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Abstract Evergreen conifers Abies mariesii and

A. veitchii codominate in the subalpine zone in central

Japan. This study compared the photosynthetic light

response curves and related leaf traits of 1-year-old needles

between the two species to examine whether photosyn-

thetic traits of A. veitchii are more favorable for growth in

bright conditions than those of A. mariesii. Saplings of the

two species were sampled at forest edge (FE) and forest

understory (FU). FE saplings of the two species showed

more shade-intolerant traits (i.e., lower initial slope of

photosynthesis light response curve, greater light com-

pensation point and dark respiration rate) than FU saplings.

Maximum photosynthetic rate and leaf nitrogen concen-

tration were greater in A. veitchii than A. mariesii for both

FE and FU saplings. Photosynthetic nitrogen use efficiency

(PNUE) was also greater in A. veitchii than A. mariesii. On

the contrary, leaf mass per area was greater in A. mariesii

than A. veitchii for both FE and FU saplings. Therefore,

this study showed that photosynthetic traits of A. veitchii

are more favorable for growth in bright conditions com-

pared with A. mariesii, and A. mariesii has more robust

needles at the expense of PNUE.

Keywords Leaf mass per area � Leaf nitrogen
concentration � Photosynthetic light response curve �
Photosynthetic nitrogen use efficiency � Shade tolerance

Introduction

Evergreen conifers Abies mariesii Mast. and A. veitchii

Lindl. codominate in the subalpine zone in central Japan

(Takahashi 1962; Franklin et al. 1979; Aizawa and Kaji

2003; Miyajima et al. 2007). Many studies have investi-

gated the regeneration process of the two Abies species.

A. veitchii is less shade tolerant with shorter leaf lifespan

than A. mariesii, and grows faster than A. mariesii in bright

conditions (Kohyama 1983, 1984). Therefore, A. veitchii

dominates after large-scale disturbances, such as wave-re-

generated forests, by regenerating from newly established

seedlings, while A. mariesii dominates forests where small-

scale disturbances frequently occur by regenerating from

advanced saplings existing before gaps in the forest are

created (Kohyama 1984). Therefore, difference in shade

tolerance between the two Abies species is important for

their regeneration and coexistence (Kohyama 1984).

Photosynthetic characteristics and related leaf traits are

important factors affecting shade tolerance of plants. In

general, shade-tolerant species show higher initial slope of

the light response curve of photosynthesis and lower light

compensation point (LCP), but lower photosynthetic rate in

light-saturated conditions, compared with shade-intolerant

species (Koike 1988). Leaf mass per area (LMA) is thought

to be an indicator of leaf construction cost per leaf area

(Kudo 1999). Generally, LMA correlates positively with

leaf lifespan (Reich et al. 1992); i.e., long-lived leaves

need robust structure. Photosynthetic production during

leaf lifespan must be greater than the leaf construction cost
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for positive carbon balance at the level of individual leaves.

Leaf nitrogen concentration is a good indicator of maxi-

mum photosynthetic rate (or assimilative capacity),

because photosynthetic enzymes, such as RuBP carboxy-

lase, contain large quantities of nitrogen in leaves (Ells-

worth and Reich 1992, 1993). In particular, photosynthetic

nitrogen use efficiency (PNUE) is an important index

because nitrogen is a limiting resource for plant growth

(Hirose 1987; Hirose and Werger 1987). Early successional

species tend to have lower LMA but greater nitrogen

concentration and PNUE (Poorter et al. 1990; Reich et al.

1991, 1994; Hikosaka et al. 2002).

Kuroiwa (1960) showed that the maximum photosyn-

thetic rate and leaf nitrogen concentration were greater in

A. veitchii than A. mariesii. By contrast, Kimura (1963)

showed that the maximum photosynthetic rate did not

differ between the two Abies species, although the photo-

synthetic rate of A. mariesii was greater than that of

A. veitchii in dark conditions. No further studies have

compared the photosynthetic light response curve and

related leaf traits between the two Abies species. Therefore,

the objective of this study was to examine whether pho-

tosynthetic traits of A. veitchii are more favorable for

growth in bright conditions than those of A. mariesii by

comparing the photosynthetic light response curve, leaf

nitrogen concentration, LMA, and PNUE between the two

Abies species.

Materials and methods

Study site

This study was conducted at 2000 m above sea level on the

east slope of Mt. Norikura (36�060N, 137�330E, 3026 m

a.s.l.) in central Japan. A. veitchii and A. mariesii dominate

between 1600 and 2000 m a.s.l. and between 2000 and

2500 m a.s.l., respectively (Miyajima et al. 2007). The two

Abies species codominate around 2000 m a.s.l. The mean

monthly temperatures of the coldest month (January) and

the hottest month (August) at the study site (2000 m a.s.l.)

were estimated as –9.2 and 14.9 �C, respectively, with

annual mean temperature of 2.7 �C, from temperatures

recorded at Nagawa Weather Station (1068 m a.s.l.) during

1979–2011 using the standard lapse rate of –0.6 �C for

each ?100 m altitude. The soil type was Gleyic Cambisols

(Oura 2010), covered with a thick litter layer.

