habitat structures at a larger spatial scale and a higher 
accuracy (> 89%) than those of field observations (Fig. 7).

Conclusion

The dynamics of habitat structures in floodplains located 
in the middle reaches of the Tagliamento River were 
estimated using high-resolution satellite images, i.e., 
multi-spectral images of RapidEye at a spatial resolu-
tion of 5 m. This estimation facilitates discussion of the 
annual turnover of floodplain habitat structure from 2010 
to 2012. A major advantage of the image classification 
method developed in this study is that it does not require 
empirical training with data and additional observations 
while covering the changes in habitat structure at such a 
large spatiotemporal scale with high resolution; hence, it is 
relatively simple, easy to implement, and accurate (> 89%) 
compared to the conventional method. The specific conclu-
sions of this study are as follows.

Fig. 7  Unchanged rate (%) of 
each habitat type from 2010 to 
2012

Unchanged rate (%)

=
1( ) ∩ 2( ) ∩ ⋯∩ ( )

1( )
∗ 100

where 1( ) is the total area of habitat type(i) 
on t1 (=2010).

Habitat at 2010 is considered as unchanged 
and is set as 100%. 

Please refer to equation 10 for details
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• Three classes of land cover in the Tagliamento River 
floodplain were identified: river water, vegetation, and 
bare alluvium.

• The unchanged area of vegetation was relatively small 
in the lower part and bigger in the middle part of the 
river, and unchanged river water was higher in the mid-
dle part of the Tagliamento River. In all areas, the rate 
of unchanged habitat was greater for 2011–2012 than for 
2010–2011.

• The dominant habitat type was bare alluvium, covering 
55–75% of each reach. The rate of unchanged vegetated 
islands was highest (19.4–26.5%) in reach II and lowest 
(7.5–8.7%) in reach III. Unchanged habitat was highest 
for bare alluvium and vegetated islands.

• The habitat distribution exhibited spatial and temporal 
changes, especially for fluvial habitats. The composition 
of habitat type was preserved in the middle reaches of the 
Tagliamento River.

• For future research, since the resolution and observation 
frequency of satellite images are constantly improving, 
the detailed and comprehensive monitoring of habitat 
structures, especially in urban areas, and the classifi-
cation of soil, vegetation, and plant types are recom-
mended. More effective river-floodplain monitoring 
could be developed by integrating the accurate method 
developed in this study, images with a higher resolution, 
and field observations.
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