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Abstract
Background  Three-dimensional digital image correlation (3D-DIC) is a non-contact monitoring technique that is able to 
provide accurate three-dimensional strain and displacement measurements. Previous research has shown that 3D-DIC can 
detect micron-scale cracks in structures as they emerge; however, because 3D-DIC is an optical sensing technique, unfavora-
ble visual conditions due to high heat, large deformations, or a significant distance between the structure and the 3D-DIC 
cameras can make crack detection difficult or impossible.
Objective  This research aims to develop machine learning algorithms capable of detecting characteristic crack signals in 
these scenarios.
Methods  Localized point velocities obtained via 3D-DIC were transformed into 2D color images for machine learning seg-
mentation. A novel dataset processing technique was utilized to produce the training dataset, which overlayed simplistic crack 
analogs on top of the first 50 images from the test. Different parameters from this technique were investigated to determine 
their effect on the model’s accuracy and sensitivity.
Results  The resulting model detected the onset of significant cracking with an accuracy comparable to acoustic emissions 
sensors. Varying the processing parameters yielded models that could detect evidence of cracking earlier, at the cost of 
potentially higher false positive rates. The model also performed well on structures imaged in similar testing setups that 
were not included in the training dataset.
Conclusion  This data processing technique enables crack detection in scenarios where acoustic emissions and other sensors 
cannot be used. It additionally allows processes already utilizing 3D-DIC to obtain additional information about material 
performance during testing or operation.
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Introduction

Quality assurance and structure health monitoring are essen-
tial in high-performance aerospace, healthcare, and energy 
generation applications. Uncertainty is introduced at various 
times, from a structure’s start of life during manufacturing 
through its use in potentially harsh environments. Digital 

image correlation (DIC) is a non-contact optical technique 
that can help reduce or eliminate this uncertainty. In three-
dimensional DIC [1], two cameras are placed in a stereo 
vision setup, focused on the same object, and a calibration 
is performed to determine their relative position. These 
cameras capture a set of images at a given interval. A full-
field profile of the structure is created using the stereo set 
of images and the calibration. Then, this 3D topological 
measurement can be compared across the time dimension 
to measure displacement [2] and strain. Importantly, this 
method can measure out-of-plane displacement [1] and can 
achieve micron-level accuracy [1, 3, 4] in well-calibrated 
cases.

Comprehensive studies such as Roux et al. [5] have shown 
that 3D-DIC can accurately detect cracks on the micron 
scale in various materials. Unfortunately, the viability of 
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3D-DIC can be limited by several factors commonly found 
in manufacturing, energy-intensive applications, and other 
applications that could greatly benefit from this crack detec-
tion. Visual noise and optical distortions can be introduced 
to the raw images by flashing lights [6] (such as sparks) and 
moving gases (such as hot air). 3D-DIC resolution can fur-
ther be impacted by poor camera mounting or large structure 
deformations relative to the crack size.

This study aims to further enable this method by utilizing 
machine learning to facilitate the detection of cracks present 
in the 3D-DIC data, allowing for the detection of cracks 
not able to be seen via traditional digital image processing 
techniques or even by the human eye. This study developed 
a method utilizing data gathered during an expanding plug 
test [7]. Previously, structure failure and cracking during 
an expanding plug test have been detected via 3D-DIC by 
computing the hoop strain and detecting when the strain 
exceeds a threshold value [8–10]. This study goes a step 
further and identifies localized cracking throughout the test, 
allowing for a more precise indication at the exact moment a 
structure begins to fail and where in the structure this failure 
originates from.

Materials and Methods

Digital Image Correlation and Expanding Plug Test 
Setup

Two Grasshopper3 digital cameras (FLIR) were set up in a 
stereoscopic array approximately 200 mm from the target 
structure. The structure requires a high-contrast surface opti-
cal texture [11] to allow the DIC system to achieve a good 
correlation. Thus, the face of the structure facing the camera 
array was spray painted with black and white matte finish 
spray paint (Rust-Oleum) to achieve a non-uniform speckle 
pattern. Testing setup specifics can be seen below in Table 1.

The expanding plug test was performed using an Admet 
universal testing machine with a 10kN load cell. It mirrored 
the expanding plug test found in Roache et al. [9], except 
a displacement-regulated loading rate of 0.5 mm/min was 

used. An acoustic emissions (AE) sensor (Mistras 1283 
AE Node) was clamped onto the upper arm of the testing 
machine to provide a secondary validation of crack forma-
tion times, as demonstrated in [9]. An illustration of the test 
setup can be seen in Fig. 1.