The study site was dominated by A. mariesii, A. veitchii,

and Tsuga diversifolia Mast. Although Picea jezoensis var.

hondoensis Rehder also grows at this study site, its density

was lower than for the other three species (Miyajima et al.

2007). Subordinate trees were all deciduous broadleaved

trees: Betula ermanii Cham., Sorbus commixta Hedland,

and Acer ukurunduense Trantv. et Meyer. The canopy

height was about 20 m. The species composition and forest

structure along an altitudinal gradient of Mt. Norikura has

been previously described (Miyajima et al. 2007; Miyajima

and Takahashi 2007; Takahashi et al. 2012).

Field sampling

A paved road for vehicles continues up to 2700 m a.s.l. on

Mt. Norikura (Takahashi and Miyajima 2010). Only a

limited number of vehicles with entry passes can use this

road. Effects of the vehicle road on tree growth have not

been recognized so far (Ida and Ozeki 2000). Therefore, we

chose a forest edge (FE) at the roadside and the nearby

intact forest understory (FU) at the same altitude (2000 m

a.s.l.) to compare photosynthetic traits between sun-ex-

posed and shaded leaves of saplings. Relative photosyn-

thetic photon flux density (PPFD, mean ± standard

deviation) values measured on a cloudy day (26 September

2013) by using a quantum sensor (model LI-190SL, Li-Cor

Biosciences, Lincoln, NE, USA) were 89.4 ± 15.6 and

14.0 ± 4.2 % at the FE and FU sites, respectively.

About ten saplings (30–50 cm tall), including roots,

were dug up at each of the FE and FU sites for each species

in the morning during 23–27 August and 6–8 September

2013. Sampled saplings were put in a bucket filled with

water after soil on the roots was washed out and were

brought to the Norikura Observatory (2800 m a.s.l.),

Institute for Cosmic Ray Research, The University of

Tokyo, about 3 km from the sampling site in horizontal

distance, to measure the photosynthetic rates.

Leaf measurements

The photosynthesis of the two Abies species was measured

by using a portable photosynthesis system (model LI-6400,

Li-Cor Biosciences, Lincoln, NE, USA) equipped with a

conifer chamber, including an RGB light source (6400-

22L). Incoming CO2 gas concentration from a CO2 car-

tridge was set to 380 ppm. The leaf temperature was

maintained at 20 �C, and the relative humidity ranged

between 50 and 75% during the measurement. The number

of shoots used for the measurement was 9 and 10 for FE

and FU saplings of A. veitchii, respectively, and 13 and 8

for FE and FU saplings of A. mariesii, respectively. In this

study, only 1-year-old shoots were used to measure the

photosynthesis of each sapling because current-year shoots

are immature in midsummer, and photosynthetic rate and

leaf survival rate decrease with leaf age (Kajimoto 1990;

Kitajima et al. 1997). Photosynthesis was measured at 12

light levels of PPFD of 2000, 1750, 1500, 1250, 1000, 750,

500, 250, 150, 100, 50, and 0 lmol m-2 s-1.
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The needles used to measure the photosynthesis were

scanned, then the total area of needles was measured from

the image using the NIH image program (developed at the

U.S. National Institutes of Health and available on the

Internet at http://rsb.info.nih.gov/nih-image/). Needles

were oven-dried at 80 �C for at least 48 h then weighed.

The LMA was calculated as the needle dry mass divided by

the needle area. After the measurements of needle dry

mass, the needles were ground into fine powder. The leaf

nitrogen concentration was measured by using an ele-

mental analyzer (Thermo Finnigan Flash EA 1112, Thermo

Fisher Scientific Inc., Waltham, MA, USA) after oven-

drying the powder samples for 24 h.

We determined the maximum photosynthetic rate, dark

respiration rate, light compensation point, and initial slope

of each light response curve of photosynthesis on leaf area

basis. The dark respiration rate was measured as the net

photosynthetic rate at PPFD 0 lmol m-2 s-1. Because

there was a decline in the net photosynthetic rate when the

PPFD exceeded 1000 lmol m-2 s-1, the maximum net

photosynthetic rate was defined as the highest measured

photosynthesis rate. The net photosynthetic rate increased

linearly from PPFD 0 to 100 lmol m-2 s-1. Therefore, the

LCP and initial slope of the light response curve were

estimated using linear regression in the PPFD range from 0

to 100 lmol m-2 s-1. The photosynthetic nitrogen use

efficiency (PNUE) was calculated by dividing the maxi-

mum photosynthetic rate by the leaf nitrogen content per

leaf area.

