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Abstract In this study, we evaluated methods for reliably

estimating leaf area index (LAI) and gap fraction in two

different types of broad-leaved forests by the use of air-

borne light detection and ranging (LiDAR) data. We

evaluated 13 estimation variables related to laser height,

laser penetration rate, and laser point attributes that were

derived from LiDAR analyses. The relationships between

LiDAR-derived estimates and field-based measurements

taken from the forests were evaluated with simple linear

regressions. The data from the two forests were analyzed

separately and as an integrated dataset. Among the laser

height variables, the coefficient of variation (CV) of all

laser point heights had the highest level of accuracy for

estimating both LAI and gap fraction. However, we rec-

ommend that more evaluations be conducted prior to the

use of CV in forests with complex structures. The simplest

laser penetration variable, which represents the ratio of the

number of ground points to the total number of all points

(PALL), also had a high level of accuracy for estimating

LAI and gap fraction at the study sites regardless of whe-

ther the data were analyzed separately or as an integrated

data set. Furthermore, PALL values showed near 1:1 rela-

tionships with the field-based gap fraction values. Hence,

the use of PALL may be the most practical for estimating

LAI and gap fraction in broad-leaved forests, even when

the canopies are heavily closed.

Keywords Airborne laser scanner � Warm-

temperate forest � Closed canopy � Laser penetration
variable � Stable estimation method

Introduction

Forest leaf area index (LAI) and gap fraction are two

important parameters that are used to describe forest

structure. The LAI, which is defined as one half of the total

leaf area per unit ground surface area (Jonckheere et al.

2004), correlates closely to the functions of photosynthesis

and evapotranspiration, and it is used to model many

processes related to carbon exchange and the regulation of

climate by forests (Jonckheere et al. 2004; Hardin and

Jensen 2007). Gap fraction, which represents the propor-

tion of the forest canopy open to the sky and is the com-

plement of canopy fractional cover, correlates closely to

the penetration of solar radiation that affects the growth of

forest biota such as seedlings (Nakamura et al. 2004). The

accurate estimation of LAI and gap fraction is important

for proper management to maximize and enhance the

functions of forests. Unfortunately, costly and time-con-

suming field surveys are needed to estimate these param-

eters and these surveys can only be conducted over a

limited spatial extent.

Remote sensing technology offers a cost-effective

method for surveying wide areas of land. A number of

research studies, using satellite and airborne passive optical
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remote sensing systems, have reported estimates of forest

LAI and gap fraction (or fractional cover). Many

researchers have used vegetation indices such as the nor-

malized differential vegetation index (NDVI) (e.g., Nemani

and Running 1989; Spanner et al. 1990; Chen and Cihlar

1996; Carlson and Ripley 1997; Cohen et al. 2003;

Colombo et al. 2003). However, measurements collected

by these passive optical remote sensing technologies have

several disadvantages. For example, forestry data collected

by passive remote sensing technology can be influenced by

solar elevation angles and weather conditions, and such

data often underestimate true LAI values because many of

the vegetation indices become saturated at high levels of

forest biomass and LAIs (Chen and Cihlar 1996).

Light detection and ranging (LiDAR) is an active remote

sensing technology that directly obtains the distance

between the sensor and a target surface by emitting laser

pulses and determining the elapsed time between the

emission and arrival of the signal (Lefsky et al. 2002). The

use of LiDAR technology has increased greatly since the

1990s. One of the most important advantages of using

LiDAR in forested areas is that the technology can acquire

important data such as ground elevation inside the forest by

penetrating the tree canopy. In other words, unlike passive

optical remote sensing technologies, LiDAR instruments

can acquire vertical, in addition to horizontal, information

about the forest. Furthermore, measurements using LiDAR

are less susceptible to shadows and weather conditions

(Baltsavias 1999). Accordingly, the use of LiDAR tech-

nology could be very beneficial for deriving a cost-effec-

tive description of complex forest structures (Nelson et al.

1988; Lefsky et al. 2002).

Previous LiDAR-based studies have estimated forest

structure parameters such as forest height (Popescu et al.

2002; Coops et al. 2007), biomass (Lim and Treitz 2004;

Næsset and Gobakken 2008), and timber volume (Packalén

and Maltamo 2006; Donoghue et al. 2007). Several studies

have also estimated forest LAI, gap fraction, and fractional

cover using various indices derived from LiDAR data such

as laser height metrics and laser penetration rates of the

canopy (Riaño et al. 2004; Morsdorf et al. 2006; Sasaki

et al. 2008; Richardson et al. 2009).