Calibration targets, along with the software package 
Vic3D-8 (Correlated Solutions), were used to determine 
the exact position of the cameras relative to each other and 
the structure. Each pair of stereoscopic images were divided 
into many overlapping regions. Due to the non-uniform 
speckle pattern, each region is distinct, and thus regions can 
be matched between the image pair even in the presence 
of structure deformation. By matching up these regions, a 
transform is computed between the two cameras, which, 
combined with the calibration information, can determine 
the exact X, Y, and Z coordinate positions of each of the 
regions, resulting in a 3D point cloud topography of the 
structure. By selecting the same regions at each time step, 
this topography can be compared across time to determine 
strain and velocity at each point.

Data Preprocessing and Model Setup

As the anticipated crack width of ~ 1 μm is less than the 
size of a pixel, direct observation of cracks forming in the 
digital images is unlikely. Instead, point velocity was moni-
tored for a large increase in a localized area. This has the 
advantage of potentially having a spatially larger signal, as 
the crack opening also causes neighboring points to experi-
ence higher-than-normal acceleration. In turn, this can also 
make it more difficult to pinpoint the location and size of 
every crack – especially if the DIC acquisition time is too 
long. The DIC correlation data was used to compute the X 
displacement and change in X velocity of each point. The 
X, Y, and change in X velocity for each point were then 
interpolated into a regular 224 pixel by 224 pixel grid, with 
the value at each pixel representing the change in X veloc-
ity. These 2D images were then able to be used in traditional 
image-based machine learning processes.

To allow for easier adoption, self-supervised learning [12, 
13] was used for model training. This allows for the use of 
datasets with little to no human labels. This is especially 
important as identifying cracks quickly in the field can be 
non-trivial and require previously failed structures to create 
labeled data from. Instead, the training dataset for the model 
is generated through the systematic creation of simplified 
simulated cracks on a subset of initial images.

To create images with simulated cracks, a set of seed 
images consisting of the first 50 images captured by the 
DIC system was used as a background to create the cracks 
on. These were chosen as we were confident that these 
images would be at a load too small to exhibit any cracking 
but would have a good sample of the noise encountered 

Table 1   DIC test setup properties

DIC Test Setup

Technique Used 3D Digital Image Correlation
Camera 2 × FLIR Grasshopper3
Sensor 14 bit, 2048 pixels × 2448 pixels
Lens 2 × Sigma 105 mm F2.8
Imaging Distance  ~ 200 mm
Field of View 32 mm × 27 mm
Pixel resolution  ~ 1.3 μm/pixel
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during the test. This is important because any cracks ini-
tially present in the seed images will not be flagged as 
valid cracks for the model to be trained on, and thus the 
model could inadvertently learn to ignore some types of 
cracks. To create the simulated cracks, 1 to 8 random lines 
were created using random width, length, and magnitude 
values within predefined ranges. The crack analogs to be 
used in the creation of the training set were designed to 
be as simple as possible to allow for the model to be as 
generic as possible, and to minimize the amount of techni-
cal information needed to be able to implement the model 
in a production environment. The choice of straight lines 
was informed by the specific experimental setup and 
anticipated failure mode (namely, hoop stress resulting 

in long vertical cracking). In other scenarios where more 
complex curving cracks are anticipated, modifications to 
analog primitives may be required to enable effective crack 
detection.

However, simply using the lines as drawn was not effec-
tive. This is due to the fact that basic lines were not repre-
sentative of the characteristic crack signals (see Fig. 2(b)) 
that the model is being designed to eventually detect. To 
compensate for this, a pixel dropout mask generated from 
random-sized noise was created to apply to the drawn 
lines, causing part of the lines to disappear. Then they 
were multiplied by a mask generated from random-sized 
noise to provide pixel dropout (see Fig. 3). This process is 
illustrated in Fig. 2.

Fig. 1   Expanding plug test and instrumentation setup

Fig. 2   (a) Positive example gen-
eration with random-sized pixel 
dropout (γ = 0.6) (b) Example 
of characteristic crack signals
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This random sized noise is generated by creating an 
image with smaller dimensions than the target dataset, fill-
ing the image with values sampled from a uniformly random 
distribution (referred to as noise), and then upscaling the 
image to the final target dataset dimension. This results in an 
image of noise where the size of each sample is potentially 
greater than a single pixel. To determine the dimensions of 
the smaller image used to initially generate the noise, a tar-
get sample pixel size was selected according to an equation 
reproduced below in (1).