Statistical analyses

The maximum net photosynthetic rate, leaf nitrogen con-

centration, dark respiration rate, light compensation point,

initial slope of the light response curve, LMA, and PNUE

were compared between FE and FU saplings of the two

species by two-way analysis of variance (ANOVA) with

species and light condition (FE and FU) as independent

variables. Statistical analysis was carried out using free

statistical software R 2.14.2 (R development core team

2012).

Results

The net photosynthetic rate declined when PPFD exceeded

750 lmol m-2 s-1 in both A. veitchii and A. mariesii

saplings (Fig. 1). The net photosynthetic rate was highest

between PPFD 500 and 750 lmol m-2 s-1 for both FE and

FU saplings of A. veitchii, while it was highest between

PPFD 250 and 750 lmol m-2 s-1 for saplings of A. mar-

iesii. The net photosynthetic rate above PPFD

1000 lmol m-2 s-1 tended to be slightly greater for FE

than FU saplings, while the net photosynthetic rate below

PPFD 300 lmol m-2 s-1 tended to be greater for FU than

FE saplings in both species.

The maximum net photosynthetic rate (Pmax) was

greater in A. veitchii than in A. mariesii for both FE and

FU saplings (P\ 0.001, Figs. 1, 2a; Table 1). The dark

respiration rate (R) was greater for FE than FU saplings of

the two Abies species (P\ 0.05), and was greater in

A. mariesii than A. veitchii for each of FE and FU saplings

(P\ 0.05, Fig. 2b; Table 1). The light compensation point

(LCP) showed a pattern similar to the dark respiration rate;

i.e., the LCP was greater for FE than FU saplings of the

two Abies species (P\ 0.01), and was greater in A. mar-

iesii than A. veitchii for each of FE and FU saplings

(P\ 0.05, Fig. 2c; Table 1). The initial slope of the light

response curve (IS) tended to be lower in FE than FU

saplings for the two species (P\ 0.05), and there was no

statistical significant difference between the two Abies

species for each of FE and FU saplings (Fig. 2d; Table 1).

LMA was greater for FE than FU saplings of the two

Abies species (P\ 0.001), and was greater in A. mariesii

than A. veitchii for each of FE and FU saplings (P\ 0.001,

Fig. 2e; Table 1). Leaf nitrogen content per mass (Nmass)

was greater in A. veitchii than A. mariesii (P\ 0.001),

especially for FU saplings [Fig. 2f; Table 1, P\ 0.001

(S 9 L)]. Leaf nitrogen content per area (Narea) was

slightly greater in A. veitchii than A. mariesii (P\ 0.05),

and showed no statistically significant difference between

FE and FU saplings for each species (Fig. 2g; Table 1).

The species difference of Narea was apparently smaller than

that of Nmass, because greater LMA counterbalanced lower

Nmass for A. mariesii compared with A. veitchii (Fig. 2e–

g). Therefore, photosynthetic nitrogen use efficiency

(PNUE) was greater in A. veitchii than A. mariesii

(P\ 0.01), and showed no statistical significant difference

between FE and FU saplings (Fig. 2h; Table 1).

LMA was negatively correlated with Nmass for the

pooled data of the FE and FU saplings of the two Abies

species (R = -0.605, P\ 0.001, Fig. 3a). Although

PNUE was weakly negatively correlated with LMA for the

pooled data of the FE and FU saplings of the two Abies

species (R = -0.308, P = 0.053), PNUE was clearly

negatively correlated with LMA only for the FE saplings of

the two Abies species (R = -0.595, P\ 0.01, Fig. 3b).

Discussion

This study showed that the photosynthetic traits of

A. veitchii were more favorable for growth in bright con-

ditions compared with A. mariesii. Greater maximum

photosynthetic rates of A. veitchii than A. mariesii coin-

cided with the result of Kuroiwa (1960). Species with
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greater maximum photosynthetic rates tend to have greater

growth rates at whole plant level (Reich et al. 1992).

Actually, A. veitchii grows faster than A. mariesii in bright

conditions (Kohyama 1983). Greater leaf nitrogen con-

centration and PNUE of A. veitchii probably contribute to

the greater maximum photosynthetic rate compared with

A. mariesii. The difference in PNUE between the two

Abies species can be caused by the species difference in

LMA. First, more nitrogen is used for leaf construction in

leaves with greater LMA (Hikosaka 2004). Second, the

increase in LMA lengthens the internal diffusion pathway

to chloroplasts, which decreases the CO2 supply to

chloroplast (Sparks and Ehleringer 1997; Niinemets et al.

1999; Takahashi and Mikami 2006; Takahashi and Miya-

jima 2008; Takahashi and Otsubo 2017). Generally, LMA

is positively and negatively correlated with leaf lifespan

and leaf nitrogen concentration, respectively (Reich et al.