A few studies have attempted to establish regional scale

LiDAR models that would be applicable for use over two

or more forested areas. Jensen et al. (2008) estimated LAIs

in two conifer forests using LiDAR and SPOT5 data, and

found that LiDAR-only models can account for a signifi-

cant amount of the variation in field-based LAI measure-

ments for individual study areas and also when generalized

over larger regions. Hopkinson and Chasmer (2009) tested

models to estimate fractional cover across multiple forests

using LiDAR-based metrics related to the laser penetration

of canopies. While these studies are valuable, more studies

of this nature are needed to validate the use of this prom-

ising technology for regional forestry applications. Espe-

cially, more studies are needed from different types of

forests for the establishment of robust LiDAR estimation

methods.

The development of LiDAR estimation methods for

broad-leaved forests, which are common in Japan, has been

limited. In this study, we targeted two broad-leaved forests

in Japan and aimed to establish robust methods for esti-

mating LAI and gap fraction values that would be appli-

cable for use in different types of broad-leaved forests. This

was accomplished by comparing 13 LiDAR estimation

variables related to laser height, laser penetration rate, and

laser point attributes to field-based measurements of LAI

and gap fraction.

Methods

Study sites

The study area was comprised of two distinct forests in the

Kansai region of Japan (Fig. 1). Both forests were located

in the warm-temperate zone where the climax vegetation

consisted of evergreen broad-leaved trees.

The Expo ‘70 Commemorative Park (135�310320E,
34�470480N) is located in Suita City, Osaka Prefecture.

After the World Exposition in 1970, the site was covered

with imported local soils from the neighboring hills. The

park was re-vegetated over a period from 1972 to 1976

(Morimoto et al. 2006) with evergreen broad-leaved trees

and some deciduous broad-leaved trees. Presently, more

than 30 years after the reclamation, the planted trees have

reached heights of up to 20 m. The main tree species

include Quercus glauca, Cinnamomum camphora, and

Castanopsis cuspidata in the evergreen stands, and Quer-

cus serrata, Quercus acutissima, and Prunus jamasakura in

the deciduous stands. The ground elevation of the park

varies moderately between 40 and 61 m above sea level.

The area of the evergreen broad-leaved forest covers

approximately 0.291 km2, and the area of deciduous broad-

leaved forest covers approximately 0.045 km2.

Constructed in 1655, the Shugakuin Imperial Villa

(135�480E, 35�030N) is located in the city of Kyoto, Kyoto

Prefecture. The mountainous forest surrounding the villa

was incorporated into the design of the villa’s gardens as

‘‘borrowed scenery,’’ and it is managed for aesthetic pur-

poses. This forest covers an area of approximately

0.544 km2, and it has a complex topography that varies

between 100 and 343 m above sea level. For our research,

we targeted the broad-leaved stands in the forest that

consisted primarily of deciduous tree species including

Quercus serrata, Quercus variabilis, and Ilex pedunculos,
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and a few evergreen species including Quercus glauca and

Cleyera japonica.

Hereafter, we refer to the Expo ‘70 Commemorative

Park as the ‘‘Expo ‘70 park,’’ and the mountainous forest

surrounding the Shugakuin Imperial Villa as the ‘‘Shu-

gakuin forest.’’

Field data collection

We established 23 study plots in the Expo ‘70 park (E1–

E23) and 17 plots in the Shugakuin forest (S1–S17) (Fig. 1;

Table 1). The plot sizes ranged from 100 m2

(10 m 9 10 m) to 400 m2 (20 m 9 20 m) depending on

the tree density and the topography of the stands. Hemi-

spherical photographs were taken at five or more points in

each plot using a digital Coolpix 995 camera (Nikon Co.,

Tokyo, Japan) equipped with a FC-E8 fish-eye lens (Nikon

Co.) leveled on a tripod 1.3 m above the ground. We

avoided large trees that were nearby when taking field

measurements to prevent their irregular influence. We took

at least three photographs with different exposures at each

measurement point, and used the most representative

photograph (i.e., the one that had a good contrast between

the sky and foliage) in our analyses. The measurements

were conducted during overcast weather conditions

between the months of July and September in 2008. The

locations of all of the plots were determined using a GPS

system (GPS Pathfinder ProXH, Trimble Navigation Ltd.,

California, USA) and a pocket compass (Tracon LS-25,

Ushikata Co., Yokohama, Japan). Because of the steeper

terrain in the Shugakuin forest, the slope for each plot was

measured at the center of the plot to take into consideration

the influence of topography.