Here, clip(x, a, b) represents the clip function that returns 
a if a > x , b if b < x , and x otherwise. norm(�, �) is a func-
tion that takes a random sample from a normal distribution 
with mean � and standard deviation � . The values used in 
our experiments were � = 2, � = 1.75, a = 1, b = 18.

The dataset image dimensions were then divided by this 
size value to obtain the dimensions of the smaller image. 
Noise was generated by sampling a uniform distribution 
between zero and a noise coefficient hyperparameter Cn , 
chosen depending on the amount of noise present in the seed 
images. This noise image was then scaled via nearest neigh-
bor interpolation to the dataset image dimensions. Finally, a 
Gaussian blur was applied to the noise image, with a kernel 
size dictated by the amount of noise present in the seed data-
set. In the pixel dropout mask generation, this noise was then 
passed through a threshold of �

Cn

 where all pixels less than 
this value were set to zero, and all others were set to one.

After the first set of lines was generated and applied, a 
second set of lines was generated in a similar fashion. How-
ever, these lines possessed characteristics distinct from the 
initial set, with the range of possible values for length and 
width different from the first set. This second set of lines 
served as a set of counter-examples for the model.

(1)
x = 1 + ‖norm(�, �)‖

Noise Size = clip(x, a, b)

After the two sets of lines were added to the initial seed 
image, random-sized noise was applied to the entire image. 
This noise was generated in the same manner as for the pixel 
mask dropout, except no thresholding was performed. This was 
done to help prevent overfitting due to the small number of 
original input images, as well as to provide more obfuscation of 
the lines we are training the model to detect. Finally, augmen-
tation techniques commonly employed in image processing, 
including rotation, translation, horizontal flipping, and scaling, 
were applied. This overall process is demonstrated in Fig. 4.

The Pytorch segmentation library [14] was used as the 
underlying framework to construct the prediction model 
architecture. Multiple models including MANet [15], UNet 
[17] and UNet++ [18] were canvassed along with multiple 
pre-trained encoders (Inceptionv4 [16], Resnet [19], VGG 
[20], DPN [21], ResNeXt [22], and ResNeSt [23]) to deter-
mine the best model-encoder combination.

In the initial testing, all of the models and encoders used 
were able to yield acceptable results given proper hyperpa-
rameter tuning, and none stood out as exceptionally good or 
bad compared to the others. The combination of a MANet 
segmentation model with an Inceptionv4 encoder yielded the 
best qualitative results in detecting known cracks and was sub-
sequently used for all tests. Loss for each prediction was com-
puted by taking the pixel-wise mean squared error between 
the predicted mask ( ̂Y ) and the positive example mask ( Y ). An 
illustration of the training loop is shown in Fig. 5.

In evaluating the performance of different model configu-
rations, the following criteria were investigated:

1.	 The ability of the model to accurately detect the artifi-
cial line analogs present in the augmented training set, 
without false positives,

2.	 The ability of the model to not falsely detect cracks in the 
initial 50 seed images known not to have any cracking,

3.	 The ability of the model to not falsely detect cracks in 
other images that were known not to have cracking, but 

Fig. 3   Random sized noise 
generation process
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Fig. 4   Input augmentation process

Fig. 5   Prediction model training loop
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not part of the seed image set (in our experiment, this 
comprised of the images taken at DIC timesteps 50-99),

4.	 The ability of the model to detect cracks in test images 
that are known to have cracks (such as those immedi-
ately leading up to the failure of the structure),

5.	 The model’s agreement with data obtained from the 
acoustic emissions and load sensors.

The three primary hyperparameters that were varied 
were: The threshold amount used while generating the ran-
dom-sized noise pixel dropout of generated lines ( � ), the 
noise coefficient used while overlaying noise to the input 
image ( Cn ), and the minimum magnitude used while drawing 
the example lines ( M ). Other hyperparameters investigated 
include the initial learning rate for the Adam [24] optimizer 
and the total number of epochs the model was trained for. 
Learning rate values of 10-3 to 10-4 tended to yield good 
results, and total epochs varied between 50 and 500 epochs 
depending on the other hyperparameters.

Results and Discussion

An array of tests were conducted to discover the potential 
impact each hyperparameter would have on detection rates. 
Figure 6 shows results from predictions for DIC timestep 
744 with � = 0.6 and Cn and M equaling one of 0.01, 0.03, 
or 0.05. The spatial axes have been changed from previous 
illustrations to display pixels instead of mm for easier view-
ing, but they represent the same data.