1992). This indicates that long-lived leaves with greater

LMA need more carbon investment to increase mechanical

stiffness. Mean leaf lifespans (50 % survival) of A. veitchii

and A. mariesii are about 6–7 and 7–8 years, respectively

(Mori and Takeda 2004; Takahashi and Obata 2014).

Probably, A. mariesii needs to increase the mechanical

stiffness (i.e., LMA) of needles to maintain its longer-lived

needles compared with A. veitchii. Therefore, PNUE was

lower in A. mariesii probably because of its greater LMA

than in A. veitchii.

In general, species with greater maximum photosynthetic

rate tend to have greater dark respiration rate and light

compensation point (Koike 1988). However, A. mariesii

with lower maximum photosynthetic rate tended to have

greater dark respiration rate and light compensation point

compared with A. veitchii for both FE and FU saplings. If

this result were true, it would be expected that A. mariesii

would be an inferior species to A. veitchii in both dark and

bright conditions, and A. mariesii would be competitively

excluded by A. veitchii. However, this expectation is not

plausible because A. mariesii and A. veitchii actually

coexist (Kohyama 1984). Probably, physiological stresses

at sampling caused the unusual increase of the dark respi-

ration rate and LCP of A. mariesii. Therefore, we should

reexamine the photosynthetic light response curves of the

two Abies species. On the contrary, Takahashi and Obata

(2014) examined the net production and carbon allocation

patterns of saplings of four subalpine conifers including

A. veitchii and A. mariesii at 2000 m a.s.l. on Mt. Norikura

(i.e., the same site as in this study). They showed that

understory saplings of A. mariesii can survive with less net

production per sapling leaf mass compared with those of

A. veitchii because of greater sapling leaf mass and longer

leaf lifespan in A. mariesii than A. veitchii. Kohyama

(1983) also showed that A. mariesii can survive with

smaller critical growth rate than A. veitchii for seedlings

after age 3 because of longer leaf lifespan in A. mariesii.

The results of these two previous studies indicate that less

requirement of photosynthetic production enables seedlings

(older than age 3) and saplings of A. mariesii to survive in

the forest understory for longer time compared with

A. veitchii. Therefore, it is suggested that not only photo-

synthetic traits but also leaf lifespan and sapling leaf mass at

whole plant level largely reflect the species difference in

shade tolerance between the two Abies species (Takahashi

and Obata 2014).

This study showed that the photosynthetic traits of

A. veitchii were more favorable for growth in bright con-

ditions by having greater maximum photosynthetic rate,

leaf nitrogen content per both leaf mass and area, and

PNUE compared with A. mariesii, and that A. mariesii has

more robust needles at the expense of PNUE to increase the

mechanical stiffness. Therefore, it is suggested that pho-

tosynthesis and related leaf traits are important for the

regeneration traits of the two Abies species.

Fig. 1 Light response curves of

net photosynthetic rate of Abies

veitchii (a) and A. mariesii

(b) for forest edge (FE) saplings
(open symbols, dotted lines) and

forest understory (FU) saplings

(solid symbols, solid lines).

Mean (±standard error, SE)

value is shown at each PPFD for

each species. The number of

samples was 9 and 10 for FE

and FU saplings of A. veitchii,

respectively, and 13 and 8 for

FE and FU saplings of

A. mariesii, respectively
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Fig. 2 Photosynthetic and leaf

traits of Abies veitchii and

A. mariesii for forest edge

saplings (FE, lightly shaded

bars) and forest understory

saplings (FU, darkly shaded

bars): maximum net

photosynthetic rate (Pmax, a),
dark respiration rate (R, b), light
compensation point (LCP, c),
initial slope of light response

curve of net photosynthesis (IS,

d), leaf mass per area (LMA, e),
leaf nitrogen content per leaf

mass (Nmass, f), leaf nitrogen
content per leaf area (Narea, g),
and photosynthetic nitrogen use

efficiency (PNUE, h). Mean

values are shown with positive

standard errors. Table 1

summarizes the two-way

ANOVA

Table 1 Summary of two-way

ANOVA of effects of species

(S), light condition (L), and their

interaction (S 9 L) on

photosynthesis and leaf traits

Factor Dependent variable

Pmax R LCP IS LMA Nmass Narea PNUE

S 18.77*** 4.67* 5.32* 1.88 16.05*** 56.71*** 6.94* 7.79**

L 0.5 6.94* 11.84** 4.93* 21.39*** 29.57*** 0.27 0.79

S 9 L 0.47 0.03 0.13 0.84 0.6 12.85*** 2.03 0.14

F values are shown with the level of statistical significance. Abbreviations of dependent variables are as in

Fig. 2

* P\ 0.05, ** P\ 0.01, *** P\ 0.001
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