The gap fraction was calculated from photographs using

CanopOn 2 software (Takenaka 2009). This software

divides a hemispherical photograph into 11 annulus rings

that are split at 8.6�, 16.0�, 24.3�, 32.4�, 40.9�, 49.9�, 57.8�,
65.0�, 73.2�, 81.7�, and 90.0�. The software calculates 11

gap fraction values according to integrated annuli from

0–8.6� to 0–90.0�. We calculated the gap fraction within

the range that was not influenced by topography in each

plot.

The effective LAI values were calculated for each

integral annulus with a program that calculates LAI values

using an assumption of a spherical leaf angle distribution

based on that of Norman and Campbell (1989). The

effective LAI is the value of the LAI when the canopy is

assumed to be randomly distributed (Jonckheere et al.

2004). For broadleaf canopies, the effective LAI is often

adopted as a substitute for the true LAI (e.g., Muraoka and

Koizumi 2005; Riaño et al. 2004). Hereafter, we report the

calculated effective LAI simply as the LAI.

Fig. 1 Locations of the study

sites and plots where field

measurements were taken
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Table 1 Field inventory and

results of ground-based

measurement in each plot with

the annulus range of 0–32.4�

Scientific names after Satake

et al. (1989)

Plot Dominant species LAI Gap fraction

Mean SD Mean SD

Expo ‘70 park

E1 Quercus phillyraeoides A. Gray 4.81 0.35 0.076 0.012

E2 Quercus phillyraeoides 5.70 0.34 0.048 0.007

E3 Cinnamomum camphora (L.) Presl, Quercus glauca Thunb. ex

Murray

4.92 1.30 0.095 0.037

E4 Castanopsis cuspidata (Thunb. ex Murray) Schottky, Quercus

glauca

5.74 0.64 0.055 0.014

E5 Ulmus parvifolia Jacquin, Celtis sinensis Pers. var. japonica

(Planch.) Nakai

5.34 1.24 0.073 0.025

E6 Machilus thunbergii Sieb. Et Zucc., Quercus myrsinifolia Blume 5.86 0.97 0.049 0.013