The Cn and M hyperparameters have a significant rela-
tionship, making the effect of each dependent on the other. 
As shown in Fig. 6, holding Cn = 0.01 and increasing M 
decreases the quality of the crack detection. The opposite is 
true when holding Cn = 0.05 and increasing M . This could 
suggest that there is an optimal clarity of lines, where the 
model must learn to detect line type objects, without learn-
ing to only detect perfect line segments.

Figure 7 shows the effect of increasing the minimum line 
magnitude while holding all other hyperparameters constant 
on the augmented training dataset. While the trend in Fig. 6 

Fig. 6   Array of predictions with 
various random-sized noise 
coefficients and minimum line 
magnitude values (x and y axis 
are shown in pixels for easier 
viewing)

Prediction at Timestep = 744 = 0.6
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for Cn = 0.01 shows that increasing minimum line magni-
tude decreases detection certainty, the trend in Fig. 7 shows 
significantly less change. In isolation this could be evidence 
that the crack signals correspond to line magnitudes on aver-
age that are closer to 0.01 than 0.05, however, the previously 
mentioned trend for Fig. 6 in the case of  Cn = 0.05 does not 
support this conclusion. Alternatively, this could be evidence 
that with low noise coefficients and high minimum line mag-
nitude, the model may start to align too closely towards the 
simplistic line analogues (and for example, start looking for 
the perfectly rounded ends of the line segments), and thus 
become less reliable for detecting more abstract line type 
shapes (such as those that we anticipate for cracks).

In the Cn = 0.05 case for Fig. 6, the lowest line magni-
tude scenario ( M = 0.01 ) contains noise that is five times the 
minimum line magnitude. This could result in training input 
– target pairs where the target lines are mostly or completely 
obscured by noise, resulting in impossible to predict scenarios. 
This could have the effect of causing the model to have many 
false positives as it tries to match non-existent signals, or for 
the model to effectively be trained on less data. As the mini-
mum line magnitude increases, the signal to noise ratio would 
increase, reducing these occurrences, and providing better 
detection certainty, which is consistent with the seen results.

The predictor had the poorest performance in Fig. 6 at 
Cn = M = 0.03 , which seems not to follow the previously 
mentioned trends. This could suggest another factor at play, 
potentially concerning the size or amount of noise inherent 
in the data.

The configuration that was the most consistent with the 
five evaluation criteria was � = 0.5,Cn = 0.03,M = 0.05 . 
Figure 8 demonstrates the model’s ability to accurately 
detect cracking in non-seed, non-augmented images (criteria 
4) while not having large amounts of false positives in the 
preceding and subsequent images.

Multiplying the prediction mask with the input image 
creates a detection image for each timestep. This represents 
the detected cracks, as well as their magnitude. By sum-
ming each of these detection images, a plot is created which 
gives an overview of when in the process significant crack-
ing occurs. A plot for the detection sums for the balanced 
model configuration can be seen in Fig. 9.

Referring back to the previously stated performance crite-
ria, we see that the model displays little to no false positives 
on images from the seed dataset (DIC timesteps 0 – 49) and 
images that are not expected to have cracking, and also not 
part of the seed dataset (DIC timesteps 50–99), satisfying 
criteria 2 and 3.

Fig. 7   Training input, prediction 
target, and prediction for line 
pixel dropout threshold = 0.6, 
noise coefficient = 0.01, and 
minimum line magnitude = 0.01, 
0.03, and 0.05

Noise coefficient = 0.01

(

))
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Fig. 8   Results from balanced 
predictor configuration, pre-
dicting crack locations at the 
timestep before, during, and 
after cracks

Fig. 9   Detection image sum for 
each timestep for the balanced 
model configuration
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The acoustic emissions data obtained during the test 
(Fig. 10) is evaluated and compared against this detection 
value plot to determine the prediction model’s ability to 
detect cracks accurately (criteria 5). Both plots indicate that 
significant cracking starts at approximately timestep 749 
(shown as a vertical red line). Additionally, both plots show 
small detections around timestep 450. This increases confi-
dence that the model could serve as a primary detection or 
complement other sensors as a detection validation mecha-
nism. Additionally, it is apparent from Fig. 10 that the AE 
setup displays a larger amount of random noise compared to 
that of proposed model as shown in Fig. 9. Depending on the 
specific environment, this could cause either the AE sensor 
setup, or the proposed model to detect cracking earlier. A 
lower threshold applied to the structure 1 AE signal could’ve 
detected unwanted part loading as shown as a slight increase 
in AE signal slightly after the 600 DIC timestep, allowing 
earlier warning of a potential fault state. However, this signal 
is not always present (as is the case in Fig. 13), and can be 
signs of non-critical loading, such as those around the 300 
DIC timestep. Likewise, the deformation of the speckle coat-
ing may appear as characteristic signals that the proposed 
model is able to detect but not the AE sensor, allowing for 
the proposed model to potentially achieve earlier detection 
in certain specific applications.