E7 Quercus glauca, Machilus thunbergii 6.94 0.71 0.029 0.010

E8 Prunus 9 yedoensis Matsumura 1.58 0.44 0.446 0.074

E9 Castanopsis sieboldii (Makino) Hatusima ex Yamazaki et Mashiba,

Celtis sinensis var. japonica

6.65 0.41 0.035 0.009

E10 Quercus glauca, Quercus phillyraeoides 5.04 0.72 0.070 0.026

E11 Quercus phillyraeoides 4.80 0.30 0.082 0.010

E12 Quercus acutissima Carruthers 3.98 0.24 0.140 0.009

E13 Quercus glauca, Cinnamomum camphora 5.91 0.86 0.050 0.016

E14 Quercus serrata Thunb. ex Murray 3.12 0.46 0.191 0.028

E15 Quercus acutissima, Prunus jamasakura Sieb. ex Koidz 3.39 0.61 0.166 0.045

E16 Quercus glauca, Cinnamomum camphora 5.14 0.82 0.071 0.011

E17 Quercus glauca, Ligustrum japonicum Thunb. 5.26 0.58 0.063 0.014

E18 Castanopsis cuspidata, Machilus thunbergii 5.61 0.53 0.054 0.008

E19 Machilus thunbergii, Quercus glauca 5.12 0.43 0.069 0.011

E20 Quercus phillyraeoides 5.03 0.52 0.077 0.010

E21 Quercus serrata, Prunus jamasakura 3.71 1.22 0.162 0.069

E22 Quercus serrata, Prunus jamasakura 2.82 0.47 0.215 0.045

E23 Cinnamomum camphora 4.44 0.34 0.099 0.013

Shugakuin forest

S1 Ilex pedunculosa Miq. 4.36 0.49 0.102 0.020

S2 Ilex pedunculosa, Lyonia ovalifolia (Wall.) Drude var. elliptica

(Sieb. Et Zucc.) Hand.—Mazz

3.97 0.72 0.138 0.043

S3 Quercus variabilis Blume, Quercus glauca 5.84 0.90 0.057 0.019

S4 Quercus serrata, Quercus acutissima 5.30 0.26 0.068 0.009

S5 Ilex pedunculosa, Quercus serrata 5.59 0.27 0.052 0.007

S6 Symplocos prunifolia Sieb. et Zucc., Ilex pedunculosa 4.78 0.51 0.092 0.013

S7 Cleyera japonica Thunb., Ilex pedunculosa 4.13 0.60 0.110 0.038

S8 Ilex pedunculosa, Acanthopanax sciadophylloides Franch. et Savat. 4.65 0.36 0.099 0.015

S9 Ilex pedunculosa, Photinia glabra (Thunb.) Maxim. 4.42 0.98 0.115 0.036

S10 Cleyera japonica 3.78 0.54 0.139 0.036

S11 Quercus serrata 7.46 1.43 0.029 0.011

S12 Acanthopanax sciadophylloides 2.95 1.03 0.230 0.137

S13 Quercus variabilis, Quercus glauca 5.87 0.81 0.060 0.015

S14 Quercus acutissima, Evodiopanax innovans (Sieb. et Zucc.) Nakai 4.59 0.96 0.097 0.042

S15 Quercus acutissima, Carpinus laxiflora (Sieb. et Zucc.) Bl. 5.62 1.37 0.063 0.035

S16 Quercus glauca 5.04 1.31 0.083 0.031

S17 Prunus jamasakura 4.18 1.93 0.163 0.124
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LiDAR data collection and processing

The airborne LiDAR data were collected over the study

areas using a RIEGL LMS-Q560 sensor (Riegl Laser

Measurement Systems GmbH, Horn, Austria) mounted on

a helicopter platform on July 23, 2008 (Shugakuin forest)

and August 22, 2008 (Expo ‘70 park). This system projects

near-infrared laser beams (1,550 nm) and records the full

waveform of the reflection. The pulse frequency was

150 kHz and the scanning angle was ±30�. The flying

height was 300 m above ground level and the beam

divergence was 0.5 mrad, yielding a ground footprint of

approximately 0.15 m in diameter. The flight speed was

around 92.6 km h-1. A back-and-forth flight pattern was

conducted to survey the entire area.

The full-waveform data from the entire area were

converted into discrete points using the RiANALYZE

software of RIEGL (RIEGL Laser Measurement Systems

GmbH, 2009) by the Nakanihon Air Service Co., Ltd.,

Japan. This software detects local amplitude maxima

above a certain threshold value by applying Gaussian

pulse estimation. All of the created points have x, y, and

z coordinate values and any of the following attributes:

‘‘first,’’ ‘‘intermediate,’’ ‘‘last,’’ or ‘‘only’’ returns. The

attributes ‘‘first,’’ ‘‘intermediate,’’ and ‘‘last’’ returns refer

to the order in which the projected laser hits the canopy

components while passing through the canopy. If all of

the energy of a projected laser is returned at the same

time, it is recorded as an ‘‘only’’ return. All created

points have intensity values representing the reflected

pulse energy amplitude.

Terrascan software (TerraSolid Ltd., Helsinki, Finland)

was used for processing the point cloud data. For all points,

we derived the height above the ground using a 0.5 m mesh

digital elevation model (DEM) created by building a tri-

angulated surface model. The points 1.3 m above the

ground were classified as ‘‘vegetation’’ points, and the

residual points as ‘‘ground’’ points. The threshold of 1.3 m

is the height at which the lens was placed when we took the

hemispherical photographs. Note that the classes the

‘‘ground’’ and ‘‘vegetation’’ are independent of the point

echo types (i.e., first, intermediate, last, and only returns)

for the raw data.

The predictor variables related to laser point height,

laser penetration rate, and laser point attributes were

calculated for individual plots (Table 2). The laser height

variables included the mean (MEAN), maximum (MAX),

standard deviation (SD), and coefficient of variation

(CV) of all return heights, and the mean (MEANVEG),

standard deviation (SDVEG), and coefficient of variation

(CVVEG) of vegetation return heights. For the laser

penetration rate, we calculated the following five

variables:

PALL ¼ NGround

NAll

PFO ¼ NGroundFirst þ NGroundOnly

NFirst þ NOnly

PLO ¼ NGroundLast þ NGroundOnly

NLast þ NOnly

PI ¼ IGround

IAll

PIBL ¼
IGroundOnly

IAll

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
IGroundLast

IAll

q

IFirstþIOnly
IAll

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IIntermediateþILast

IAll

q

where NAll, NGround, NFirst, NLast, and NOnly represent the

number of all points, ground points, ‘‘first’’ returns, ‘‘last’’

returns, and ‘‘only’’ returns for individual plots, respectively.

We also counted the number of ‘‘first’’, ‘‘last’’, and ‘‘only’’

returnswithin the ground points (NGroundFirst,NGroundLast, and

NGroundOnly). The parameters IAll, IGround, IFirst, IIntermediate,

ILast, and IOnly represent the sum of intensity values of all

points, ground points, ‘‘first’’ returns, ‘‘intermediate’’

returns, ‘‘last’’ returns, and ‘‘only’’ returns, respectively. The

parameters IGroundLast and IGroundOnly represent the sum of

intensity values of ‘‘last’’ and ‘‘only’’ returns within the

ground points respectively. The PIBL is the complement of the

FCLidar(BL), which is the Beer’s Lawmodified fractional cover

equation proposed by Hopkinson and Chasmer (2009). This

equation takes into consideration the fact that intermediate

and last returns are residual energies after previous returns in

the travel paths of the emitted laser pulses, and are attenuated

in both incoming and outgoing transmission processes.

For the laser point attributes, we calculated the follow-

ing variable:

AVO ¼ NVegetationOnly

NVegetationFirst þ NVegetationOnly

where NVegetationFirst and NVegetationOnly represent the num-

bers of ‘‘first’’ returns and ‘‘only’’ returns within the veg-

etation points, respectively.

Statistical analyses

A simple linear regression analysis was used to evaluate the

strength of the relationship between the LiDAR data collected

from Expo ‘70 park and Shugakuin forest and field-based

measurements of LAI and gap fraction. The data from the two

forests were analyzed separately and as an integrated dataset.

Leave-one-out-cross-validation (LOOCV)was performed, and

the predicted residual sum of squares (PRESS) was calculated.

The efficiencies of predictor variables were examined by the

use of coefficients of determination (R2) and root mean square

errors (RMSEs) that accounted for the results of the LOOCV.
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Specifically, these were PRESS R2 and RMSEV. All statistical

analyses were performed using R version 2.13.1 software (R

Development Core Team 2011).

Results

Determination of the best hemispherical photograph

annulus

Figure 2 shows examples of cross-sectional LiDAR returns

for each study site. All plots in the Expo ‘70 park were on

relatively flat topography, whereas many plots in the

Shugakuin forest were on a steep terrain. Because the

steepest plot in the Shugakuin forest exhibited a slope of

41.2�, we excluded annuli over 40.9� from the hemi-

spherical photographs to avoid the influence of topography

when calculating gap fraction and LAI. In addition to the

influence of topography, large annuli can cause sampling

errors by including adjoining stands, while small annuli can

cause the dispersion of values in each plot because they are

limited to observing only the narrow area directly overhead

of the camera. In consideration of these issues, we chose to

use data from the annulus range of 0–32.4� in our study.

Table 1 shows the mean values and standard deviations of

field measurements of LAI and gap fraction for each plot.

Table 2 Results of regression analysis of LiDAR variables with LAI and gap fraction