Changing the model’s parameters to � = 0.7,

C
n
= 0.03,M = 0.01 increased its sensitivity and allowed 

the model to detect some of the initial formations of the 
detected cracks. As seen in Fig. 11, the eventual cracking 
observed in DIC timestep 744 is seen in timestep 743 (taken 

0.25 s before). These cracks were previously not able to be 
detected. These detections could become more reliable by 
including more data in the model’s analysis for each timestep 
(such as giving it information about the previous timestep or 
the change in point Y velocity).

In Fig. 9, the original model’s detection value remains 
near zero for most of the test. The start of significant crack-
ing takes the form of a slight baseline increase (around 
timestep #700) and higher values for a few points, even-
tually leading to high but varied values across all points. 
This is contrasted with the detection value plot for the more 
sensitive model in Fig. 12. In the more sensitive model, the 
model’s detection value has a higher mean and standard 
deviation in the pre-cracking phase. Additionally, instead 
of the sharp value increase exhibited in Fig. 9 at the onset 
of cracking, the sensitive model’s detection values seem 
to increase smoothly and gradually (although once crack-
ing has started, we see a similar jump in detection value). 
This gradual increase could be a negative side effect of the 
increased sensitivity in the form of additional false positives, 
or it could indicate small, less significant cracks forming on 
the structure’s surface or in the paint. However, no matter the 
cause, the smoother transition of values around the onset of 
significant cracking could increase the difficulty of detecting 
the onset of cracking with the sensitive model.

One major advantage of the self-supervised nature of 
the model is that, because a majority of the input images 
are synthetic noise or positive/negative examples, a model 
can be trained on a given structure and then later used on 
another structure in a similar (but not necessarily identical) 

Fig. 10   AE normalized energy 
versus DIC timestep
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Fig. 11   More sensitive con-
figuration with early pre-crack 
detection

Fig. 12   Detection image sum 
for higher sensitivity model
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environment. To test this, the model previously trained with 
� = 0.7,Cn = 0.03,M = 0.01 was used without additional 
training to detect cracking in a different structure (referred 
to as structure 2). Figure 13 contains the detection value plot 
and AE energy plot for structure 2. Despite not being trained 
on any data from structure 2, the model’s detection value 
plot and AE plot both experienced a jump at around timestep 
853 (shown as a red vertical line). In contrast to the results 
obtained from testing on the original structure (referred to 
as structure 1), the detection plot seems to only increase at 
this value instead of slightly before it. This difference could 
be due to modifications in the testing environments, or the 
original model might not have been sensitive enough for 
structure 2 in general. The inaccuracies encountered when 
transferring the model to new structures could potentially be 
remedied by fine-tuning the model with some of structure 
2’s initial testing data or using different hyperparameters.

Conclusion

A self-supervised model was created using existing machine 
learning segmentation methods and novel data preprocessing 
to detect cracking in structures detected via digital image 
correlation under non-ideal conditions. This method does 
not need human-labeled data other than a small dataset 
known not to have cracks, enhancing its adaptability and 
making it more viable as a field technique that can be set up 
without expensive equipment or significant labor. Addition-
ally, the model’s sensitivity can be adjusted based on some 
preprocessing parameters, allowing users to tailor the model 
for their specific application. The model also demonstrated 
acceptable performance on data from structures other than 
the one initially trained on, decreasing the time and effort 
required for implementation.

Research is still needed to better understand the role of 
different hyperparameters, such as minimum line magnitude, 
pixel dropout percent, and random-sized noise coefficient, 
on the model’s sensitivity. Future experiments involving 
fine-tuning the model for new structures could also show 
increased performance. Additionally, testing done in a man-
ner that would allow the DIC data to be directly compared to 
data from an SEM or optical microscope would shine signifi-
cant light on this method’s exact accuracy and capabilities.
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