Variable Expo ‘70 Shugakuin Integrated

PRESS R2 RMSEv PRESS R2 RMSEv PRESS R2 RMSEv

LAI

Height variables

MEAN -0.015 1.235 0.511 0.704 0.315 0.942

MAX -0.143 1.311 0.239 0.879 0.008 1.134

SD 0.310 1.018 -0.156 1.083 -0.036 1.159

CV 0.775 0.582 0.449 0.747 0.706 0.617

MEANVEG -0.158 1.319 0.463 0.738 0.215 1.009

SDVEG 0.269 1.048 -0.103 1.058 -0.083 1.185

CVVEG 0.681 0.693 0.201 0.900 0.515 0.793

Penetration variables

PALL 0.696 0.676 0.503 0.710 0.582 0.736

PFO -0.063 1.264 0.045 0.984 -0.108 1.198

PLO 0.683 0.690 0.297 0.845 0.548 0.766

PI 0.210 1.090 0.307 0.839 0.150 1.049

PIBL 0.679 0.695 0.379 0.794 0.572 0.745

Attribute variable

AVO 0.761 0.600 -0.131 1.071 0.428 0.861

Gap fraction

Height variables

MEAN -0.037 0.090 0.399 0.036 0.186 0.066

MAX -0.126 0.093 0.120 0.044 -0.029 0.075

SD 0.156 0.081 -0.164 0.051 -0.024 0.074

CV 0.783 0.041 0.596 0.030 0.771 0.035

MEANVEG -0.145 0.094 0.349 0.038 0.110 0.069

SDVEG 0.130 0.082 –0.146 0.050 -0.066 0.076

CVVEG 0.724 0.046 0.252 0.041 0.540 0.050

Penetration variables

PALL 0.884 0.030 0.733 0.024 0.841 0.029

PFO 0.723 0.046 0.018 0.047 0.584 0.047

PLO 0.903 0.027 0.594 0.030 0.853 0.028

PI 0.944 0.021 0.583 0.030 0.831 0.030

PIBL 0.903 0.027 0.546 0.032 0.839 0.030

Attribute variable

AVO 0.586 0.057 -0.071 0.049 0.447 0.055
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LAI estimation

Table 2 shows the results of regression analyses between

the LiDAR-based variables and the field-based measure-

ments LAI and gap fraction for the Expo ‘70 park, the

Shugakuin forest, and the integrated dataset. The scatter

diagrams and regression lines are illustrated in Fig. 3 (LAI)

and Fig. 4 (gap fraction).

Among the laser height variables, the CV had the best

LAI estimation accuracies for the Expo ‘70 park data

Fig. 2 Example cross-sectional

LiDAR (light detection and

ranging) returns for each study

site; E4 (Expo ‘70 park) and S9

(Shugakuin forest)

Fig. 3 Scatter diagrams and regression lines showing the relationships between LiDAR-based variables and field-based LAI (leaf area index)

values
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(PRESS R2 = 0.775, RMSEv = 0.582) and the inte-

grated data (PRESS R2 = 0.706, RMSEv = 0.617), and

the third highest accuracy for the Shugakuin forest data

(PRESS R2 = 0.449, RMSEv = 0.747). The MEAN had

the highest accuracy for the Shugakuin forest data

(PRESS R2 = 0.511, RMSEv = 0.704), but it was not

effective in the Expo ‘70 park (PRESS R2\ 0). The

MEANVEG and CVVEG, respectively, had lower accura-

cies than the MEAN and CV in all datasets. The MAX,

SD, and SDVEG had low estimation accuracies in all

datasets.

In regards to the laser penetration variables, PALL had

the highest PRESS R2 values (Expo ‘70 = 0696; Shu-

gakuin = 0.503; Integrated = 0.582) and the lowest

RMSEv values (Expo ‘70 = 0676; Shugakuin = 0.710;

Integrated = 0.736) in all datasets. The estimation accu-

racies of PFO and PI were low in all datasets. As for PLO

and PIBL, the PRESS R2 values were higher than 0.6 for the

Expo ‘70 park data and higher than 0.5 in the integrated

dataset.

The laser attribute variable, termed AVO, showed a high

estimation accuracy for the Expo ‘70 park data (PRESS

R2 = 0.761, RMSEv = 0.600), but a low accuracy for

estimating LAI in the Shugakuin forest.

Gap fraction estimation

Among the laser height variables, the CV showed the

highest PRESS R2 values (Expo ‘70 = 0.783; Shu-

gakuin = 0.596; Integrated = 0.771) and lowest RMSEv

values (Expo ‘70 = 0.041; Shugakuin = 0.030; Inte-

grated = 0.035) in all the datasets. The CVVEG had the

second highest accuracies for the Expo ‘70 park data and

the integrated data, but low accuracy in Shugakuin forest.

The other height values, MEAN, MAX, SD, MEANVEG,

and SDVEG, showed low estimation accuracies.

For the laser penetration variables, the estimation

accuracies were higher in the Expo ‘70 park than in the

Shugakuin forest. The estimation accuracies for gap frac-

tion were higher than those for LAI for almost all variables

analyzed except for PFO, which had low estimation accu-

racies for both LAI and gap fraction in the Shugakuin

forest (see Table 2). The variable, PALL, had stable and

high PRESS R2 values (Expo ‘70 = 0.884; Shu-

gakuin = 0.733; Integrated = 0.841) and low RMSEv

values (Expo ‘70 = 0.030; Shugakuin = 0.024; Inte-

grated = 0.029). We used bold lines to highlight 1:1

relationships in the diagrams depicting laser penetration

variables in Fig. 4. The results of regression analyses

Fig. 4 Scatter diagrams and regression lines showing the relationships between LiDAR-based variables and field-based gap fraction values. The

bold lines in several of the diagrams (e.g., for laser penetration variables PALL, PFO, PLO, PI, PIBL) indicate a 1:1 relationship
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between PALL and gap fraction showed a near 1:1 rela-

tionship for the Expo ‘70 park data and the integrated data,

although the PALL underestimated the gap fraction for the

Shugakuin forest data. The PFO exhibited small values and

became zero for five plots in the Expo ‘70 park and six

plots in the Shugakuin forest, resulting in a marked

underestimation of the gap fraction. As for the other vari-

ables, PLO, PI, and PIBL, the PRESS R2 values were higher

than 0.9 for the Expo ‘70 park data and higher than 0.5 for

the Shugakuin forest data, although the regression lines

deviated from 1:1 relationships.

For AVO, a relatively high estimation accuracy was

shown in the Expo ‘70 park (PRESS R2 = 0.586,

RMSEv = 0.057), but a low AVO accuracy was seen in the

Shugakuin forest (Table 2). This pattern was similar to

what was observed for LAI estimates.

Discussion

Laser height variables

Among the laser height variables, the CV had the highest

levels of accuracy for estimating both LAI and gap frac-

tion, with the exception of LAI estimation in the Shugakuin

forest. The CV represents the relative dispersion of the

vertical laser point height distribution, which has been

shown to be a good predictor for discriminating among

stands of different canopy densities (Donoghue et al. 2007;

Bater et al. 2009). In dense forests, many laser points

concentrate in the upper canopy and few laser pulses reach

the ground, resulting in small CV values. In contrast, if the

canopy has few leaves, most laser pulses penetrate the

canopy and reach the ground resulting in the dispersion of

point height and larger CV values. The CVVEG showed

lower estimation accuracies than the CV. This was likely

because the ground returns emphasized the vertical dis-

persion of height in low-density plots, resulting in larger

variances of CV than CVVEG. (Figs. 3, 4).

The estimation accuracies for CV values in the Expo ‘70

park were higher than in the Shugakuin forest. The trees of

the Expo ‘70 park were planted during a short period in the

1970s, and many plots are now dominated by evergreen

broad-leaved trees of similar height. These plots also have

heavily closed canopies and poor stratification structures

(Morimoto et al. 2006). This type of homogeneity in the

forest structure may have led to distinctly small CV values.

On the other hand, the use of CV was less reliable for

estimating the LAI of the Shugakuin forest (i.e., the PRESS

R2 value was\0.5) (Table 2). This may have been a result

of the complex vertical stratifications of some plots in the

Shugakuin forest, where increases in the LAI did not

always lead to an increase of canopy surface density.

Therefore, these results suggest that the CV is not a

variable that is directly related to leaf abundance, and it can

be affected by forest stratification structures such as those

in the sub-canopy and shrub layers. In consideration of

these findings, we recommend that more evaluations be

conducted prior to the use of CV for estimating LAI and

gap fraction, especially in forests with complex structures.

Laser penetration variables

The laser penetration variables showed higher accuracies in

estimating gap fraction than in estimating LAI. According

to Beer’s law, the gap fraction decreases exponentially as

the LAI increases, and small variations in low gap fraction

values correspond to large variations in the LAI. In this

study, most of the plots that we analyzed had closed can-

opies and gap fractions that were lower than 0.2 (Table 1).

These characteristics seemed to amplify errors in the LAI

values. In addition, the estimation accuracies of the laser

penetration variables were higher in the Expo ‘70 park than

in the Shugakuin forest (Table 2). This was likely because

the Expo ‘70 park had a gentle topography and a more

homogeneous forest structure within each plot that led to a

reduction in estimation errors, whereas the Shugakuin

forest had steep slopes and a more heterogeneous forest

structure.

In past studies, the complement of the PFO has been used

for estimations of LAI and canopy cover (Miura and Jones

2010; Korhonen et al. 2011). However, this was not pos-

sible in the present study because PFO values were very

small in many plots. The practical use of the PFO for

estimating forest structure in the broad-leaved forests

examined in this study was limited due to their closed

canopies and high LAI values ([5) in many plots

(Table 1). Because the laser footprint (0.15 m) used in this

study was larger than the small gaps in closed forest can-

opies, most of the ‘‘first’’ returns and ‘‘only’’ returns likely

hit the tops of the canopies, and missed many of the small

gaps (Solberg et al. 2009). Interestingly, the PLO had higher

estimation accuracies than the PFO. This could possibly be

because the PLO simply targets the returns that penetrated

the canopy, and is less sensitive to dense canopies com-

pared to the PFO. Although, the PLO tended to overestimate

high gap fraction values (Fig. 4). This may be because the

PLO ignores the first hit on the canopy surface, which can

cause overestimation when the canopy gap is sufficient

enough in size that laser beams can penetrate the canopy.

Consistent with past studies on individual forests (Sa-

saki et al. 2008; Richardson et al. 2009), estimations

accuracies by PALL were stable and high for both LAI and

gap fraction values in all datasets. Furthermore, correla-

tions between PALL and gap fraction had near 1:1 rela-

tionships. The use of all returns provided a sufficient
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sample density, and seemed to offset any tendencies for

underestimation when using ‘‘first’’ returns and overesti-

mation when using ‘‘last’’ returns. These results imply that

the simplest penetration variable, PALL, would be useful for

deriving stable estimates of LAI and gap fraction in broad-

leaved forests.

With regard to the variables based on intensity data, the

PI showed low accuracies for estimating the LAI, but this

was improved by using the PIBL. These improvements

likely resulted because any errors were mitigated by taking

into consideration the energy losses associated with each

laser point attribute (Hopkinson and Chasmer 2009). For

gap fraction estimation, the PI had PRESS R2 values[0.9

for the Expo ‘70 park and[0.5 for the Shugakuin forest,

but the PI values were lower than 0.1 for many plots

(Figs. 3, 4). This was mitigated to some extent by the use

of the PIBL (Figs. 3, 4). In contrast to the case described by

Hopkinson and Chasmer (2009), the relationships we

observed between PIBL and field-based gap fraction values

deviated from 1:1 relationships. A possible reason for this

is that the intensity represents the reflection value of

infrared laser beams (1550 nm), and this value can differ

depending on the objects that are hit (i.e., such as vegeta-

tion and ground), and the types of trees and plant species

that are present in the study area.

Laser attribute variable

The variable, AVO, showed high estimation accuracies in

the Expo ‘70 forest, but low accuracies in the Shugakuin

forest for both LAI and gap fraction. Because many stands

in the Expo ‘70 park are composed of similar-aged trees,

the plots dominated by evergreen broad-leaved tree species

had less canopy surface roughness (Fig. 2). This resulted in

many ‘‘only’’ returns hitting the canopy surface at the same

time within a given footprint area. In contrast, the Shu-

gakuin forest is a secondary forest that has been managed

for a long time, and it contains many plots with higher

amounts of canopy surface roughness regardless of leaf

abundance levels. This aspect of the forest structure likely

resulted in less ‘‘only’’ returns. In consideration of these

observations, AVO appears to be a less stable estimation

parameter when compared to the other laser penetration

variables, and it seems useful only for forests that have

relatively homogeneous structures and uniform tree

heights.

Conclusions

In this study, we evaluated methods for reliably estimating

LAI and gap fraction in two different types of broad-leaved

forests by the use of airborne LiDAR data. Among the

predictor variables, the CV had high estimation accuracies,

but it was less effective when targeting forests that had

complex vertical structures. The simplest laser penetration

variable, PALL, also had a high level of accuracy for esti-

mating both LAI and gap fraction at the two study sites

regardless of whether the data were analyzed separately or

as an integrated data set. The PALL values showed near 1:1

relationships with the field-based gap fraction values.

Additionally, the use of PALL has been shown to be valu-

able in past studies of individual forests. These findings

suggest that PALL estimates may be the most stable indi-

cators to use in various types of forest. Hence, we conclude

that PALL may be the most practical LiDAR-based variable

to use for estimating LAI and gap fraction in broad-leaved

forests.
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